説明

燃料電池システム及びその運転方法

【課題】燃料電池システムにおいて、間欠運転中における燃料電池の電圧変動回数に起因する電極触媒劣化量と、間欠運転中における燃料電池の電圧変動量に対応する電極触媒劣化量と、の双方を考慮して、電極触媒の劣化を効果的に抑制する。
【解決手段】負荷装置から要求される出力が所定の閾値以下である場合に空気供給装置31からの空気供給を間欠的に行う間欠運転を実施し、間欠運転中における燃料電池2の電圧変動の上下限電圧値を複数設定可能な燃料電池システム1であって、間欠運転継続時間と燃料電池2の電極触媒劣化量との相関関係を表す劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを用いることにより、電極触媒劣化量が最小になるように間欠運転継続時間に応じて上下限電圧値を変化させて設定し、設定した上下限電圧値で間欠運転を実施する制御装置6を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システム及びその運転方法に関する。
【背景技術】
【0002】
従来より、反応ガス(燃料ガス及び酸化ガス)の供給を受けて発電を行う燃料電池を備えた燃料電池システムが実用化されている。現在においては、燃料電池システムにおける燃料消費率の向上を目的として、燃料電池の間欠運転が実施されている。間欠運転とは、燃料電池システムに要求される出力が所定の閾値以下である場合に、燃料電池における発電を一時的に休止して二次電池から負荷装置への電力供給を行い、燃料電池には開放端電圧を維持し得る程度の反応ガスを間欠的に供給する運転モードである。
【0003】
近年においては、間欠運転に伴う電圧変動に起因した電極触媒の劣化を抑制する技術が提案されている。例えば、燃料電池システムの間欠運転中における燃料電池の下限電圧値や上限電圧値を、電圧変動に伴うカーボン担体の劣化の進行を考慮にいれて設定する技術が提案されている(特許文献1参照)。かかる技術を採用すると、燃料消費率向上とカーボン劣化とのバランスをとりながら下限(上限)電圧値を設定することができる、とされている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−021072号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載された技術においては、走行距離とカーボン担体劣化量との相関関係を示す曲線(劣化特性)を用いることにより、走行距離に応じて下限(上限)電圧の設定値を漸次変化させるという手法を採用している。しかし、このような手法を採用すると、劣化特性取得のために夥しい回数(例えば3万km程度の回数)の電圧変動の計測を行う必要があり、手間と労力を要することとなる。
【0006】
また、特許文献1に記載された従来の技術は、走行距離(電位変動の通算回数)に起因したカーボン担体劣化量のみを考慮するものであり、間欠運転中における上下限電圧値(電圧変動量)に対応する電極触媒劣化量を考慮したものではないため、間欠運転の継続時間の長短によっては電極触媒の劣化を効果的に抑制できない可能性があった。
【0007】
本発明は、かかる事情に鑑みてなされたものであり、燃料電池システムにおいて、間欠運転中における燃料電池の電圧変動回数に起因する電極触媒劣化量と、間欠運転中における燃料電池の電圧変動量に対応する電極触媒劣化量と、の双方を考慮して、電極触媒の劣化を効果的に抑制することを目的とする。
【課題を解決するための手段】
【0008】
前記目的を達成するため、本発明に係る燃料電池システムは、燃料電池と、燃料電池に空気を供給する空気供給装置と、負荷装置から要求される出力が所定の閾値以下である場合に空気供給装置からの空気供給を間欠的に行う間欠運転を実施し、間欠運転中における燃料電池の電圧変動の上下限電圧値を複数設定可能な制御装置と、を備える燃料電池システムであって、制御装置は、間欠運転継続時間と燃料電池の電極触媒劣化量との相関関係を表す劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを用いることにより、間欠運転継続時間に応じて上下限電圧値を変化させて設定するとともに、設定した上下限電圧値で間欠運転を実施するものである。ここで、劣化特性曲線は、燃料電池の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量と、燃料電池の各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて生成される。
【0009】
また、本発明に係る運転方法は、燃料電池と、燃料電池に空気を供給する空気供給装置と、を備え、負荷装置から要求される出力が所定の閾値以下である場合に空気供給装置からの空気供給を間欠的に行う間欠運転を実施し、間欠運転中における燃料電池の電圧変動の上下限電圧値を複数設定可能な燃料電池システムの運転方法であって、燃料電池の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量と、燃料電池の各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて、間欠運転継続時間と燃料電池の電極触媒劣化量との相関関係を表す劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを生成するマップ生成工程と、劣化特性マップを用いることにより、間欠運転継続時間に応じて上下限電圧値を変化させて設定する上下限電圧設定工程と、上下限電圧設定工程で設定した上下限電圧値で間欠運転を実施する間欠運転工程と、を備えるものである。
【0010】
かかる構成及び方法を採用すると、各上下限電圧値に対する電圧変動一回当たりの劣化量と、各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて生成された劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを用いて、間欠運転継続時間に応じて上下限電圧値を変化させながら間欠運転を実施することができる。従って、間欠運転中における燃料電池の電圧変動回数に起因する電極触媒劣化量と、間欠運転中における燃料電池の電圧変動量に対応する電極触媒劣化量と、の双方を考慮して、電極触媒劣化量を効果的に抑制するような間欠運転制御を行うことができる。
【0011】
本発明に係る燃料電池システム(運転方法)において、燃料電池の電解質膜の乾燥度に基づいてマップの劣化特性曲線を補正する(マップ補正工程を備える)ことができる。
【0012】
かかる構成(方法)を採用すると、電解質膜の乾燥度に基づいて劣化特性曲線を補正することができるので、電解質膜の乾燥度が変化した場合においても的確な間欠運転制御を行うことができる。例えば、電解質膜の乾燥度が増大すると、電解質膜を透過するガス量が減少することから、間欠運転中に必要となる空気供給の頻度も減少する。このような現象を考慮し、電解質膜の乾燥度の増大に応じて劣化特性曲線の傾きを徐々に緩やかにするような補正を行うことができる。
【0013】
また、本発明に係る燃料電池システム(運転方法)において、空気供給装置からの空気供給量に基づいてマップの劣化特性曲線を補正する(マップ補正工程を備える)ことができる。
【0014】
かかる構成(方法)を採用すると、空気供給装置からの空気供給量に基づいて劣化特性曲線を補正することができるので、空気供給量が変化した場合においても的確な間欠運転制御を行うことができる。例えば、空気供給装置からの空気供給量が増大すると、電解質膜の乾燥度が増大し、これにより電解質膜を透過するガス量が減少することから、間欠運転中に必要となる空気供給の頻度も減少する。このような現象を考慮し、空気供給装置からの空気供給量の増大に応じて劣化特性曲線の傾きを徐々に緩やかにするような補正を行うことができる。
【0015】
また、本発明に係る燃料電池システム(運転方法)において、燃料電池の電解質膜の経年劣化に基づいてマップの劣化特性曲線を補正する(マップ補正工程を備える)ことができる。
【0016】
かかる構成(方法)を採用すると、電解質膜の経年劣化に基づいて劣化特性曲線を補正することができるので、電解質膜が経年劣化した場合においても的確な間欠運転制御を行うことができる。例えば、電解質膜の経年劣化(薄膜化)に起因してクロスリーク量が増加すると、間欠運転中に必要となる空気供給の頻度も増加する。このような現象を考慮し、電解質膜の経年劣化(使用年数の経過)に応じて劣化特性曲線の傾きを徐々に急にするような補正を行うことができる。
【0017】
また、本発明に係る燃料電池システム(運転方法)において、燃料電池の温度(セル温度)又は外気温度に基づいてマップの劣化特性曲線を補正する(マップ補正工程を備える)ことができる。
【0018】
かかる構成(方法)を採用すると、セル温度(又は外気温度)に基づいて劣化特性曲線を補正することができるので、セル温度が変化した場合においても的確な間欠運転制御を行うことができる。例えば、セル温度の上昇に起因してクロスリーク量が増加すると、間欠運転中に必要となる空気供給の頻度も増加する。このような現象を考慮し、セル温度の上昇に応じて劣化特性曲線の傾きを徐々に急にするような補正を行うことができる。
【発明の効果】
【0019】
本発明によれば、燃料電池システムにおいて、間欠運転中における燃料電池の電圧変動回数に起因する電極触媒劣化量と、間欠運転中における燃料電池の電圧変動量に対応する電極触媒劣化量と、の双方を考慮して、電極触媒の劣化を効果的に抑制することが可能となる。
【図面の簡単な説明】
【0020】
【図1】本発明の実施形態に係る燃料電池システムの構成図である。
【図2】図1に示す燃料電池システムの間欠運転制御で用いられる劣化特性マップである。
【図3】燃料電池の間欠運転中における各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量を示すマップである。
【図4】燃料電池の間欠運転中における電圧変動の時間履歴を示すタイムチャートである。
【図5】図1に示す燃料電池システムの運転方法を説明するためのフローチャートである。
【図6】電解質膜の乾燥度等に基づいて補正された劣化特性マップである。
【発明を実施するための形態】
【0021】
以下、図面を参照して、本発明の実施形態に係る燃料電池システム1について説明する。本実施形態においては、本発明を燃料電池車両の車載発電システムに適用した例について説明することとする。
【0022】
まず、図1を用いて、本発明の実施形態に係る燃料電池システム1の構成について説明する。
【0023】
本実施形態に係る燃料電池システム1は、図1に示すように、燃料電池2やバッテリ52で発生させた電力を、トラクションインバータ53を介してトラクションモータM3に供給することにより、トラクションモータM3を回転駆動するものである。燃料電池システム1は、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池2、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4、システムの電力を充放電する電力系5、システム全体を統括制御する制御装置6等を備えている。
【0024】
燃料電池2は、例えば固体高分子電解質型で構成され、多数の単電池を積層したスタック構造を備えている。燃料電池2を構成する単電池は、高分子電解質膜をアノード電極及びカソード電極の二つの電極で挟み込んで構成した膜・電極接合体(MEA)を、燃料ガス及び酸化ガスを供給するためのセパレータで挟み込んだ構造を有しており、さらにカソード電極及びアノード電極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、このガス供給により燃料電池2は電力を発生する。すなわち、燃料電池2においては、アノード電極において以下の(1)式の酸化反応が生じ、カソード電極において以下の(2)式の還元反応が生じ、燃料電池2全体としては以下の(3)式の起電反応が生じる。
【0025】
2→2H++2e- ・・・(1)
(1/2)O2+2H++2e-→H2O ・・・(2)
2+(1/2)O2→H2O ・・・(3)
【0026】
燃料電池2には、発電中の電流及び電圧(出力電流及び出力電圧)を検出する電流センサ2a及び電圧センサ2bが取り付けられている。なお、燃料電池2としては、固体高分子電解質型のほか、燐酸型や熔融炭酸塩型等種々のタイプのものを採用することができる。また、燃料電池2の内部には、燃料電池2を冷却するための冷却水が流通しており、この冷却水の温度を検出することにより燃料電池2の温度(セル温度)が間接的に測定されるようになっている。
【0027】
酸化ガス配管系3は、エアコンプレッサ31、酸化ガス供給路32、加湿モジュール33、カソードオフガス流路34、希釈器35、エアコンプレッサ31を駆動するモータM1等を有している。
【0028】
エアコンプレッサ31は、制御装置6の制御指令で作動するモータM1の駆動力により駆動されて、図示していないエアフィルタを介して外気から取り込んだ空気(酸化ガス)を燃料電池2のカソード極に供給するものであり、本発明における空気供給装置に相当するものである。酸化ガス供給路32は、エアコンプレッサ31から供給される空気を燃料電池2のカソード極に導くためのガス流路である。燃料電池2のカソード極からはカソードオフガスが排出される。このカソードオフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。
【0029】
加湿モジュール33は、酸化ガス供給路32を流れる低湿潤状態の酸化ガスと、カソードオフガス流路34を流れる高湿潤状態のカソードオフガスと、の間で水分交換を行い、燃料電池2に供給される酸化ガスを適度に加湿する。カソードオフガス流路34は、カソードオフガスをシステム外に排気するためのガス流路であり、そのガス流路のカソード極出口付近にはエア調圧弁A1が配設されている。燃料電池2に供給される酸化ガスの背圧は、エア調圧弁A1によって調圧される。希釈器35は、水素ガスの排出濃度を予め設定された濃度範囲(環境基準に基づいて定められた範囲等)に収まるように希釈する。希釈器35には、カソードオフガス流路34の下流及び後述するアノードオフガス流路44の下流が連通しており、水素オフガス及び酸素オフガスは混合希釈されてシステム外に排気されることとなる。
【0030】
燃料ガス配管系4は、燃料供給源41、燃料ガス供給路42、燃料ガス循環路43、アノードオフガス流路44、水素循環ポンプ45、逆止弁46、水素循環ポンプ45を駆動するためのモータM2等を有している。
【0031】
燃料供給源41は、燃料電池2へ水素ガス等の燃料ガスを供給する手段であり、例えば高圧水素タンクや水素貯蔵タンク等によって構成される。燃料ガス供給路42は、燃料ガス供給源41から放出される燃料ガスを燃料電池2のアノード極に導くためのガス流路であり、そのガス流路には上流から下流にかけてタンクバルブH1、水素供給バルブH2、FC入口バルブH3等の弁が配設されている。タンクバルブH1、水素供給バルブH2及びFC入口バルブH3は、燃料電池2へと燃料ガスを供給(又は遮断)するためのシャットバルブであり、例えば電磁弁によって構成されている。
【0032】
燃料ガス循環路43は、未反応燃料ガスを燃料電池2へ還流させるための帰還ガス流路であり、そのガス流路には上流から下流にかけてFC出口バルブH4、水素循環ポンプ45、逆止弁46が各々配設されている。燃料電池2から排出された低圧の未反応燃料ガスは、制御装置6の制御指令で作動するモータM2の駆動力により駆動される水素循環ポンプ45によって適度に加圧され、燃料ガス供給路42へ導かれる。燃料ガス供給路42から燃料ガス循環路43への燃料ガスの逆流は、逆止弁46によって抑制される。アノードオフガス流路44は、燃料電池2から排出された水素オフガスを含むアノードオフガスをシステム外に排気するためのガス流路であり、そのガス流路にはパージバルブH5が配設されている。
【0033】
電力系5は、高圧DC/DCコンバータ51、バッテリ52、トラクションインバータ53、補機インバータ54、トラクションモータM3、補機モータM4等を備えている。
【0034】
高圧DC/DCコンバータ51は、直流の電圧変換器であり、バッテリ52から入力された直流電圧を調整してトラクションインバータ53側に出力する機能と、燃料電池2又はトラクションモータM3から入力された直流電圧を調整してバッテリ52に出力する機能と、を有する。高圧DC/DCコンバータ51のこれらの機能により、バッテリ52の充放電が実現される。また、高圧DC/DCコンバータ51により、燃料電池2の出力電圧が制御される。
【0035】
バッテリ52は、トラクションモータM3に対して燃料電池2と並列に接続されており、余剰電力や回生制動時の回生エネルギを蓄える機能を有するとともに、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能するものである。バッテリ52は、充放電可能な二次電池であり、種々のタイプの二次電池(例えばニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等)により構成されている。バッテリ52は、図示していないバッテリコンピュータの制御によって余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。燃料電池2で発電された直流電力の一部は、高圧DC/DCコンバータ51によって昇降圧され、バッテリ52に充電される。なお、バッテリ52に代えて二次電池以外の充放電可能な蓄電器(例えばキャパシタ)を採用することもできる。
【0036】
トラクションインバータ53及び補機インバータ54は、パルス幅変調方式のPWMインバータであり、与えられる制御指令に応じて燃料電池2又はバッテリ52から出力される直流電力を三相交流電力に変換してトラクションモータM3及び補機モータM4へ供給する。トラクションモータM3は、車輪7L、7Rを駆動するためのモータである。トラクションモータM3には、その回転数を検知する回転数検知センサ5aが取付けられている。補機モータM4は、各種補機類を駆動するためのモータであり、エアコンプレッサ31を駆動するモータM1や水素循環ポンプ45を駆動するモータM2等を総称したものである。なお、本実施形態においては、燃料電池2から供給される電力を受けて作動する全ての機器を負荷装置と総称することとする。
【0037】
制御装置6は、燃料電池システム1の各部を統合的に制御するためのコンピュータシステムであり、CPUや各種メモリ(ROM、RAM等)を有している。制御装置6は、各種センサから供給される信号(例えば、回転数検知センサ5aやアクセルペダル開度を検出するアクセルペダルセンサ6a等から送出される各センサ信号)の入力を受けて、負荷装置の負荷(要求出力)を算出する。そして、制御装置6は、この負荷に対応する出力電力を発生させるように燃料電池2の出力電圧及び出力電流を制御する。また、制御装置6は、トラクションインバータ53及び補機インバータ54の出力パルス幅等を制御して、トラクションモータM3及び補機モータM4を制御する。
【0038】
負荷装置の負荷は、例えば車両走行電力と補機電力との合計値である。補機電力には、各種補機(エアコンプレッサ31、水素循環ポンプ45等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、懸架装置等)で消費される電力、乗員空間内に配置される装置(空調装置、照明器具、オーディオ等)で消費される電力等が含まれる。
【0039】
また、制御装置6は、通常運転モードと間欠運転モードとの切り換えを行う。通常運転モードとは、トラクションモータM3等の負荷装置への電力供給のために燃料電池2が発電を継続的に行う運転モードを意味する。間欠運転モードとは、例えばアイドリング時、低速走行時、回生制動時等のような低負荷運転(負荷装置の負荷が所定の閾値以下の領域での運転)時に燃料電池2の発電を一時的に休止し、バッテリ52から負荷装置への電力供給を行い、燃料電池2には開放端電圧を維持し得る程度の水素ガス及び空気の供給を間欠的に行う運転モードを意味する。
【0040】
制御装置6は、間欠運転を実施する際に、燃料電池2の電圧変動の上下限電圧値を複数設定することができるように構成されており、燃料電池2を構成する電極触媒の劣化を抑制するような制御(劣化抑制型間欠運転制御)を行う。ここで、劣化抑制型間欠運転制御について説明する。
【0041】
制御装置6のメモリには、図2に示すように、複数の劣化特性曲線C1〜C3を含む劣化特性マップが記録されている。劣化特性曲線は、間欠運転継続時間(横軸)と、燃料電池2の電極触媒劣化量(縦軸)と、の相関関係を表すものである。本実施形態においては、上下限電圧値「V3−V1」(上限電圧値:V3(V)、下限電圧値:V1(V))における劣化特性曲線を「第一劣化特性曲線C1」、上下限電圧値「V2−0」(上限電圧値:V2(V)、下限電圧値:0(V))における劣化特性曲線を「第二劣化特性曲線C2」、上下限電圧値「V2−V1」(上限電圧値:V2(V)、下限電圧値:V1(V))における劣化特性曲線を「第三劣化特性曲線C3」、と各々称して区別することとする。なお、「V3>V2>V1>0」という関係を有する。
【0042】
図2に示されるように、間欠運転継続時間がtC以下である場合には、第三劣化特性曲線C3に対応する上下限電圧値「V2−V1」を採用した場合の劣化量が、第一劣化特性曲線C1及び第二劣化特性曲線C2に対応する上下限電圧値「V3−V1」及び「V2−0」を採用した場合の劣化量よりも少なくなっていることがわかる。一方、間欠運転継続時間がtC以上である場合には、第二劣化特性曲線C2に対応する上下限電圧値「V2−0」を採用した場合の劣化量が、第一劣化特性曲線C1及び第三劣化特性曲線C3に対応する上下限電圧値「V3−V1」及び「V2−V1」を採用した場合の劣化量よりも少なくなっていることが図2から読み取れる。
【0043】
制御装置6は、このような劣化特性マップを用いることにより、電極触媒の劣化量が最小となるように間欠運転継続時間に応じて上下限電圧値を変化させて設定する。具体的には、制御装置6は、間欠運転時間がtC以下の時間領域においては、この領域において電極触媒の劣化量が最も少ない第三劣化特性曲線C3に対応する上下限電圧値「V2−V1」を設定する。一方、制御装置6は、間欠運転時間がtC以上の時間領域においては、この領域において電極触媒の劣化量が最も少ない第二劣化特性曲線C2に対応する上下限電圧値「V2−0」を設定する。そして、制御装置6は、設定した上下限電圧値で間欠運転を実施する。
【0044】
なお、劣化特性マップを構成する各劣化特性曲線C1〜C3は、燃料電池2の間欠運転中の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量と、燃料電池2の間欠運転中の各上下限電圧値における電圧変動回数と、に基づいて生成される。ここで、図3及び図4を用いて、劣化特性マップを生成する手順について説明する。
【0045】
図3は、燃料電池2の間欠運転中の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量を示すマップである。本マップは、燃料電池2の間欠運転中における下限電圧(横軸)と、燃料電池2の電圧変動一回当たりの電極触媒劣化量(縦軸)と、の相関関係を表す電圧−劣化曲線を、2種類の上限電圧(V2、V3)毎に有している。図3の2種類の電圧−劣化曲線に示されるとおり、同一の下限電圧(例えばV1)で比較した場合には、上限電圧が低い方が電圧変動一回当たりの電極触媒劣化量が小さくなることがわかる。なお、電圧変動一回当たりの電極触媒劣化量は、セル温度によっても変化する(セル温度が低くなるほど劣化量が少なくなる)。セル温度毎に劣化量が変化し、これに伴ってガス透過量が変化し、間欠運転中に必要となる空気供給の頻度も変化するため、劣化特性曲線もセル温度毎に変化することとなる。
【0046】
図4は、燃料電池の間欠運転中における電圧変動の時間履歴を示すタイムチャートである。図4には、上下限電圧値「V3−V1」を採用した場合における燃料電池2の電圧変動のタイムチャートT1と、上下限電圧値「V2−0」を採用した場合における燃料電池2の電圧変動のタイムチャートT2と、上下限電圧値「V2−V1」を採用した場合における燃料電池2の電圧変動のタイムチャートT3と、が示されている。
【0047】
図4の3種類のタイムチャートT1〜T3に示されるとおり、例えば、間欠運転開始時点からt1秒経過した時点で通常運転(出力電圧V2)に復帰するケースにおいては、上下限電圧値「V3−V1」を採用した場合に発生する電圧上昇は1回(V2→V3)となり、上下限電圧値「V2−0」及び「V2−V1」を採用した場合に発生する電圧上昇もまた1回(V4→V2)となる(V4<V2)。一方、間欠運転開始時点からt2(>t1)秒経過した時点で通常運転に復帰するケースにおいては、上下限電圧値「V3−V1」を採用した場合に発生する電圧上昇は2回(V2→V3、V5→V2)、上下限電圧値「V2−0」を採用した場合に発生する電圧上昇は1回(V6→V2)、上下電圧値「V2−V1」を採用した場合に発生する電圧上昇は3回(V1→V2、V1→V2、V4→V2)となる(V6<V2、V5<V2)。このように、上下限電圧値の設定によって、間欠運転中における電圧上昇回数が変化することがわかる。なお、電極触媒は電圧上昇の際の劣化が大きいことが知られているため、本実施形態においては「電圧上昇回数」を電圧変動回数としてカウントすることとする。
【0048】
各上下限電圧値について、図3に示された電圧変動一回当たりの電極触媒劣化量に、図4に示された間欠運転中における時間毎の電圧上昇回数を乗じることにより、図2に示すような間欠運転継続時間と電極触媒劣化量との相関関係を表す複数の(上下限電圧値毎の)劣化特性曲線C1〜C3が得られることとなる。
【0049】
次に、本実施形態に係る燃料電池システム1の運転方法について説明する。
【0050】
まず、上述した手順に従って、図2に示すような劣化特性マップを生成し(マップ生成工程:S1)、生成した劣化特性マップを制御装置6のメモリに記録する。マップ生成工程S1においては、ユーザ自身が手作業で劣化特性マップを生成してもよく、制御装置6に劣化特性マップを生成させてもよい。制御装置6に劣化特性マップを生成させる場合は、制御装置6のメモリに図3のマップ及び図4のタイムチャートに関するデータを記録しておき、このデータに基づいて特定のプログラムを用いて劣化特性マップを生成させることができる。
【0051】
次いで、制御装置6は、メモリに記録された劣化特性マップを用いることにより、電極触媒の劣化が最小となるように間欠運転継続時間に応じて上下限電圧値を変化させて設定する(上下限電圧設定工程:S2)。例えば、制御装置6は図2において太い実線で示されるように、間欠運転時間がtC以下の時間領域において上下限電圧値として「V2−V1」を設定する一方、間欠運転時間がtC以上の時間領域において上下限電圧値として「V2−0」を設定することができる。
【0052】
続いて、制御装置6は、上下限電圧設定工程S2で設定した上下限電圧値で間欠運転を実施する(間欠運転工程:S3)。
【0053】
以上説明した実施形態に係る燃料電池システム1においては、各上下限電圧値に対する電圧変動一回当たりの劣化量と、各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて生成された複数の(上下限電圧値毎の)劣化特性曲線C1〜C3を有する劣化特性マップを用いて、間欠運転継続時間に応じて上下限電圧値を変化させながら間欠運転を実施することができる。従って、間欠運転中における燃料電池2の電圧変動回数に起因する電極触媒劣化量と、間欠運転中における燃料電池2の電圧変動量に対応する電極触媒劣化量と、の双方を考慮して、電極触媒劣化量を効果的に抑制するような間欠運転制御を行うことができる。
【0054】
なお、以上の実施形態においては、1種類の劣化特性マップを用いた例を示したが、種々の状況に応じて劣化特性マップを補正することもできる(マップ補正工程)。
【0055】
<乾燥度及び空気供給量に基づく補正>
例えば、エアコンプレッサ31からの空気供給量が増大すること等に起因して燃料電池2の電解質膜の乾燥度が増大すると、電解質膜を透過するガス量が減少することから、間欠運転中に必要となる空気供給の頻度も減少する。このような現象を考慮し、燃料電池2の電解質膜の乾燥度の増大(エアコンプレッサ31からの空気供給量の増大)に応じて、劣化特性マップにおける第三劣化特性曲線C3の傾きを徐々に揺やかにするような補正を行うことができる。図6において破線で示されるC3´は、燃料電池2の電解質膜の乾燥度の増大(エアコンプレッサ31からの空気供給量の増大)に応じて補正された第三劣化特性曲線を示すものである。
【0056】
制御装置6は、このように補正された劣化特性マップを用いることにより、初期に設定した上下限電圧値を補正し、この補正した上下限電圧値で間欠運転を実施することができる。具体的には、図6に示すように、上下限電圧値を「V2−V1」から「V2−0」へと切り替えるタイミングをtCからtC´へと変更することができる。このようにすると、電解質膜の乾燥度(エアコンプレッサ31からの空気供給量)が変化した場合においても的確な間欠運転制御を行うことができる。
【0057】
<経年劣化及びセル温度に基づく補正>
一方、燃料電池2の電解質膜の経年劣化(薄膜化)や、セル温度(燃料電池2を冷却する冷却水の温度)又は外気温度の上昇に起因してクロスリーク量が増加すると、間欠運転中に必要となる空気供給の頻度も増加する。このような現象を考慮し、電解質膜の使用年数やセル温度(又は外気温度)の上昇に応じて、劣化特性マップにおける第三劣化特性曲線C3の傾きを徐々に急にするような補正を行うことができる。
【0058】
制御装置6は、電解質膜の経年劣化やセル温度の変化に基づいて補正された劣化特性マップを用いることにより、初期に設定した上下限電圧値を補正し、この補正した上下限電圧値で間欠運転を実施することができる。このようにすると、電解質膜が経年劣化したりセル温度が変化したりした場合においても的確な間欠運転制御を行うことができる。
【0059】
なお、以上の実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した例を示したが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)に本発明に係る燃料電池システムを搭載することもできる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用してもよい。さらには、携帯型の燃料電池システムにも適用可能である。
【符号の説明】
【0060】
1…燃料電池システム、2…燃料電池、6…制御装置、31…エアコンプレッサ(空気供給装置)、C1…第一劣化特性曲線、C2…第二劣化特性曲線、C3…第三劣化特性曲線、S1…マップ生成工程、S2…上下限電圧設定工程、S3…間欠運転工程。

【特許請求の範囲】
【請求項1】
燃料電池と、前記燃料電池に空気を供給する空気供給装置と、負荷装置から要求される出力が所定の閾値以下である場合に前記空気供給装置からの空気供給を間欠的に行う間欠運転を実施し、間欠運転中における前記燃料電池の電圧変動の上下限電圧値を複数設定可能な制御装置と、を備える燃料電池システムであって、
前記制御装置は、間欠運転継続時間と燃料電池の電極触媒劣化量との相関関係を表す劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを用いることにより、間欠運転継続時間に応じて上下限電圧値を変化させて設定するとともに、設定した上下限電圧値で間欠運転を実施するものであり、
前記劣化特性曲線は、前記燃料電池の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量と、前記燃料電池の各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて生成される、
燃料電池システム。
【請求項2】
前記劣化特性曲線は、前記燃料電池の電解質膜の乾燥度に基づいて補正される、
請求項1に記載の燃料電池システム。
【請求項3】
前記劣化特性曲線は、前記空気供給装置からの空気供給量に基づいて補正される、
請求項1に記載の燃料電池システム。
【請求項4】
前記劣化特性曲線は、前記燃料電池の電解質膜の経年劣化に基づいて補正される、
請求項1に記載の燃料電池システム。
【請求項5】
前記劣化特性曲線は、前記燃料電池の温度又は外気温度に基づいて補正される、
請求項1に記載の燃料電池システム。
【請求項6】
燃料電池と、前記燃料電池に空気を供給する空気供給装置と、を備え、負荷装置から要求される出力が所定の閾値以下である場合に前記空気供給装置からの空気供給を間欠的に行う間欠運転を実施し、間欠運転中における前記燃料電池の電圧変動の上下限電圧値を複数設定可能な燃料電池システムの運転方法であって、
前記燃料電池の各上下限電圧値に対する電圧変動一回当たりの電極触媒劣化量と、前記燃料電池の各上下限電圧値における間欠運転中の電圧変動回数と、に基づいて、間欠運転継続時間と燃料電池の電極触媒劣化量との相関関係を表す劣化特性曲線を複数の上下限電圧値毎に有する劣化特性マップを生成するマップ生成工程と、
前記劣化特性マップを用いることにより、間欠運転継続時間に応じて上下限電圧値を変化させて設定する上下限電圧設定工程と、
前記上下限電圧設定工程で設定した上下限電圧値で間欠運転を実施する間欠運転工程と、を備える、
燃料電池システムの運転方法。
【請求項7】
前記燃料電池の電解質膜の乾燥度、前記空気供給装置からの空気供給量、前記燃料電池の電解質膜の経年劣化、前記燃料電池の温度、外気温度、の少なくとも何れか一つに基づいて、前記劣化特性マップの前記劣化特性曲線を補正するマップ補正工程を備える、
請求項6に記載の燃料電池システムの運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−101774(P2013−101774A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2011−243708(P2011−243708)
【出願日】平成23年11月7日(2011.11.7)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】