説明

照明光学系、露光装置、照明方法、露光方法、およびデバイス製造方法

【課題】照明条件に関する安定性が高く、所望の瞳強度分布を精度良く安定的に形成することのできる照明光学系。
【解決手段】光源LSからの光により被照射面を照明する照明光学系ILは、第1の所定面に沿って配列されて個別に制御される複数の第1光学要素を有し、第1光学要素に入射した光の向きを可変的に変調して射出する空間光変調器4と、空間光変調器4と被照射面との間の光路中に配置されて、第2の所定面に沿って配列された複数の第2光学要素を有し、第2光学要素に入射した光の向きを固定的に偏向して射出する光偏向器6とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、照明光学系、露光装置、照明方法、露光方法、およびデバイス製造方法に関する。さらに詳細には、本発明は、半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。
【背景技術】
【0002】
この種の典型的な露光装置においては、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
【0003】
二次光源からの光は、コンデンサー光学系により集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高度に微細化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
【0004】
従来、瞳強度分布(ひいては照明条件)を任意の分布に変更することのできる照明光学系が提案されている(例えば、特許文献1を参照)。特許文献1に開示された照明光学系では、アレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小なミラー要素により構成された可動マルチミラーを用いて、入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換し、ひいては所望の瞳強度分布を実現している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−353105号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載された照明光学系では、姿勢が個別に制御される多数のミラー要素を有する空間光変調器を用いているので、瞳強度分布の形状および大きさの変更に関する自由度は高い。しかしながら、多数のミラー要素の配列面とフライアイレンズの入射面とをリレー光学系を介してフーリエ変換の関係に配置しているため、リレー光学系の焦点距離にもよるが、ミラー要素の角度制御に誤差があると、当該ミラー要素を経てフライアイレンズの入射面に達する位置に誤差が発生し易く、ひいてはフライアイレンズの直後の照明瞳に形成される瞳強度分布が所望の分布とは異なるものになり易い。
【0007】
同じ理由により、光源からミラー要素へ入射する光の角度に誤差があると、当該ミラー要素を経てフライアイレンズの入射面に達する位置に誤差が発生し易く、ひいては照明瞳に形成される瞳強度分布が所望の分布とは異なるものになり易い。すなわち、特許文献1に記載された照明光学系では、照明瞳に形成される瞳強度分布がミラー要素の角度制御の誤差およびミラー要素への入射光の角度の誤差に敏感であるため、所望の瞳強度分布を精度良く安定的に形成することが困難である。
【0008】
本発明は、前述の課題に鑑みてなされたものであり、照明条件に関する安定性が高く、所望の瞳強度分布を精度良く安定的に形成することのできる照明光学系を提供することを目的とする。また、本発明は、所望の瞳強度分布を精度良く安定的に形成する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
前記課題を解決するために、本発明の第1形態では、光源からの光により被照射面を照明する照明光学系において、
第1の所定面に沿って配列されて個別に制御される複数の第1光学要素を有し、前記第1光学要素に入射した光の向きを可変的に変調して射出する空間光変調器と、
前記空間光変調器と前記被照射面との間の光路中に配置されて、第2の所定面に沿って配列された複数の第2光学要素を有し、前記第2光学要素に入射した光の向きを固定的に偏向して射出する光偏向器とを備えていることを特徴とする照明光学系を提供する。
【0010】
本発明の第2形態では、所定のパターンを照明するための第1形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
【0011】
本発明の第3形態では、光源からの光により被照射面を照明する照明方法において、
第1の所定面に沿って配列されて個別に制御される複数の第1光学要素を用いて、前記第1光学要素に入射した光の向きを可変的に変調して射出することと、
前記第1の所定面と前記被照射面との間の光路中の第2の所定面に沿って配列された複数の第2光学要素を用いて、前記第2光学要素に入射した光の向きを固定的に偏向して射出することと、
を含むことを特徴とする照明方法を提供する。
【0012】
本発明の第4形態では、第3形態の照明方法を用いて所定のパターンを照明することと、
前記所定のパターンを感光性基板に露光することと、
を含むことを特徴とする露光方法を提供する。
【0013】
本発明の第5形態では、第4形態の露光方法を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
【発明の効果】
【0014】
本発明では、照明条件に関する安定性が高く、所望の瞳強度分布を精度良く安定的に形成することのできる照明光学系を実現することができる。したがって、本発明の露光装置では、所望の瞳強度分布を精度良く安定的に形成する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。
【図面の簡単な説明】
【0015】
【図1】本発明の実施形態にかかる露光装置の構成を概略的に示す図である。
【図2】照明光学系における回折光学素子とマイクロフライアイレンズとの間の光路を直線状に展開して示す図である。
【図3】空間光変調器の構成および作用を概略的に示す図である。
【図4】空間光変調器の部分斜視図である。
【図5】光偏向器の要部構成を概略的に示す図である。
【図6】本実施形態における空間光変調器と光偏向器との協働作用を説明する図である。
【図7】光偏向器とマイクロフライアイレンズとの間の光路中に配置可能な散乱素子を設ける変形例を示す図である。
【図8】半導体デバイスの製造工程を示すフローチャートである。
【図9】液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
【発明を実施するための形態】
【0016】
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向に沿ってX軸を、ウェハWの転写面内において図1の紙面に垂直な方向に沿ってY軸をそれぞれ設定している。
【0017】
図1を参照すると、本実施形態の露光装置には、光源LSから露光光(照明光)が供給される。光源LSとして、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や、248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。本実施形態の露光装置は、光軸AXに沿って、マスクMを照明する照明光学系ILと、マスクMを支持するマスクステージMSと、投影光学系PLと、ウェハWを支持するウェハステージWSとを備えている。
【0018】
光源LSからの光は、照明光学系ILを介して、マスクMのパターン面(被照射面)を照明する。マスクMを透過した光は、投影光学系PLを介して、マスクMのパターンの像をウェハW上に形成する。照明光学系ILは、光源LS側から順に、整形光学系1と、回折光学素子2と、リレー光学系3と、空間光変調器4と、リレー光学系5と、光偏向器6と、リレー光学系7と、マイクロフライアイレンズ(またはフライアイレンズ)8と、コンデンサー光学系9と、照明視野絞り(マスクブラインド)10と、結像光学系11とを備えている。
【0019】
照明光学系ILは、後述するように、マイクロフライアイレンズ8の直後の照明瞳に所望の瞳強度分布を形成し、ひいては複数極照明(2極照明、4極照明など)、輪帯照明等の変形照明、通常の円形照明などを行う。整形光学系1は、光源LSからの入射光束を適切な大きさおよび形状の断面を有する光束に変換して回折光学素子2へ導く。回折光学素子2は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。
【0020】
具体的に、回折光学素子2は、整形光学系1を経て入射した光に基づいて、そのファーフィールド(フラウンホーファー回折領域)に所望の断面および強度分布を有する光束を形成する。別の観点によれば、回折光学素子2は、入射光束の角度分布の範囲よりも大きい範囲の角度分布を射出光束に付与する。空間光変調器4は、所定面に沿って配列されて個別に制御される複数のミラー要素を有する。光偏向器6は、所定面に沿って配列された複数の要素プリズムを有する。
【0021】
図2に示すように、回折光学素子2と空間光変調器4の複数のミラー要素の配列面とは、リレー光学系3を介して光学的にほぼフーリエ変換の関係に配置されている。したがって、空間光変調器4には、回折光学素子2の作用により均一化された強度分布を有する所要断面の光束が入射する。図2では、反射型の空間光変調器4を透過型の空間光変調器に置き換えて、回折光学素子2とマイクロフライアイレンズ8との間の光路を直線状に展開している。
【0022】
空間光変調器4の複数のミラー要素の配列面と光偏向器6の複数の要素プリズムの配列面とは、リレー光学系5を介してほぼフーリエ変換の関係に配置されている。光偏向器6の複数の要素プリズムの配列面とマイクロフライアイレンズ8の入射面とは、リレー光学系7を介してほぼフーリエ変換の関係に配置されている。したがって、空間光変調器4の複数のミラー要素の配列面とマイクロフライアイレンズ8の入射面とは、一対のリレー光学系5および7を介して、光学的にほぼ共役に配置されていることになる。
【0023】
その結果、マイクロフライアイレンズ8の入射面には、一対のリレー光学系5および7からなる結像光学系の作用により、空間光変調器4の複数のミラー要素の反射面の像が形成される。後述するように、空間光変調器4は、光偏向器6との協働作用により、マイクロフライアイレンズ8の入射面に所望の光強度分布を形成する。空間光変調器4および光偏向器6の具体的な構成および作用については後述する。
【0024】
以下、理解を容易にするために、空間光変調器4および光偏向器6の作用を無視して、露光装置の基本的な動作を説明する。マイクロフライアイレンズ8は、例えば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であって、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構成する各レンズエレメントよりも微小である。
【0025】
また、マイクロフライアイレンズは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、正屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。マイクロフライアイレンズ8として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号公報に開示されている。
【0026】
マイクロフライアイレンズ8に入射した光束は二次元的に分割され、その後側焦点面またはその近傍の位置(照明瞳の位置)には、マイクロフライアイレンズ8の入射面に形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち多数の小光源からなる実質的な面光源(瞳強度分布)が形成される。マイクロフライアイレンズ8の後側焦点面またはその近傍には、必要に応じて、二次光源に対応した形状の開口部(光透過部)を有する照明開口絞りが配置されている。照明開口絞りは、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。
【0027】
マイクロフライアイレンズ8を経た光は、コンデンサー光学系9を介して、マスクブラインド10を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド10には、マイクロフライアイレンズ8の微小レンズの形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド10の矩形状の開口部(光透過部)を経た光は、結像光学系11を介して、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系11は、マスクブラインド10の矩形状開口部の像をマスクM上に形成することになる。
【0028】
マスクステージMS上に保持されたマスクMには、転写すべきパターンが形成されている。マスクMのパターンを透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが逐次露光される。
【0029】
本実施形態では、上述したように、マイクロフライアイレンズ8により形成される二次光源を光源として、照明光学系ILの被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置(マイクロフライアイレンズ8の後側焦点面またはその近傍の位置)は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系ILの照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。また、照明瞳の位置は、投影光学系PLの入射瞳面と光学的にほぼ共役な位置、照明光学系ILの射出瞳面と光学的にほぼ共役な位置とみなすことができる。
【0030】
瞳強度分布とは、照明光学系ILの照明瞳または当該照明瞳と光学的に共役な別の照明瞳(結像光学系11の瞳位置および投影光学系PLの瞳位置)における光強度分布(輝度分布)である。マイクロフライアイレンズ8による波面分割数が比較的大きい場合、マイクロフライアイレンズ8の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ8の入射面および当該入射面と光学的に共役な面における光強度分布についても瞳強度分布と称することができる。また、マイクロフライアイレンズ8の入射面および当該入射面と光学的に共役な面も照明瞳面と称することができる。
【0031】
図1では、空間光変調器4と投影光学系PLとの間の光路において光軸(ひいては光路)を折り曲げるための光路折曲げミラーの設置を省略しているが、必要に応じて光路折曲げミラーを照明光路中に適宜配置することが可能である。また、図1では、空間光変調器4に対する入射光軸と射出光軸とが直交した配置を示しているが、たとえば米国特許公開第2009/0073411号公報の図4に開示される照明光学系のように入射光軸と射出光軸とが所要の鋭角をなすように適宜配置することが可能である。
【0032】
図3および図4を参照して、空間光変調器4の構成および作用を説明する。空間光変調器4は、図3に示すように、例えばXZ平面と直交し且つXY平面およびYZ平面と45度をなす平面(配列面)に沿って二次元的に配列された複数のミラー要素4aと、複数のミラー要素4aを保持する基盤4bと、基盤4bに接続されたケーブル(不図示)を介して複数のミラー要素4aの姿勢を個別に制御駆動する駆動部4cとを備えている。空間光変調器4では、制御部CRからの制御信号に基づいて作動する駆動部4cの作用により、複数のミラー要素4aの姿勢がそれぞれ変化し、各ミラー要素4aがそれぞれ所定の向きに設定される。
【0033】
空間光変調器4は、入射した光に対して、その入射位置に応じた空間的な変調を付与して射出する。空間光変調器4は、図4に示すように、所定面内で二次元的に配列された複数の微小なミラー要素(光学要素)4aを備えている。説明および図示を簡単にするために、図3および図4では空間光変調器4が4×4=16個のミラー要素4aを備える構成例を示しているが、実際には16個よりもはるかに多数のミラー要素4aを備えている。
【0034】
図3を参照すると、空間光変調器4に入射した光線群のうち、光線L1は複数のミラー要素4aのうちのミラー要素SEaに、光線L2はミラー要素SEaとは異なるミラー要素SEbにそれぞれ入射する。同様に、光線L3はミラー要素SEa,SEbとは異なるミラー要素SEcに、光線L4はミラー要素SEa〜SEcとは異なるミラー要素SEdにそれぞれ入射する。ミラー要素SEa〜SEdは、その位置に応じて設定された空間的な変調を光L1〜L4に与える。
【0035】
空間光変調器4の複数のミラー要素4aの配列面は、上述したように、リレー光学系5の前側焦点位置またはその近傍に配置されている。空間光変調器4の複数のミラー要素4aによって反射されて所定の角度分布が与えられた光は、リレー光学系5の後側焦点位置またはその近傍の位置に配置された光偏向器6に入射する。すなわち、リレー光学系5は、空間光変調器4の複数のミラー要素4aが射出光に与える角度を、空間光変調器4のファーフィールドである光偏向器6の入射面上での位置に変換する。
【0036】
空間光変調器4は、図4に示すように、例えば平面状の反射面を上面にした状態で1つの平面に沿って規則的に且つ二次元的に配列された多数の微小なミラー要素4aを含む可動マルチミラーである。各ミラー要素4aは可動であり、その反射面の傾き(すなわち反射面の傾斜角および傾斜方向)は、制御部CRからの指令にしたがって作動する駆動部4cの作用により独立に制御される。各ミラー要素4aは、その配列面に平行で且つ互いに直交する二方向(Y方向およびY方向と直交する方向)を回転軸として、所望の回転角度だけ連続的或いは離散的に回転することができる。すなわち、各ミラー要素4aの反射面の傾斜を二次元的に制御することが可能である。
【0037】
各ミラー要素4aの反射面を離散的に回転させる場合、回転角を複数の状態(例えば、・・・、−2.5度、−2.0度、・・・0度、+0.5度・・・+2.5度、・・・)で切り換え制御するのが良い。図4には外形が正方形状のミラー要素4aを示しているが、ミラー要素4aの外形形状は正方形に限定されない。ただし、光利用効率の観点から、ミラー要素4aの隙間が少なくなるように配列可能な形状(最密充填可能な形状)が好ましい。また、光利用効率の観点から、隣り合う2つのミラー要素4aの間隔を必要最小限に抑えることが好ましい。
【0038】
光偏向器6は、図5に示すように、光軸AXと直交する平面(XY平面)に沿って二次元的に配列された複数の楔状の要素プリズム6aを有する。各要素プリズム6aは、光軸AXと直交するXY平面に対して傾いた平面状の入射面と、光軸AXと直交する平面状の射出面とを有する。光偏向器6は、一例として、複数の傾斜面の集合からなる非平面状の入射面と、平面状の射出面とを有する。以下、簡単のために、各要素プリズム6aは矩形状の外形形状を有し、X方向およびY方向に沿って縦横に配置された複数の要素プリズム6aからなる光偏向器6も矩形状の外形形状を有するものとする。
【0039】
光偏向器6は、複数の楔状の要素プリズム6aにより一体的に形成されていても良いし、個々の楔状の要素プリズム6aの組み合わせにより形成されていても良い。複数の楔状の要素プリズム6aにより光偏向器6を一体的に形成する場合、エッチングや研削などの手法で光透過性基板の表面に複数の傾斜面を形成して複数の楔状の要素プリズムを得ても良い。また、それぞれが複数の傾斜面を備える(複数の楔状の要素プリズムを備える)複数の光透過性基板を組み合わせても良い。
【0040】
光偏向器6の複数の楔状の要素プリズム6aの配列面は、上述したように、リレー光学系7の前側焦点位置またはその近傍に配置されている。光偏向器6の複数の要素プリズム6aを通過して所定の角度分布が与えられた光は、リレー光学系7の後側焦点位置に配置されたマイクロフライアイレンズ8に入射する。すなわち、リレー光学系7は、光偏向器6の複数の要素プリズム6aが射出光に与える角度を、光偏向器6のファーフィールドであるマイクロフライアイレンズ8の入射面上での位置に変換する。
【0041】
空間光変調器4は、姿勢が個別に制御可能な複数のミラー要素4aを有し、複数のミラー要素4aに入射した光の向きを可変的に変調して射出する。一方、光偏向器6は、入射面および射出面の向きが不変である複数の楔状の要素プリズム6aを有し、複数の要素プリズム6aに入射した光の向きを固定的に偏向して射出する。したがって、空間光変調器4の複数のミラー要素4aのうちの1つのミラー要素に入射した光は、当該ミラー要素の可変的な反射面の向きに応じて、光偏向器6の複数の楔状の要素プリズム6aのうちの1つの要素プリズムに入射する。
【0042】
当該要素プリズムに入射した光は、その入射面の固定的な傾きに応じて、マイクロフライアイレンズ8の入射面上の所定領域に達する。換言すれば、空間光変調器4の1つのミラー要素4aで反射された光は、リレー光学系5を介して光偏向器6の任意の要素プリズム6aに選択的に入射可能であり、ひいてはマイクロフライアイレンズ8の入射面上の任意の領域に入射可能である。
【0043】
以下、説明の簡単のために、光偏向器6の各要素プリズム6aを経た光束は、図6に示すように、マイクロフライアイレンズ8の入射面における矩形状の各単位領域Reに入射するものとする。また、複数の要素プリズム6aと複数の単位領域Reとはランダムに一対一対応しており、複数の矩形状の単位領域ReはX方向およびY方向に沿って互いに隣接しているものとする。
【0044】
この場合、空間光変調器4の1つのミラー要素4aaで反射されて光偏向器6の1つの要素プリズム6aaを通過した光は、図6中の中央の単位領域Reにおいて、空間光変調器4の配列面におけるミラー要素4aaの位置に対応する位置に、ミラー要素4aaの反射面の形状に対応する矩形状の照野Laを形成する。照野Laは、一対のリレー光学系5および7からなる結像光学系の作用により形成されるミラー要素4aaの反射面の像に他ならない。したがって、一対のリレー光学系5および7からなる結像光学系が縮小倍率を有する場合、照野Laはミラー要素4aaの反射面の縮小像となる。
【0045】
一方、ミラー要素4aaとは異なる別のミラー要素4abで反射されて要素プリズム6aaを通過した光は、図6中の中央の単位領域Reにおいて、空間光変調器4の配列面におけるミラー要素4abの位置に対応する位置に、ミラー要素4abの反射面の形状に対応する矩形状の照野Lbを形成する。照野Lbは、照野Laとは異なる位置に形成されるが、照野Laと同じ大きさおよび形状を有する。
【0046】
ちなみに、ミラー要素4aaで反射されて要素プリズム6aaとは異なる要素プリズム6abを通過した光は、図6中の中央の単位領域Reとは別の単位領域Reにおいて、空間光変調器4の配列面におけるミラー要素4aaの位置に対応する位置に、ミラー要素4aaの反射面の形状に対応する矩形状の照野Lcを形成する。照野Lcは、上記別の単位領域Reにおいて照野Laの位置に対応する位置に形成され、照野LaおよびLbと同じ大きさおよび形状を有する。
【0047】
以下、本実施形態の作用効果の理解を容易にするために、空間光変調器4が64×64=4096個のミラー要素4aを有し、光偏向器6が19×20=380個の要素プリズム6aを有するものとする。そして、380個の要素プリズム6aのうち、373個が有効な楔状の要素プリズム6aであり、7個がダミーの(使用されない)要素プリズム6aであるものとする。
【0048】
この場合、373個の約1/4からなる第1群の要素プリズム6aに対応する第1群の単位領域Reが互いに隣接し、約1/4からなる第2群の要素プリズム6aに対応する第2群の単位領域Reが第1群の単位領域Reから単位領域Reの半ピッチ分だけX方向に位置ずれして互いに隣接し、約1/4からなる第3群の要素プリズム6aに対応する第3群の単位領域Reが第1群の単位領域Reから半ピッチ分だけY方向に位置ずれして互いに隣接し、約1/4からなる第4群の要素プリズム6aに対応する第4群の単位領域Reが第2群の単位領域Reから半ピッチ分だけY方向に位置ずれして互いに隣接するように構成することができる。この構成では、4つの単位領域Reが互いに部分的に重なり合うことになる。
【0049】
この数値例では、マイクロフライアイレンズ8の入射面に形成される照野の位置は、当該照野に達する光が空間光変調器4の4096個のミラー要素4aのうちのどのミラー要素4aで反射されているかに依存し、且つ光偏向器6の373個の有効な楔状の要素プリズム6aのうちのどの要素プリズム6aを通過しているかに依存する。すなわち、マイクロフライアイレンズ8の入射面に形成される光強度分布は、4096個の互いに同じ形状を有する照野の集光として形成されるが、4096個の照野は互いに異なる373個の位置に選択的に形成可能である。換言すれば、本実施形態においてマイクロフライアイレンズ8の入射面に形成可能な光強度分布のパターンは、4096×373=1527808通りである。
【0050】
こうして、本実施形態の照明光学系ILでは、マイクロフライアイレンズ8の入射面に所望の形状および大きさを有する光強度分布を形成することができ、ひいてはマイクロフライアイレンズ8の直後の照明瞳に、複数極状(2極状、4極状など)、輪帯状、円形状等の所望の瞳強度分布を形成することができる。さらに、マイクロフライアイレンズ8の後側焦点位置またはその近傍の照明瞳と光学的に共役な別の照明瞳位置、すなわち結像光学系11の瞳位置および投影光学系PLの瞳位置(開口絞りASの位置)にも、マイクロフライアイレンズ8の直後の照明瞳における光強度分布に対応する瞳強度分布が形成される。
【0051】
露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、例えばマスクMのパターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。本実施形態では、姿勢がそれぞれ個別に変化する複数のミラー要素4aを有する空間光変調器4と、入射面がそれぞれ異なる向きに傾斜した複数の要素プリズム6aを有する光偏向器6とを用いて、マイクロフライアイレンズ8の直後の照明瞳に形成される瞳強度分布を自在に且つ迅速に変化させ、ひいては多様な照明条件を実現することができる。
【0052】
ただし、逆に言えば、本実施形態では、マイクロフライアイレンズ8の入射面に形成可能な光強度分布のパターンについて1527808通り以外の選択肢はないとも言える。一方、特許文献1に記載された照明光学系では、空間光変調器の各ミラー要素を経た光がフライアイレンズの入射面に到達可能な位置は無限にあり、入射面に形成可能な光強度分布のパターンも無限にある。すなわち、本実施形態において各ミラー要素4aを経た光がマイクロフライアイレンズ8の入射面に達する経路は有限数であってデジタル的に選択されるが、特許文献1の技術では各ミラー要素を経た光がフライアイレンズの入射面に達する経路は無限数であってアナログ的に選択される。
【0053】
したがって、特許文献1の技術では、ミラー要素の角度制御またはミラー要素への入射光の角度に誤差があると、当該ミラー要素を経てフライアイレンズの入射面に達する位置に誤差が発生し易く、ひいてはフライアイレンズの直後の照明瞳に形成される瞳強度分布が所望の分布とは異なるものになり易い。換言すると、照明瞳に形成される瞳強度分布がミラー要素の角度制御の誤差およびミラー要素への入射光の角度の誤差に敏感であるため、所望の瞳強度分布を精度良く安定的に形成することが困難である。
【0054】
これに対し、本実施形態では、ミラー要素4aの角度制御またはミラー要素4aへの入射光の角度に誤差があっても、当該ミラー要素4aを経た光が通過すべき要素プリズム6aの入射面から外側へはみ出さない限り、マイクロフライアイレンズ8の入射面に達する位置に誤差はほとんど発生することがない。すなわち、本実施形態の照明光学系ILでは、マイクロフライアイレンズ8の直後の照明瞳に形成される瞳強度分布がミラー要素4aの角度制御の誤差およびミラー要素4aへの入射光の角度の誤差にほとんど影響を受けないため、所望の瞳強度分布を精度良く安定的に形成することができる。換言すれば、本実施形態の照明光学系ILは、デジタル信号がアナログ信号と比較してノイズに強いのと同じ理由により、照明条件に関する安定性が高い。言い換えると、照明条件維持能力が高い。
【0055】
以上のように、本実施形態では、複数のミラー要素4aに入射した光の向きを可変的に変調して射出する空間光変調器4と、複数の楔状の要素プリズム6aに入射した光の向きを固定的に偏向して射出する光偏向器6との協働作用により、照明条件に関する安定性が高く、所望の瞳強度分布を精度良く安定的に形成することのできる照明光学系ILを実現することができる。したがって、本実施形態の露光装置(IL,MS,PL,WS)では、所望の瞳強度分布を精度良く安定的に形成する照明光学系ILを用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができる。
【0056】
ところで、本実施形態では、入射光束の角度分布の範囲よりも大きい範囲の角度分布を射出光束に付与する角度分布付与素子としての回折光学素子2が、空間光変調器4よりも光源LS側の光路中に配置されている。したがって、回折光学素子2により比較的大きい回折角が付与された光が、空間光変調器4の各ミラー要素4aに比較的大きい角度分布で入射する。各ミラー要素4aで反射された光は、空間光変調器4の配列面と光学的にほぼ共役な位置に配置されたマイクロフライアイレンズ8の入射面上の照野の位置に比較的大きい角度分布で入射する。
【0057】
その結果、マイクロフライアイレンズ8の直後の照明瞳に形成される瞳強度分布を形成する各小光源を大きくすることができ、ひいては瞳強度分布の外形領域に占める多数の小光源の面積の比率を大きくすることができる。換言すれば、多数の小光源の集合である瞳強度分布を面光源に近づけることができ、いわゆる照明光学系ILのエタンデュ(Etendue)を向上させることができる。光学系のエタンデュの向上により、光源LSから入射する光束の位置の変動、角度の変動、強度分布の変動などが瞳強度分布に与える影響を小さく抑えることができる。さらに、光学系のエタンデュの向上により、光束のコヒーレンシーを低下させて、光の意図しない干渉による露光量の不均一性の発生を小さく抑えることもできる。
【0058】
ちなみに、特許文献1に開示された構成では、可動マルチミラーの光源側に回折光学素子を配置すると、各要素ミラーがフライアイレンズの入射面に投影する光束が大きくなってしまう。これは、可動マルチミラーにおける複数の要素ミラーの配列面とフライアイレンズの入射面とがフーリエ変換の関係にあるからである。各要素ミラーがフライアイレンズの入射面に投影する光束が大きくなると、当該入射面に形成される光強度分布の分解能が低下し、ひいてはフライアイレンズの直後の照明瞳に所望の瞳強度分布を形成することができなくなる。
【0059】
なお、上述の実施形態では、空間光変調器4の配列面とマイクロフライアイレンズ8の入射面とが、光学的にほぼ共役に配置されている。したがって、図7に示すように、光偏向器6とマイクロフライアイレンズ8との間の光路中(例えば光偏向器6とリレー光学系7との間の光路中)に配置可能な散乱素子12を設けることも可能である。図7の変形例では、散乱素子12の作用により、空間光変調器4の各ミラー要素4aを経てマイクロフライアイレンズ8の入射面に形成される各照野のサイズを必要に応じて拡大することができる。
【0060】
また、上述の実施形態では、一対のリレー光学系5および7からなる結像光学系を、射出側(マイクロフライアイレンズ8側)に非テレセントリックな光学系として構成することができる。この構成により、マイクロフライアイレンズ8の各微小レンズの直後に形成される小光源の位置を、各微小レンズの射出面の中央位置へ近づけることができる。
【0061】
また、上述の実施形態では、入射光束の角度分布の範囲よりも大きい範囲の角度分布を射出光束に付与する角度分布付与素子として、回折光学素子2を用いている。しかしながら、これに限定されることなく、角度分布付与素子として、所定面に沿って配列された複数のレンズ要素からなるレンズアレイを用いることもできる。
【0062】
また、上述の実施形態では、複数の光学要素に入射した光の向きを固定的に偏向して射出する光偏向器6の入射面が傾斜面の集合からなり、その射出面が平面状に形成されている。しかしながら、これに限定されることなく、光偏向器の射出面が傾斜面の集合からなり、その入射面が平面状に形成されていても良い。また、光偏向器の入射面および射出面の双方が、全体的に(あるいは部分的に)傾斜面の集合により構成されていても良い。
【0063】
また、上述の実施形態では、所定面に沿って配列された複数の楔状の要素プリズム6aを有する透過型の光偏向器6を用いている。しかしながら、これに限定されることなく、様々な方向に傾いた複数の平面鏡要素を所定面に沿って配列することにより、反射型の光偏向器を構成することができる。
【0064】
上述の実施形態では、空間光変調器4として、たとえば二次元的に配列された複数のミラー要素4aの向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば欧州特許公開第779530号公報、米国特許第6,900,915号公報、米国特許第7,095,546号公報、並びに特開2006−113437号公報に開示される空間光変調器を用いることができる。なお、二次元的に配列された複数のミラー要素の向きを離散的に複数の段階を持つように制御してもよい。
【0065】
また、上述の実施形態では、二次元的に配列されて個別に制御される複数のミラー要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば米国特許第5,312,513号公報、並びに米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば米国特許第6,891,655号公報や、米国特許公開第2005/0095749号公報の開示に従って変形しても良い。
【0066】
また、上述の実施形態では、所定面に沿って配列されて個別に制御される複数のミラー要素4aを有する空間光変調器4を用いている。しかしながら、これに限定されることなく、例えば所定面に沿って配列されて個別に制御される複数の透過光学要素を備えた透過型の空間光変調器を用いることができる。
【0067】
上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含む空間光変調素子を用いることができる。空間光変調素子を用いた露光装置は、たとえば米国特許公開第2007/0296936号公報に開示されている。また、上述のような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。
【0068】
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
【0069】
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図8は、半導体デバイスの製造工程を示すフローチャートである。図8に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。
【0070】
ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを、感光性基板としてパターンの転写を行う。
【0071】
図9は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図9に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルター形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
【0072】
ステップS52のカラーフィルター形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルターの組を水平走査方向に複数配列したカラーフィルターを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルターとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルターとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
【0073】
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
【0074】
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
【0075】
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンフレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6−124873号公報および特開平10−303114号公報の教示を参照として援用する。
【0076】
また、上述の実施形態において、米国特許第7,423,731号公報、米国公開公報第2006/0170901号及び第2007/0146676号に開示される、いわゆる偏光照明方法を適用することも可能である。ここでは、米国特許第7,423,731号公報、米国特許公開第2006/0170901号公報及び米国特許公開第2007/0146676号公報の教示を参照として援用する。
【0077】
また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
【符号の説明】
【0078】
1 整形光学系
2 回折光学素子
4 空間光変調器
4a ミラー要素
3,5,7 リレー光学系
6 光偏向器
6a 要素プリズム
8 マイクロフライアイレンズ
9 コンデンサー光学系
10 照明視野絞り(マスクブラインド)
11 結像光学系
LS 光源
IL 照明光学系
CR 制御部
M マスク
PL 投影光学系
W ウェハ

【特許請求の範囲】
【請求項1】
光源からの光により被照射面を照明する照明光学系において、
第1の所定面に沿って配列されて個別に制御される複数の第1光学要素を有し、前記第1光学要素に入射した光の向きを可変的に変調して射出する空間光変調器と、
前記空間光変調器と前記被照射面との間の光路中に配置されて、第2の所定面に沿って配列された複数の第2光学要素を有し、前記第2光学要素に入射した光の向きを固定的に偏向して射出する光偏向器とを備えていることを特徴とする照明光学系。
【請求項2】
前記空間光変調器と前記光偏向器との間の光路中に配置されて、前記空間光変調器中の1つの第1光学要素を経た光を前記光偏向器中の1つの第2光学要素へ導く第1リレー光学系を備えていることを特徴とする請求項1に記載の照明光学系。
【請求項3】
前記第1リレー光学系は、前記第1の所定面と前記第2の所定面とを光学的にフーリエ変換の関係にすることを特徴とする請求項2に記載の照明光学系。
【請求項4】
前記光偏向器と前記被照射面との間の光路中に配置された波面分割型のオプティカルインテグレータを備えていることを特徴とする請求項1乃至3のいずれか1項に記載の照明光学系。
【請求項5】
前記光偏向器と前記オプティカルインテグレータとの間の光路中に配置された第2リレー光学系を備えていることを特徴とする請求項4に記載の照明光学系。
【請求項6】
前記第2リレー光学系は、前記第2の所定面と前記オプティカルインテグレータの入射面とを光学的にフーリエ変換の関係にすることを特徴とする請求項5に記載の照明光学系。
【請求項7】
前記光偏向器は、二次元的に配列された複数の楔状の要素プリズムを有することを特徴とする請求項1乃至6のいずれか1項に記載の照明光学系。
【請求項8】
前記空間光変調器は、二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有することを特徴とする請求項1乃至7のいずれか1項に記載の照明光学系。
【請求項9】
前記駆動部は、前記複数のミラー要素の向きを連続的または離散的に変化させることを特徴とする請求項8に記載の照明光学系。
【請求項10】
前記空間光変調器と前記光源との間の光路中に配置されて、入射光束の角度分布の範囲よりも大きい範囲の角度分布を射出光束に付与する角度分布付与素子を備えていることを特徴とする請求項1乃至9のいずれか1項に記載の照明光学系。
【請求項11】
前記角度分布付与素子は、回折光学素子を有することを特徴とする請求項10に記載の照明光学系。
【請求項12】
前記回折光学素子と前記第1の所定面とを光学的にフーリエ変換の関係にする第3リレー光学系を備えていることを特徴とする請求項11に記載の照明光学系。
【請求項13】
前記光偏向器と前記オプティカルインテグレータとの間の光路中に配置可能な散乱素子を備えていることを特徴とする請求項4乃至12のいずれか1項に記載の照明光学系。
【請求項14】
所定のパターンを照明するための請求項1乃至13のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
【請求項15】
前記所定のパターンの像を前記感光性基板上に形成する投影光学系を備えていることを特徴とする請求項14に記載の露光装置。
【請求項16】
光源からの光により被照射面を照明する照明方法において、
第1の所定面に沿って配列されて個別に制御される複数の第1光学要素を用いて、前記第1光学要素に入射した光の向きを可変的に変調して射出することと、
前記第1の所定面と前記被照射面との間の光路中の第2の所定面に沿って配列された複数の第2光学要素を用いて、前記第2光学要素に入射した光の向きを固定的に偏向して射出することと、
を含むことを特徴とする照明方法。
【請求項17】
請求項16に記載の照明方法を用いて所定のパターンを照明することと、
前記所定のパターンを感光性基板に露光することと、
を含むことを特徴とする露光方法。
【請求項18】
請求項17に記載の露光方法を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−80098(P2012−80098A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2011−201833(P2011−201833)
【出願日】平成23年9月15日(2011.9.15)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】