説明

熱管理システム、車両及び関連する方法

システムは、エンジンとラジエータファンモータとを冷却するための冷却液を有する冷却システムと、制動事象中にラジエータファンモータに電気エネルギを供給するように構成される動的制動システムと、冷媒を所定の最低閾値温度まで冷却するため、動的制動システムからの電気エネルギをファンモータに向けるように動作するコントローラとを含む。方法は、車両の熱管理システムを、冷媒が安定した動作温度に保たれる第1の動作モードから、冷媒が最低閾値温度まで冷却される第2の動作モードへと切り換えるステップを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱管理システムを有する車両に使用される熱管理システム及びこれに関連する方法に関する。
【背景技術】
【0002】
輸送トラックのエンジン冷媒の温度は、従来はエンジンの出力シャフトに機械的に連結されたラジエータファンによって制御されていた。特に、ラジエータファンはベルト及びクラッチ機構を介してエンジンに連結可能である。クラッチはコントローラによって要求される通りのエンジン速度の所望の比率でファンを回転させることができる。エンジンのフルパワー時に、ラジエータファンはその全速度で動作し、エンジンを冷却できる。
【0003】
冷却システムの動作には燃料コスト及び動力コストがかかる。従って、現在の冷却システムは、できるだけ高い動作温度を選択し、次いで必要最小限の冷却を用いてその高温を保つことによって燃料消費を最小限にする。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第5291960A号
【発明の概要】
【発明が解決しようとする課題】
【0005】
従って、現在利用できる車両及びシステムの特性とは異なる特性や特徴を有する車両及び/又はシステムを有することが望まれる。現在利用できる方法とは異なる方法を有することが望まれる。
【課題を解決するための手段】
【0006】
一実施形態では、(例えば車両用の)熱管理システムは、エンジンを冷却するための冷却システムと、複数のエネルギ源と、コントローラとを含む。冷却システムは、エンジンの動作速度と関係なく制御可能な第1の電気装置を有する。(これは、冷却システムの第1の電気装置がエンジンによって機械的に駆動されるのではないこと、及び第1の電気装置の速度がエンジン速度に拘束されないことを意味する。)複数のエネルギ源の各々は、冷却システムに電力を供給するように制御可能である。コントローラは、複数のエネルギ源のなかから第1のエネルギ源を選択し、第1の電気装置を動作させるために第1のエネルギ源から冷却システムに電力を供給するように動作する。第1のエネルギ源は、第1のエネルギ源の利用可能性、及び/又は電力を供給する第1のエネルギ源に関連するエネルギコスト係数の少なくとも一方に基づいて選択される。(「第1の」は単にある種の要素の1つの要素を同じ種類の別の要素と区別するための単なる呼称であり、順序や位置を指すことを意味するものではない。)
別の実施形態では、(例えば熱管理のための)方法は、車両の冷却システムを第1の動作モードから第2の過冷却動作モードに切換えるステップを含む。第1の動作モードにおいて、(車両のエンジンに関連する)冷却要素は、エンジンの動作中に指定の最高閾値温度に保たれる。過冷却動作モードでは、冷却要素を指定の最高閾値温度以下の温度からより低い第2の閾値温度まで冷却するために冷却システムに電力を供給する。
【0007】
別の実施形態は車両に関するものである。車両は、エンジンと、エンジンを冷却するための冷却システムと、冷却システムに電力を供給するように構成される第1のエネルギ源と、コントローラとを含む。冷却システムは、エンジンの動作速度とは関係なく制御可能な電気装置を含む。コントローラは、冷却システムを過冷却モードで動作させるため第1のエネルギ源から冷却システムに電力を向けるように動作する。過冷却モードでは、(エンジンに関連する)冷却要素を指定の最高閾値温度以下の温度からより低い第2の閾値温度まで冷却し続けるために電気装置に電力を供給する。
【0008】
本発明は、同様の要素番号が同様の要素を指す添付図面を参照した非限定的な実施形態の以下の説明を読むことによって、より明確に理解されよう。
【図面の簡単な説明】
【0009】
【図1】本発明の実施形態による熱管理システムの概略図である。
【図2】過冷却動作モードを示す本発明の別の実施形態による、熱管理システムの概略図である。
【図3】別の実施形態における過冷却動作モードを示すグラフである。
【図4】予冷却動作モードを示す本発明の別の実施形態による、熱管理システムの概略図である。
【図5】決定された放熱率に基づく冷却システムの制御を示す、本発明の別の実施形態による熱管理システムの概略図である。
【図6】ある実施形態による車両の概略図である。
【図7】デューティサイクルの比較を示すグラフである。
【発明を実施するための形態】
【0010】
本発明は、熱管理システムを有する車両に使用される熱管理システム及びこれに関連する方法に関する。
【0011】
一実施形態では、システムの実装は、エンジン冷却システムなどの1つ又は複数の補助システムをエンジン速度とは関係なく制御可能な車両(例えば輸送トラック又はダンプトラック)を含む。前述のように、これは補助システムがエンジンによって機械的に駆動されるのではないこと、及び補助システムの速度又はその他の制御可能な態様がエンジン速度によって拘束されないことを意味する。補助システムには異なるエネルギ源から給電可能である。適切なエネルギ源には、エンジン(例えばエンジン駆動オルタネータ及び整流器、インバータなどの後続の電力コンバータによって供給される電力)、回生制動システム又はその他の動的制動システム、及び/又はエネルギ貯蔵システムを含む。適切なエネルギ貯蔵システムには、バッテリ及びその他の電気化学装置、フライホイール、コンデンサ、油圧アキュムレータなどの1つ以上のエネルギ貯蔵システム含まれる。本明細書で用いる動的制動とは、(例えば車両の牽引モータを介して)車両の機械的エネルギを電気的エネルギに変換することによって車両を減速することを指し、回生制動とは、制動によって発生する電気が(電気を損失し、又は電気を即座に使用するのではなく)エネルギ貯蔵システムに選択的に貯蔵されるタイプの動的制動を指す。
【0012】
ある実施形態では、図1を参照すると、(例えば車両用の)熱管理システム100は、エンジン104を冷却するための冷却システム102と、(例えば第1のエネルギ源106a、第2のエネルギ源106bと、第3のエネルギ源106cなどの)複数のエネルギ源106と、コントローラ108とを含む。冷却システム102は、エンジンの動作速度と関係なく制御可能な第1の電気装置110を有する。(これは、第1の電気装置がエンジンによって機械的に駆動されるのではないこと、及び第1の電気装置の速度などの制御可能な側面がエンジン速度に拘束されないことを意味する。)複数のエネルギ源106の各々は、冷却システム102に電力112を供給するように制御可能である。コントローラ108は、複数のエネルギ源106から第1のエネルギ源106aを選択し、第1の電気装置110を動作させるために電力を第1のエネルギ源106aから冷却システム102に向けるように動作する。第1のエネルギ源106aは、(i)第1のエネルギ源の利用可能性、及び/又は(ii)電力112を供給する第1のエネルギ源に関連するエネルギコスト係数114の少なくとも一方に基づいて選択される。
【0013】
利用可能性については、ある実施形態では、現在電力を供給可能ならばエネルギ源を利用できる。従って、あるエネルギ源が現在電力を供給できないならば、それは選択されない。この実施形態では、あるエネルギ源が現在電力を供給可能であるが、指定モードを満たすのに不十分である場合は、そのエネルギ源は依然として利用可能であると見なされるが、別の電力で増補される。別の実施形態では、あるエネルギ源は、現在それが指定の負荷を満たすのに十分な電力を供給可能である場合に限り利用できる。従って、この実施形態では、あるエネルギ源は指定の負荷を満たすのに十分な電力を供給できないないならば、それは選択されない。エネルギコスト係数114に関しては、コントローラ108は、各々のエネルギ源をそれぞれのエネルギコスト係数に相関させるデータ/情報を含む。エネルギコスト係数は、1つ又は複数のシステム資源又は動作パラメータに関して特定のエネルギ源からどの電気エネルギを要する(生ずる、又は必要とする)かの判定である。例えば、各エネルギ源のエネルギコスト係数には、エネルギ源によって供給される指定量の電力のうち実際にどれだけの燃料が消費されるか(すなわち燃料等価係数)が含まれてもよい。エネルギ源がエンジンオルタネータシステムである場合は、エネルギコスト係数は比較的高くてもよい。これに対して、エネルギ源が動的制動システムである場合は、エネルギコスト係数は比較的低くてもよい。エネルギ源がエネルギ貯蔵装置である場合は、エネルギコスト係数は比較的中程度(比較的高い値と低い値との間の値)でよい。別のエネルギコスト係数は車両排出ガス及び車両の性能(例えば利用できる速度と動力)に関するものでよい。エネルギコスト係数のデータ/情報は、(同じ車両、及び/又は同じクラスの別の車両の多くの動作サイクルでシステム/車両性能を計測することによって生じる)履歴的なものでもよく、且つ/又は現在のシステム/車両性能を計測することによって同時に導き出されてもよい。その代わりに、又はそれに加えて、エネルギコスト係数は、車両のシステム性能の一般的事例証拠又は評価に基づいて階層的に配置され、又は重み付けされてもよい。例えば、電気エネルギ単位当たりの燃料(又は燃料等価係数)の場合、動的制動システムからの電気エネルギは、車両/システム動作の一般的知識に基づいてエネルギ貯蔵システムからの電気エネルギよりもコストが低いと見なしてもよく、エネルギ貯蔵システムからの電気エネルギはオルタネータシステムからの電気エネルギコストよりも低い。コントローラは各エネルギ源での複数のエネルギコスト係数に関する情報を含んでもよく、この場合、エネルギ源は様々なエネルギ源の複数のエネルギコスト係数の査定に基づいて選択される。
【0014】
従って、ある実施形態ではコントローラ108は、平均の燃料燃焼を低減し、車両の生産性を高めるため、エンジンを冷却するために冷却システム102に給電する電力を供給するのに、(複数のエネルギ源106のうちの)どのエネルギ源が電力を供給するのに適しているかを決定する。例えば、第1のエネルギ源と第2のエネルギ源とを利用可能であり、第1のエネルギ源の方が第2のエネルギ源よりも燃料燃焼に関するエネルギコスト係数が低い場合は、冷却システムに電力を供給するために第1のエネルギ源を選択すれば燃料使用量が低減する。それに加えて、又はその代わりに、本明細書の別の個所でより詳細に説明するように、過冷却動作モードで冷却システムを制御することによって、燃料使用量と車両の生産性に関する更なる利点を達成し得る。
【0015】
冷却システム電気装置110の例は、ラジエータファン116及びラジエータファンモータ118である。ラジエータファン116がラジエータファンモータ118に動作可能に結合されることで(例えばラジエータファンがラジエータファンモータの出力シャフトに取付けられる)、ラジエータファンモータに電力を供給し、ラジエータファンが回転する。通常は、ラジエータファンは冷却システムのラジエータ部分に連結されるであろう。ラジエータファンはエンジンによって機械的に駆動されるのではなく、その代わりにラジエータファンモータによって駆動されるので、ラジエータファンはエンジン速度とは関係なく制御可能である。冷却システム電気装置の別の例には、ブロア、別のタイプのファン、及びポンプが含まれる。
【0016】
ある実施形態では、冷却システム電気装置110はエンジン104に関連する冷却要素120を冷却するために電力を供給される(又は、冷却システムに別の方法で電力を供給してもよい)。「冷却要素」は、冷却されるエンジンの一部、又は冷却され、ひいてはエンジンの一部を冷却する要素を指す。前者に関しては、冷却要素の一例はエンジンマニホルド(例えば排気又は吸気マニホルド)、又はエンジンブロック又はその一部である。後者に関しては、冷却要素120の一例は、エンジン104及び冷却システム102に関連する流体回路122内の冷却液(不凍液を混合した水などの冷媒)である。冷却要素120の別の例は、冷却目的でエンジン上に、又はエンジン内に吹き込まれる冷却空気である。流体回路122内の冷却液の場合は、流体回路は冷却液タンク、エンジンブロック周囲の冷却ジャケット、ウオーターポンプ、バルブ又はその他の制御要素、ラジエータ、及び流体相互接続用の配管/ホースを備える。従って、ラジエータを横切って、又はこれを通して空気を吹き込むため、冷却液から空気へと熱交換し、それによって冷却液を冷却するためにラジエータファン116を駆動するためにラジエータファンモータ118に電力を供給する。
【0017】
本発明の一態様によれば、冷却システム102は過冷却動作モードで動作される。過冷却動作モードでは、冷却要素(例えば冷却液、又はエンジン又は車両の構成部品)の温度を指定の最高閾値温度に保つのではなく、冷却要素は比較的「低コストの」電力を使用して許容される温度範囲内の低い温度に冷却される。低コストの電力は、利用可能なエネルギ源106のうちのエネルギコスト係数114が最小の第1のエネルギ源106aから供給されてもよい。一実施例では、第1のエネルギ源106aは動的制動システムである。冷却要素を過冷却すると、モータリング時など、低コストの電力をもはや利用できない場合に冷却の必要性を遅らせ、その結果、その期間中に利用できる付加的な牽引力が生じ、全体的な負荷係数が低下する。
【0018】
従って、ある実施形態において、図2を参照し、熱管理システム200では、コントローラ108は、過冷却動作モード124で冷却システム102を動作させるため、電力112を第1のエネルギ源106aから冷却システム102に向けるように動作する。(複数のエネルギ源が図示されているが、システムが1つのエネルギ源しか有していない場合もある。)過冷却動作モード124では、冷却要素120を指定の最高閾値温度T3(領域126のポイントを参照)以下の温度からより低い第2の閾値温度T5まで継続的に冷却するために冷却システム102の第1の電気装置110に電力を供給する。(上記に説明したように、冷却要素120はエンジン104に関連する。)
更に説明するために、図2は冷却要素120の温度T(y軸)と時間t(x軸)とを対比した例示的プロットを示す仮説グラフを示す。すなわち、グラフは熱管理システムの冷却システムの幾つかの可能性のある動作モードで冷却要素120の温度Tが時間tの経過と共にどのように変化するかを示している。グラフでは、T1は冷却要素の最低許容温度を表し、T4は冷却要素の最高許容温度を表し、その間が冷却要素の許容温度範囲である。T1とT4とは指定レベルでよく、且つ/又はこれらは(それぞれ凍結ポイント及び損傷が生ずることがあるポイントなどの)冷却要素の物理的限度を表してもよい。t1以前の期間中、冷却要素の温度は例えばエンジン動作によって上昇している。温度T3は指定の最高閾値温度を表す。指定の最高閾値温度T3は、(例えば最高許容温度T4に達し、又はそれに近づく)冷却要素の過熱を防止するために、冷却システムの動作が開始される指定温度である。従って、t1の時点前に冷却システムは作動停止され(又は温度上昇を防止するため少なくとも十分に電力を供給されず)、温度T3に対応するt1の時点で、冷却システムは冷却要素120を冷却するために起動される。
【0019】
t1の時点とt2の時点との間に、冷却システムが起動する時点から冷却要素の温度が降下する時点までの時間遅延のために冷却要素の温度が上昇し続けることがある。しかし、冷却要素の温度は最終的には降下し、これは冷却システムが冷却要素を冷却するために動作していることを反映している。(例えば冷却要素がエンジンその他から熱エネルギを受け続けるとしても、冷却システムは冷却要素の正味エネルギレベルを低下させるように動作する。)t2の時点で、温度は指定の最高閾値温度T3に降下する。t2の時点の後の第1の「通常の」動作モード128で、冷却要素120は車両のエンジンの動作中に指定の最高閾値温度T3に保たれる。「〜に保たれる」とは、冷却要素の温度が指定の最高閾値温度T3に保たれること、及び/又は冷却要素の温度を概ね指定の最高閾値温度T3に循環させて、指定の最高閾値温度T3が冷却システムを起動させるトリガとして作用するようにし、且つある実施形態では、冷却システムの動作を停止させることを含む。特に、冷却要素の温度がT3以上に上昇すると、冷却システムは起動され(給電され)、ある実施形態では、冷却要素の温度がT3以下に降下すると、冷却システムは作動停止する(給電されない)。
【0020】
過冷却動作モード124では、t2の時点で冷却システム102の動作を停止するのではなく、冷却要素120を指定の最高閾値温度T3以下の温度からより低い第2の閾値温度T5まで冷却し続けるために、冷却システム102に電力を供給する。(指定の最高閾値温度T3以下を越えるポイントは全体として126で示されている。)図2には、T5がT3と温度T2との間の範囲にあるものとして示されている。温度T2は所定の最低閾値温度であり、それは冷却要素を更に能動的に冷却するために冷却システムがそれ以下では電力を供給されることがない指定温度の下限を意味する。言い換えると、所定の最低閾値温度T2は、冷却要素が冷却されてもよいがその温度を能動的に越えることがない、指定の最高閾値温度T3とは異なるそれ以下の温度である指定の温度ポイントである。従って、第2の閾値温度T5は指定の最高閾値温度T3以下であり、所定の最低閾値温度T2、又はそれ以上である。ある実施形態において、過冷却動作モード124では、冷却要素120を指定の最高閾値温度T3以下の温度から所定の最低閾値温度T2まで冷却し続けるために冷却システム102に電力を供給する。ある実施形態では、第2の閾値温度T5は、エネルギ源の利用可能性、エネルギコスト係数、車両の動作パラメータ、過冷却モードで動作するために利用できる時間などに基づいて所定の過冷却動作中にシステムが達成できる所定の最低閾値温度T2、又はそれ以上の最低温度を反映する。
【0021】
所定の最低閾値温度T2は冷却要素120の最低許容温度T1と一致することがある。あるいは、冷却要素を能動的に冷却すること(冷却要素を冷却するために冷却システムに電力を供給すること)により、冷却要素の温度が最低許容温度T1以下に降下することがある。従って、所定の最低閾値温度T2は最低許容温度T1以上であるが、最低許容温度T1のある範囲内にあることがある。例えば、冷却システムの特性に応じて、所定の最低閾値温度T2は最低許容温度T1の許容温度範囲の5%〜20%、又はそれ以内である。すなわち、許容温度範囲がR=T4−T1であると指定されると、((T1+0.05R)≦T2≦(T1+0.20R)となる。別の実施形態では、この場合も冷却システムの特性に応じて、所定の最低閾値温度T2は最低許容温度T1の許容温度範囲の5〜10%、又は10〜15%、又は15〜20%、又はそれ以内にある。
【0022】
図2には、第2の閾値温度T5は、最低許容温度T1以上である所定の最低閾値温度T2と一致するものとして示されている。従って、t2の時点の後の過冷却モード124では、冷却要素120を指定の最高閾値温度T3以下の温度から、この実施例では所定の最低閾値温度T2であるより低い第2の閾値温度T5まで冷却し続けるために冷却システム102に電力を供給する。冷却要素の温度がt3の時点で第2の閾値温度T5(所定の最低閾値温度T2)に達すると、冷却システムは作動停止/給電停止され、冷却要素の温度はエンジンの継続動作により(場合によっては遅延後に)上昇することが可能になる。
【0023】
別の実施形態において、図3を参照すると、過冷却モード124で冷却要素120を指定の中間的なサイクル閾値温度T6(ポイント又は領域126を参照)以下の温度からより低い第2の閾値温度T5まで冷却し続けるために、冷却システム102の第1の電気装置110に電力を供給する。(指定の中間サイクル閾値温度T6は第2の閾値温度T5以上であり、指定の最高閾値温度T3以下である。従って、冷却要素120を指定の中間的なサイクル閾値温度T6以下の温度から冷却し続けることは、冷却要素120を指定の最高閾値温度T3以下の温度から冷却し続けることの一種/変化形態である。)更に説明するため、この実施形態では、第1の動作モード128で冷却要素120は車両エンジンの動作中に指定の最高閾値温度T3に保たれる。この場合、「〜に保たれる」はより具体的には、冷却要素の温度が概ね最高閾値温度T3、及び概ね指定の中間的なサイクル閾値温度T6に保たれることを指す。従って、指定の最高閾値温度T3は冷却システムを起動するトリガとして作用し、指定の中間的なサイクル閾値温度T6は冷却システムを作動停止するトリガとして作用する。特に、冷却要素の温度が(t3の時点で)T6以下に降下すると、冷却システムは作動停止(給電停止)され、冷却要素の温度が(t1の時点で)T3以上に上昇すると、冷却システムは起動(給電)される。過冷却動作モードでは、冷却要素の温度が(t3の時点で)T6以下に降下すると冷却システムを作動停止又は給電停止するのではなく、冷却要素120をT6以下の温度からより低い第2の閾値温度T5まで冷却し続けるために、冷却システム102の第1の電気装置110に電力を供給する。
【0024】
図3の実施形態は、第1の「通常の」(又はその他の)動作モード128は、冷却システム102を単一の温度ポイントT3の周囲に単にオン・オフすることを繰り返すよりも複雑になる場合があることを示している。従って、冷却システムが第1の動作モードでどのように繰り返されるかに関わりなく、過冷却モードは(例えば冷却システムの電気装置に電力を供給することによって)、能動的な冷却が保たれる第1のモードの最低ポイント以下に冷却要素を能動的に冷却し続けるための動作モードをもたらす。
【0025】
更に図3の実施形態に関して、熱管理システムが、エンジンを冷却する冷却システムと、各々が冷却システムに電力を供給するように構成される1つ又は複数のエネルギ源と、コントローラとを備える。冷却システムは、エンジン動作速度と関係なく制御可能な電気装置を有する。コントローラは、第1の動作モードと、第2の過冷却動作モードで冷却システムを動作するように1つ又は複数のエネルギ源の少なくとも1つから冷却システムに電力を向けるように動作する。第1の動作モードでは、第1の閾値温度よりも幾らかでも低く(エンジンに関連する)冷却要素を冷却するために電気装置は電力を供給されない。過冷却動作モードでは、冷却要素を第1の閾値温度以下からより低い第2の閾値温度まで冷却し続けるために電気装置に電力を供給する。
【0026】
過冷却の特定の実施形態では、熱管理システムは、エンジン104の冷却システム102と、動的制動システム106aと、コントローラ108とを含む。冷却システム102は、ラジエータファンモータ116とラジエータファン118とを含む。ラジエータファンモータ116はラジエータファン118を駆動するためにラジエータファン118に結合される。ラジエータファンが駆動されると、これは(例えばラジエータと協働して)エンジン104及び冷却システム102に関連する流体回路122内の冷却液120を冷却する。コントローラ108は動的制動システム106aを監視し、電力112を動的制動システム106aから利用できる場合は、コントローラ108は冷却液120を冷却するために動的制動システム106aからラジエータファンモータ116に電力112を向ける。すなわち、指定の最高閾値温度T3(図2)以下の温度から、又は指定の中間サイクル閾値温度T6(図3)以下の温度から、又は1つの動作モード128で冷却液の能動的冷却が続けられるそれ以外の最も低い温度以下の温度から、より低い第2の閾値温度T5まで冷却液120を冷却するためにラジエータファンモータ116に電力を供給する。第2の閾値温度T5は、冷却液の所定の最低閾値温度T2である。
【0027】
ある実施形態では、エネルギ源106の1つは、1つ又は複数のエネルギ貯蔵装置を有するエネルギ貯蔵システムである。エネルギ貯蔵装置は予充電され(すなわち、車両が駐車し、充電ステーションに接続できる場合に充電される)、又はエンジンオルタネータシステムから、又は外部エネルギ源(例えばカテナリ線、又は「第三軌条」式装置)から、又は動的制動システムから、又は別の充電手段(例えばターボチャージャからのスカベンジング電気)からの電力を受けることなどによって、車両の動作中に充電される。車両が動的制動システムを有する場合は、エネルギ貯蔵装置は動的制動システムに電気的に結合され、エネルギ貯蔵装置はコントローラからの信号に応答して動的制動システムから冷却システムの電気装置に電力を供給するように動作する(回生制動)。従って、前述したことと同様に、(エネルギ貯蔵装置から、又は直接に)動的制動エネルギを利用できる場合、システムは許容できる温度範囲内の低い温度まで冷却要素(例えば冷却液又はエンジン部品又はその他の車両部品)を冷却する。これがモータリング時などの動的制動エネルギをもはや利用できない場合の冷却の必要性を遅らせ、その結果、その期間中に利用できる付加的な牽引力と、より低い全体的な負荷係数とが効果的に得られる。
【0028】
適切な貯蔵システムは多様なエネルギ貯蔵装置を含む。適切なエネルギ貯蔵装置には、例えばナトリウム金属ハロゲン化物電池、硫化ナトリウム、リチウムイオン電池、ニッケル水素、ニッケルカドミウム電池など、及びコンデンサ、燃料電池、フライホイール装置などのその他のエネルギ貯蔵媒体が含まれてもよい。ここに挙げたエネルギ貯蔵装置は、あらゆる環境で完全に互換性があるものではなく、これらは最終用途の要件及び制約に基づいて選択できる。
【0029】
別の実施形態において、図4を参照すると、予冷却目的で過冷却動作モードが開始される。この場合、熱管理システム300は、冷却システム102と、エンジン104と、1つ又は複数のエネルギ源106と、コントローラ108とを含む。全体的な配置と動作は、図1〜3の1つ又は複数に関連して前述したものと同様である。しかし、それに加えて、又はその代わりに、コントローラ108は学習したエンジンのデューティサイクルに基づいて、指定の負荷閾値「M1」を超えるエンジン又は車両の負荷「M」に先行する期間130を特定するように構成される。更に、(前述したような)過冷却動作モードは、この期間130中に開始される。
【0030】
更に説明するため、熱管理システム300では、システムは運搬サイクルのエンジン負荷が重い部分に先行する期間を予測し、エンジンを予冷却してエンジン負荷が重いサイクル部分中に冷却する必要性を遅らせる。この目的のため、コントローラ108は学習したエンジンのデューティサイクル132に関する情報を有する。極めて簡単な例では、学習したデューティサイクルは、動作サイクル中の時間の関数としてのエンジン/車両負荷の単なる尺度であり、サイクルは繰り返されるので、負荷の尺度は複数回繰り返されるサイクル全体にわたって適用可能である。(その例が、各動作サイクルについて運搬トラックが同じ経路を走行し、同じ作業を行う運搬トラックである。)より複雑な例では、学習したデューティサイクルは負荷と時間以外の追加の係数を組み込んでいるので(図4のグラフでは全ての係数を「f」と表記する)、負荷レベルを時間の関数としてだけではなく、現在の車両動作状態/パラメータの関数としても予測可能である。学習したデューティサイクルを生成する方法は当技術分野で公知である。例えば、Deckerらの米国特許第6601442号明細書を参照されたい。
【0031】
熱管理システム300では、コントローラ108には学習したデューティサイクル132のデータ/情報が提供される。データ/情報は車両の動作に先立ってコントローラ108(例えばコントローラアクセス可能メモリ)にロードされる。その代わりに、又はそれに加えて、車両動作を監視又は計測し、学習したデューティサイクル132を生成するための指定の方法に従って監視又は計測された車両動作のデータを処理することによって、学習したデューティサイクル132を生成するようにコントローラ108を構成してもよい。いずれの場合も、車両/エンジンの動作中、コントローラ108は指定の負荷閾値M1を超えるエンジン又は車両の負荷Mに先行する期間130を特定する。この期間130は(i)学習したデューティサイクル132、(ii)車両/エンジンの1つ又は複数の監視又は計測された動作パラメータ134(例えば動作時間、燃料使用量、出力排気量、車両速度など)に基づいて特定される。再び簡単な例では、負荷/時間に基づいて学習したデューティサイクル132の場合、コントローラ108は新たな現在の運搬サイクルの開始時間t6を学習したデューティサイクル132の開始時間指数t7と相互参照する。学習したデューティサイクルから、コントローラ108は、学習したデューティサイクル132の期間が136、エンジン負荷Mが閾値M1を超える期間の直前に先行することを知る。期間136は時間データによって定義されるだけではなく、期間136に先行する1つ又は複数の負荷波形(例えば140)によっても定義される。期間130を特定するため、コントローラ108は、現在時間と現在の負荷の両方を追跡し、これが学習したデューティサイクル132と相関される。例えば、図4に示すグラフにおいて、現在計測された負荷波形142は、(重負荷期間に先行する期間の前の)学習したデューティサイクル波形140に対応する。更に、現在計測された負荷波形142は、学習したデューティサイクル波形140と時間的に比較的近い。このことからコントローラ108は、現在計測された負荷波形142に続く期間130が、閾値M1を超える負荷の直前であると予期される学習したデューティサイクル132の期間136に対応するであろうと推定する。更に別の文脈では、一例として、負荷M0はエンジンのアイドリングに対応してもよく、負荷M2は平坦面に沿った運行に、負荷M3は運搬トラックのダンプ動作に、又、M4は急な傾斜を渡る車両に対応する。
【0032】
コントローラ108が、指定の負荷閾値を超えるエンジン又は車両の負荷に先行する期間130を特定すると、予測された重負荷期間に先立って期間130中に(前述のような)過冷却動作モードが開始される。(「重」は負荷が指定の負荷閾値を超えることとして定義される。)過冷却動作モードが開始されると、冷却要素(例えばエンジンの構成部品)は重負荷期間に先立って冷却される。これによって重負荷期間中に冷却する必要性を遅らせ、その結果、燃料使用量が低減し、且つ/又は車両の動力が向上する。
【0033】
別の実施形態は、デューティサイクルに適合した冷却を使用する。この場合、冷却コストが高いデューティサイクル部分の間(例えば車両が重負荷を負って運行している場合)、冷却レベルは冷却要件を最低限満たすために必要な推定レベルに設定され、構成部品の温度がシステムの全熱容量を用いて上昇するが、最高動作限度内に留まるようにしてもよい。推定レベルは、学習したデューティサイクル、周囲条件などによって決定されてもよい。
【0034】
別の実施形態では、冷却システムの動作は(少なくとも部分的に)決定された放熱率に基づいて制御される。特に、コントローラ108は、冷却システム102の1つ又は複数の特性、及び外部環境の1つ又は複数の条件に基づいて冷却システム102と外部環境との間の放熱率を決定するように構成される。コントローラは更に、放熱率に基づいて冷却システムを制御するように構成される。
【0035】
放熱率を決定する際、冷却システム102の特性には冷却液のタイプ、冷却液の容積、冷却液の流量、冷却液の経年数及び/又は履歴、及び/又は冷却システムのラジエータ部分の1つ又は複数の特性が含まれる。外部環境の1つ又は複数の条件には、外部環境の温度、気圧などが含まれる。
【0036】
図5は、決定された放熱率「HRR」に(少なくとも部分的に)基づいて冷却システムが決定される熱管理システム400のより具体的な実施例を示す。より具体的には、コントローラ108は、冷却システム102の1つ又は複数の特性と外部環境の1つ又は複数の条件とに基づいて冷却システム102と外部環境との放熱率HRRを決定するように構成される。(一実施例では、HRRは冷却システム(冷却要素)の温度と外部環境の温度の温度差に基づいて決定される。)加えてコントローラ108は、(特定のエネルギ源その他からの電力を使用して)エンジン104を冷却する冷却コスト「C」が指定の冷却コスト閾値を超えると、過冷却動作モードを使用不能にするように構成される。(図5のグラフは、冷却コストCと時間tの曲線とを対比した例示的なグラフである。)冷却コストCは、少なくとも部分的に放熱率に基づいて決定される。すなわち、冷却コストは放熱率HRRの関数である。C=f(HRR)。
【0037】
ある実施形態では、冷却システム102は、決定された冷却システムと外部環境との間の放熱率に基づいて別の態様で制御される。例えば、冷却システムによって与えられる冷却(例えばラジエータファンモータに電力を供給することによって提供される気流)のレベルは、必要以上の冷却がなされないように決定された放熱率に基づいて調整されてもよい。例えば、決定された放熱率が、(例えば外部温度が冷却要素又はシステムの温度よりも大幅に低いなど)外部環境に熱伝達するのに好ましい条件であることを示す場合は、冷却システムをオフに切換え(給電停止)、又は条件が周囲(外部環境)に熱伝達するにはそれほど好ましくない場合よりも(電力レベル及び/又は能動/「オン」時間に関して)低い程度に電力を供給してもよい。
【0038】
別の実施形態は、(例えば車両での)熱管理方法に関するものである。一態様では、方法は車両の冷却システム102を第1の動作モード128から第2の過冷却動作モード124に切換えるステップを含む。第1の動作モード128では、(車両のエンジンに関連する)冷却要素120はエンジンの動作中に指定の最高閾値温度T3に保たれる。過冷却動作モード124では、冷却要素120を指定の最高閾値温度T3以下の温度からより低い第2の閾値温度T5まで冷却するために冷却システム102に電力を供給する。
【0039】
方法の別の実施形態では、冷却要素はエンジン104及び冷却システム102に関連する流体回路122内の冷却液である。第2の閾値温度は冷却液の所定の最低閾値温度T2である。
【0040】
方法の別の実施形態では、過冷却モード124で冷却システム102に電力を供給するステップは、車両の動的制動システム106aから冷却システム102に電力112を向けるステップを含む。
【0041】
方法の別の実施形態では、方法は更に、動的制動システムが利用可能である場合にその旨を判定し、動的制動システムからの電力を利用可能である場合に過冷却モードを開始するステップを含む。
【0042】
方法の別の実施形態では、方法は更に、過冷却モードで冷却システムに電力を供給するための車両の第1のエネルギ源を選択するステップを含む。第1のエネルギ源は車両内の複数のエネルギ源から選択される。第1のエネルギ源は、第1のエネルギ源の利用可能性、及び/又は冷却システムに電力を供給する第1のエネルギ源のエネルギコスト係数の少なくとも一方に基づいて選択される。
【0043】
方法の別の実施形態では、方法は更に、学習したエンジンのデューティサイクルに基づいて、指定の負荷閾値M1を超えるエンジン負荷Mに先行する期間130を特定するステップを含む。加えて、過冷却動作モードは、重負荷期間に先立って予冷却するために前記期間中に開始される。
【0044】
方法の別の実施形態では、方法は更に、冷却システム102に電力を供給するために利用できる1つ又は複数のエネルギ源106a〜106cについて、1つ又は複数のエネルギ源にそれぞれ関連する1つ又は複数のエネルギコスト係数(114、C)を査定するステップを含む。更に、1つ又は複数の査定されたエネルギコスト係数のどれもが指定のコスト閾値以下ではない場合は、過冷却動作モードへの切換えがなされないようにする。すなわち、ある実施形態では、過冷却動作モードを開始するには、少なくとも1つの利用できるエネルギ源のコスト係数は(利用できるエネルギ源が過冷却モードでの動作を保証するのに十分に低いコストであることを示す)指定の閾値以下である。
【0045】
方法の別の実施形態では、方法は更に、1つ又は複数のエネルギコスト係数から指定のコスト閾値以下の最低の第1の査定されたエネルギコスト係数を特定するステップを含む。過冷却動作モードでは、第1の査定されたエネルギコスト係数に関連する1つ又は複数のエネルギ源のうちの第1のエネルギ源を使用して冷却システムに電力を供給する。例えば、図1を参照すると、エネルギ源106a、106b、106cの全てのコスト係数が指定のコスト閾値以下である場合は、特定される第1の査定されたエネルギコスト係数はエネルギ源106bに関連するコスト係数であり、エネルギ源106bによって供給される電力を利用する過冷却モードで冷却システムに電力を供給する。
【0046】
図6を参照すると、別の実施例は車両500に関するものである。車両500はエンジン104と、エンジンを冷却するための冷却システム102と、冷却システムに電力を供給するように構成される第1のエネルギ源106aと、コントローラ108とを含む。(図6には複数のエネルギ源が示されているが、車両が単一のエネルギ源だけを有する場合もあろう。)冷却システム102は、エンジンの動作速度とは関係なく制御可能な電気装置110を含む。コントローラ108は、冷却システムを過冷却モード124で動作させるため第1のエネルギ源106aから冷却システム102に電力を向けるように動作する。過冷却モードでは、(エンジンに関連する)冷却要素120を指定の最高閾値温度T3以下の温度からより低い第2の閾値温度T5まで冷却し続けるために電気装置110に電力を供給する(図1及び3を参照)。
【0047】
車両の別の実施形態では、車両は冷却システムに電力を供給するように各々が制御可能な複数のエネルギ源106を含む。それに加えて、又はその代わりに、過冷却動作モードを実現する機能を備えるため、コントローラは複数のエネルギ源から第1のエネルギ源を選択し、電気装置を動作させるため電力を第1のエネルギ源から冷却システムに向けるように動作する。第1のエネルギ源は、第1のエネルギ源の利用可能性、及び/又は電力を供給する第1のエネルギ源に関連するエネルギコスト係数の少なくとも一方に基づいて選択される。
【0048】
車両の別の実施形態では、冷却システムの電気装置はラジエータファンと、ラジエータファンを駆動するためにラジエータファンに結合されてラジエータファンモータとを備える。冷却要素は、エンジン及び冷却システムに関連する流体回路内の冷却液である。第1のエネルギ源は、制動事象中にラジエータファンモータに電力を供給するように構成される動的制動システムである。コントローラは、冷却液を第2の閾値温度まで冷却するために電力を動的制動システムからラジエータファンモータに向けるように動作する。第2の閾値温度は、冷却液の所定の最低閾値温度である。
【0049】
本明細書のシステム、方法又は車両は、外部パラメータと内部論理とに基づいて複数のエネルギ源のうちのどれがエンジンを冷却するのに最も適しているか、及び必要な冷却の量を決定するためのコントローラを含んでもよい。例えば、適切なコントローラは、平均燃料使用量を最小限にし、トラックの生産性を最大にするためのエネルギ使用を管理できる。要因と論理は少なくとも部分的に、輸送プロファイル、エンジン冷却要件、充電状態や健全状態などのエネルギ源の利用可能性、エンジン自体が最も悪影響を及ぼし、動的制動システムは最小の影響しか及ぼさないなど、燃料消費に及ぼすエネルギ源の影響、及び予冷却又はその他の過冷却の生産性及び勾配速度に対する利点について学習したデューティサイクルに基づくものでよい。
【0050】
動的制動から得られるエネルギを利用した過冷却に関しては、コントローラが選択し得る幾つかの動作モードがある。1つの動作モードにおいて、動的制動エネルギを利用できる場合、システムコントローラは、エンジン及び車両の構成部品を許容温度範囲内で利用できる最低温度まで冷却しようとする。これは、モータリング時など、動的制動エネルギをもはや利用できない業務中に冷却する必要性を後まで遅らせる。この過冷却の結果、その期間中に利用できる牽引力が追加され、全体の負荷係数が低減する。
【0051】
別の動作モードには周囲に適合した冷却が含まれる。システムコントローラは、冷却システムと環境との間の放熱率を幾つかの要因に基づいて予測する。要因は、冷却システムの特性、放熱率、周囲条件、及びその他の要因の1つ又は複数を含む。
【0052】
冷却システムの適切な特性は、冷却液のタイプ、冷却液の容積、冷却液の流量、冷却液の経年数又は履歴(例えば冷却液が追加/交換された場合)、及び巻数、ラジエータファンの清浄度、ポンプの経年数などのラジエータ設計に関する仕様を含む。冷却システムに対するエンジンの放熱率に関しては、システムは率を計算し、率を計測し、又は所定のデータに基づいて数値を導出できる。周囲条件に関して、適切な条件は、時刻、湿度、温度、気圧、天候状態、及び動作の塵/ごみレベルを含む。その他の要因は、車両隊中の当該の車両又は別の車両の履歴データ計算、又は車両隊中の全車両又は一部の車両の平均値を含む。
【0053】
使用中、コントローラは冷却システムによって供給される気流を調整し、冷却コスト係数がピークコストである時又はピークコストになりつつある時、必要以上に冷却すること及び構成部品を過冷却することを避けることができる。ピークコストは、例えば、動力がエネルギ貯蔵システムから引き出されるのではなく、エンジンから引き出される場合に発生する。システムコントローラは、冷却が燃費に及ぼす影響を制限している。
【0054】
一実施形態では、コントローラは、予冷却、又はデューティサイクルに適合した冷却動作モードを設定してもよい。車両のデューティサイクルに応じて、システムコントローラは運搬サイクルのうちのエンジン負荷が重い部分に先行する期間を予測する。このような期間に応じて、コントローラは、エンジン負荷が重い期間中に冷却する必要性を遅らせるためにエンジンを予冷却する。更に、サイクルの冷却コストが高い部分の間、冷却レベルは上記の要因に基づいて必要な推定レベルに設定され、構成部品の温度がシステムの全熱容量を用いて上昇するが、最高動作限度内に留まるようにしてもよい。
【0055】
一実施形態では、冷却が燃料消費、エンジン排ガス、車両の動力、及び/又は生産性に及ぼす影響が最小限になるように冷却するため、エンジン冷却の必要性及びそのデューティサイクルを予測するコントローラは、エンジン速度に無関係なファンドライバトポロジ及び動的制動エネルギを利用してもよい。
【0056】
図7を参照すると、過冷却の効果を図示したグラフによって2つのデューティサイクルが比較され、示されている。例えば、運搬トラックが鉱石の荷重をフル積載して傾斜を登り、荷重をダンプで降ろし、別の鉱石荷重を収集するためにショベル現場に戻る全運転コースにわたって、エンジンは作業需要を満たすために動力を出力する必要がある。2本の線144、146は、ラジエータシステム内の冷却液を過冷却する場合としない場合の動力使用量を高さで示している。x軸は時間であり、y軸はラジエータファンを動作させるために予期される(これも実際には燃料消費量に対応する)エネルギ(馬力)である。線144は(過冷却なしの場合の)約160秒の時点でのエンジン係合を示し、過冷却を行った場合の線146ではこれは約180秒の時点である。すなわち、温度がより低い冷却液は、冷却ファンモータを起動する閾値温度に達するまでにより長い時間を要する。従って、そうでなければファンモータによって消費されるはずの約90馬力がこれらの20秒間に車両を推進するために利用できることになる。その他の全ての変数が等しいとすると、車両は少ない熱負荷で高さの頂点に達し、そうでなければ有するはずの温度よりも低い温度でデューティサイクルの非登攀部分を開始することになる。下り坂では、コントローラは、牽引モータから抵抗器格子内に流れる電気エネルギの少なくとも一部をラジエータファンモータ(1つ又は複数)に流用する。動的制動システムは下り坂でシステムを冷却するためにエンジンで燃料を燃焼させるのではなく、冷媒を最低閾値温度T2(又は別の低減された温度T5)まで冷却する電力を供給する。従って、車両の下り走行中の燃料消費量が少なくなる。
【0057】
代替実施形態では、冷却液を冷却するのではなく、又はそれに加えて、コントローラは、電子装置、機械的/構造的装置などの1つ又は複数のセットに冷却空気を提供するため1つ又は複数の冷却ブロアを起動することもできる。適切な電子装置は、1つ又は複数の制御電子機器、パワーエレクトロニクス、牽引モータなどが含まれてもよい。適切な機械的/構造的装置には、キャブ環境、潤滑液、熱ヒートシンク、及び/又は歯車機構が含まれてもよい。最低閾値温度への冷却、特に過冷却によって、初期温度開始ポイントがより低いので、準最高動作温度でより長い動作期間が可能になる。
【0058】
別の実施形態では、冷却されるシステム構成部品のより大きい温度変動により良好に対処するためのより良好な熱循環特性を有するシステムで使用するための材料が選択される。
【0059】
前述のように、熱管理システム(又は関連する方法)は、車両内に実装してもよく、車両として実装してもよい。車両の例には、運搬トラック又はダンプ車両、及び例えば100〜400トンの容量を有する鉱業業務で使用されるような高容量運搬トラックを含む。
【0060】
コントローラ108は、格納されたプログラム命令、電子機器の構成(ハードワイヤ制御)などに基づいて、本明細書に記載の制御機能を実行するように構成されるコンピュータ、マイクロコントローラ、又はその他の電子装置でよい。
【0061】
ある実施形態では、冷却熱管理システムは複数の「第1の」動作モード、及び複数の第1の動作モードに加えて過冷却動作モードを含む。複数の第1の動作モードは、熱管理システムの過冷却モード以外の全ての動作モードを含む。すなわち、第1の動作モードと過冷却動作モード以外のその他の動作モードは存在しない。一括して見ると、全ての第1の動作モードにおいて、冷却要素は第1の温度より低くない温度まで冷却される。過冷却動作モードでは、冷却要素は第1の温度よりも低い第2の温度まで冷却される。従って、(第1のモード及び過冷却モードを含む)熱管理システムの全ての動作モードのうち、過冷却モードはいずれかの及び全ての動作モードのうちで冷却要素を最も低い温度まで冷却する。ある実施形態では、冷却要素は冷却液であり、熱管理システムは車両内にある。従って、車両内の冷却液を冷却する全ての動作モードのうちで、過冷却モードはいずれかの及び全ての動作モードのうちで冷却要素を最も低い温度まで冷却する。
【0062】
上記の記述は説明目的であり、限定的ではないことを理解されたい。例えば、上記の実施形態(及び/又はその態様)を互いに組み合わせて使用してもよい。加えて、開示した主題の教示の範囲から逸脱することなく、特定の状況又は材料をこの教示に適応させるための多くの修正を加えてもよい。本明細書に記載の寸法及び材料の対応は開示した主題のパラメータを定義することを意図しているが、決して限定するものではなく、例示的実施形態である。従って、記載の主題の範囲は添付の請求項を、このような請求項が権利を与えられる等価物の全範囲と共に参照することによって決定されるべきである。添付の請求項中、「including(含む)」及び「in which(ここで)」という用語は「comprising(備える)」及び「wherein(そこで)」というそれぞれの用語と同義の平易な言語として使用される。更に、以下の請求項において、「第1」、「第2」、「第3」などのそれぞれの用語は単にラベルとして用いられ、それらの対象に数的要件を課すものではない。
【0063】
本明細書は最良の態様を含め記載の主題の幾つかの実施形態を開示するため、且つ当業者ならいずれかの装置又はシステムを製造し、且つ使用し、組み込まれたいずれかの方法を実施することを含めて主題の実施形態を実施できるようにするため実施例を用いている。主題の特許可能な範囲は請求項によって定義され、当業者が想到する別の実施例を含み得る。このような別の実施形態は、請求項の文字言語と相違しない構造要素を有する場合、又は請求項の文字言語と非実体的な相違しかない等価の構造要素を含む場合、請求項の範囲内にあることを意図するものである。

【特許請求の範囲】
【請求項1】
熱管理システムであって、
エンジン動作速度と関係なく制御可能な第1の電気装置を含む、エンジンを冷却するための冷却システムと、
前記冷却システムに電力を供給するように各々が制御可能な複数のエネルギ源と、
前記複数のエネルギ源の中から第1のエネルギ源を選択し、前記第1の電気装置を動作させるために前記第1のエネルギ源から前記冷却システムに電力を向けるように動作するコントローラとを備え、前記第1のエネルギ源が、前記第1のエネルギ源の利用可能性、及び/又は電力を供給する前記第1のエネルギ源に関連するエネルギコスト係数の少なくとも一方に基づいて選択される、熱管理システム。
【請求項2】
前記コントローラが、前記冷却システムを過冷却モードで動作させるために前記第1のエネルギ源から前記冷却システムに電力を向けるように動作し、前記過冷却モードにおいて、前記エンジンに関連する冷却要素を指定の最高閾値温度以下の温度からより低い第2の閾値温度まで冷却し続けるために、前記第1の電気装置に電力を供給する、請求項1に記載のシステム。
【請求項3】
前記冷却システムの前記第1の電気装置が、ラジエータファンと、該ラジエータファンを駆動するために該ラジエータファンに結合されたラジエータファンモータとを備え、
前記冷却要素が前記エンジンと前記冷却システムとに関連する流体回路内の冷却液であり、
前記第1のエネルギ源が、制動事象中に前記ラジエータファンモータに電力を供給するように構成される動的制動システムであり、
前記コントローラが、前記冷却液を前記第2の閾値温度まで冷却するために前記動的制動システムから前記ラジエータファンモータに電力を供給するように動作する、請求項2に記載のシステム。
【請求項4】
前記第2の閾値温度が冷却液の所定の最低閾値温度である、請求項3に記載のシステム。
【請求項5】
前記動的制動システムに電気的に結合されたエネルギ貯蔵装置を更に備え、該エネルギ貯蔵装置は、前記コントローラからの信号に応答して前記動的制動システムから前記ラジエータファンモータに電力を供給するように動作する、請求項3に記載のシステム。
【請求項6】
前記コントローラが、前記エンジンの学習したデューティサイクルに基づいて、指定の負荷閾値を超える前記エンジンの負荷に先行する期間を特定するように構成され、
前記過冷却モードが前記期間中に開始される、請求項2に記載のシステム。
【請求項7】
前記コントローラが、前記冷却システムの1つ又は複数の特性と外部環境の1つ又は複数の条件とに基づいて、前記冷却システムと前記外部環境との間の放熱率を決定するように構成され、
前記コントローラが、少なくとも部分的に前記放熱率に基づいて決定される前記エンジンを冷却する冷却コストが指定の前記冷却コストの閾値以上である場合に、前記過冷却モードを使用不能にするように構成される、請求項2に記載のシステム。
【請求項8】
前記冷却要素が、前記エンジン及び冷却システムに関連する流体回路内の冷却液であり、前記冷却システムの前記特性には前記冷却液のタイプ、前記冷却液の容積、前記冷却液の流量、前記冷却液の経年数及び/又は履歴、及び/又は前記冷却システムのラジエータ部分の1つ又は複数の特性が含まれる、請求項2に記載のシステム。
【請求項9】
前記コントローラが、前記冷却システムの1つ又は複数の特性、及び前記外部環境の1つ又は複数の条件に基づいて前記冷却システムと前記外部環境との間の放熱率を決定するように構成され、
前記コントローラが、前記放熱率に基づいて前記冷却システムを制御するように構成される、請求項1に記載のシステム。
【請求項10】
車両の冷却システムを第1の動作モードから第2の過冷却動作モードに切換えるステップと、
前記第1の動作モードにおいて、車両のエンジンに関連する冷却要素を前記エンジンの動作中に指定の最高閾値温度に保つステップと、
前記過冷却動作モードにおいて、前記冷却要素を前記指定の最高閾値温度以下の温度からより低い第2の閾値温度まで冷却するために前記冷却システムに電力を供給するステップとを含む、方法。
【請求項11】
前記冷却要素が前記エンジンと冷却システムとに関連する流体回路内の冷却液であり、前記第2の閾値温度が前記冷却液の所定の最低閾値温度である、請求項10に記載の方法。
【請求項12】
前記過冷却モードにおいて前記冷却システムに電力を供給するステップが、前記車両の動的制動システムから前記冷却システムに電力を向けるステップを含む、請求項10に記載のシステム。
【請求項13】
前記動的制動システムからの前記電力を利用可能である場合にその旨を判定するステップと、
前記動的制動システムからの電力を利用可能である場合に前記過冷却モードを開始するステップを更に含む、請求項12に記載の方法。
【請求項14】
前記過冷却モードにおいて前記冷却システムに電力を供給するための、前記車両の第1のエネルギ源を選択するステップを含み、
前記第1のエネルギ源が車両内の複数のエネルギ源から選択され、前記第1のエネルギ源が、第1のエネルギ源の利用可能性、及び/又は前記冷却システムに電力を供給する前記第1のエネルギ源に関連するエネルギコスト係数の少なくとも一方に基づいて選択される、請求項10に記載の方法。
【請求項15】
前記エンジンの学習したデューティサイクルに基づいて、指定の負荷閾値を超える前記エンジンの負荷に先行する期間を特定するステップと、
前記期間中に前記過冷却動作モードを開始するステップとを更に含む、請求項10に記載の方法。
【請求項16】
前記冷却システムに電力を供給するために利用できる前記車両の1つ又は複数のエネルギ源について、前記1つ又は複数のエネルギ源にそれぞれ関連する1つ又は複数のエネルギコスト係数を査定するステップと、
前記1つ又は複数の査定されたエネルギコスト係数のどれもが指定のコスト閾値以下ではない場合は、前記過冷却動作モードへの切換えがなされないようにするステップとを更に含む、請求項10に記載の方法。
【請求項17】
前記指定のコスト閾値以下の最低の前記1つ又は複数のエネルギコスト係数の第1の査定されたエネルギコスト係数を特定するステップと、
前記過冷却動作モードにおいて、前記第1の査定されたエネルギコスト係数に関連する前記1つ又は複数のエネルギ源のうちの第1のエネルギ源を使用して前記冷却システムに電力を供給するステップとを更に含む、請求項16に記載の方法。
【請求項18】
車両であって、
エンジンと、
前記エンジンを冷却するための、エンジン動作速度と関係なく制御可能な電気装置を有する冷却システムと、
前記冷却システムに電力を供給するように構成される第1のエネルギ源と、
前記冷却システムを過冷却モードで動作させるため前記第1のエネルギ源から前記冷却システムに電力を向けるように動作するコントローラとを備え、
前記過冷却モードにおいて、エンジンに関連する冷却要素を指定の最高閾値温度以下の温度からより低い第2の閾値温度まで冷却し続けるために前記電気装置に電力を供給する、車両。
【請求項19】
前記冷却システムの電気装置が、ラジエータファンと、該ラジエータファンを駆動させるために該ラジエータファンに結合されたラジエータファンモータとを備え、前記冷却要素が、前記エンジン及び冷却システムに関連する流体回路内の冷却液であり、
前記第1のエネルギ源が、制動事象中に前記ラジエータファンモータに電力を供給するように構成される動的制動システムであり、
前記コントローラが、前記冷却液を前記第2の閾値温度まで冷却するために電力を前記動的制動システムから前記ラジエータファンモータに向けるように動作する、請求項18に記載の車両。
【請求項20】
前記第2の閾値温度が、前記冷却液の所定の最低閾値温度である、請求項19に記載の車両。
【請求項21】
前記第2の閾値温度が、前記車両の全ての動作モードのうち、前記車両内で前記冷却液が冷却される最低温度である、請求項19に記載の車両。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2013−500434(P2013−500434A)
【公表日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2012−522944(P2012−522944)
【出願日】平成22年7月27日(2010.7.27)
【国際出願番号】PCT/US2010/043303
【国際公開番号】WO2011/014473
【国際公開日】平成23年2月3日(2011.2.3)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【Fターム(参考)】