説明

画像処理装置、撮像装置および画像処理プログラム

【課題】変色や色抜けが生じることなく、軸上色収差を確度高く補正できる技術を提供する。
【解決手段】複数の色成分の画素値を有する対象画像を、異なる複数の平滑化の度合いで平滑化し、複数の平滑画像を生成する画像平滑手段と、対象画像の各画素位置において、対象画像の所定の色成分の画素値と平滑画像の所定の色成分とは異なる色成分の画素値との差分である色差を求め、平滑の度合いに応じた色差の分散を算出する演算手段と、色差の分散に基づいて、各画素位置が色境界か否かを判定する判定手段と、色境界の判定が偽と判定された画素位置の画素を対象画素として、色差の分散に基づいて各色成分の鮮鋭度を比較し、鮮鋭度が最も高い色成分を決定する決定手段と、鮮鋭度が最も高い色成分に基づいて、対象画素の少なくとも1つの色成分の鮮鋭度を調整する調整手段と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置、撮像装置および画像処理プログラムに関する。
【背景技術】
【0002】
従来、撮像レンズ等の光学系によって結像された被写体を撮像した画像は、その光学系による色収差、特に、軸上色収差の影響を受ける。
【0003】
それを解決するために、例えば、基準となる色成分の色面を平滑化して他の色成分の色面との色差が最小となるように、各色成分間のMTF特性の不整合を調整して、軸上色収差を補正する技術が開発されている(特許文献1等参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−28041号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来技術では、基準となる色成分の色面の平滑化を、他の色成分の色面との色差が最小となるようにする際、平滑化の度合いが大きくなると色差が予測できない振る舞いをする場合がある。
【0006】
また、軸上色収差による影響以外の画像の色構造部分に上記補正を適用すると、変色したりや彩度が小さくなって色抜けするという問題がある。
【0007】
上記従来技術が有する問題を鑑み、本発明の目的は、変色や色抜けが生じることなく、軸上色収差を確度高く補正できる技術を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の画像処理装置は、複数の色成分の画素値を有する対象画像を、異なる複数の平滑化の度合いで平滑化し、複数の平滑画像を生成する画像平滑手段と、対象画像の各画素位置において、対象画像の所定の色成分の画素値と平滑画像の所定の色成分とは異なる色成分の画素値との差分である色差を求め、平滑の度合いに応じた色差の分散を算出する演算手段と、色差の分散に基づいて、各画素位置が色境界か否かを判定する判定手段と、色境界の判定が偽と判定された画素位置の画素を対象画素として、色差の分散に基づいて各色成分の鮮鋭度を比較し、鮮鋭度が最も高い色成分を決定する決定手段と、鮮鋭度が最も高い色成分に基づいて、対象画素の少なくとも1つの色成分の鮮鋭度を調整する調整手段と、を備える。
【0009】
また、演算手段は、色差を差分の絶対値として求めてもよい。
【0010】
また、判定手段は、各色成分の画素値の分布に基づいて、色境界が飽和領域周辺の濃度差による色にじみか否かを判定し、決定手段は、色境界が色にじみと判定された場合、色境界と判定された画素位置の画素を対象画素としてもよい。
【0011】
また、鮮鋭度が調整された対象画素の画素値を、色差空間において、鮮鋭度の調整前の画素値の色差の向きと同じになるように補正する色差補正部を備えてもよい。
【0012】
また、色差補正部は、色差空間において、鮮鋭度が調整された対象画素の画素値の色差成分の大きさが所定の大きさ以上の場合、鮮鋭度が調整された対象画素の画素値の色差成分の大きさを小さくしてもよい。
【0013】
また、演算手段は、画素位置を中心とする領域にある、対象画像の所定の色成分の画素値と平滑画像の所定の色成分とは異なる色成分の画素値とを用い、色差の分散を算出してもよい。
【0014】
また、決定手段は、対象画素において、色差ごとに最小の分散値を与える平滑画像の色成分を鮮鋭度が高い色成分と決定し、決定された色成分の鮮鋭度を比較して鮮鋭度が最も高い色成分を決定してもよい。
【0015】
また、演算手段は、最小の分散値を内挿法に基づいて決定してもよい。
【0016】
本発明の撮像装置は、被写体を撮像して、複数の色成分の画素値を有する対象画像を生成する撮像手段と、本発明の画像処理装置と、を備える。
【0017】
本発明の画像処理プログラムは、複数の色成分の画素値を有する対象画像を読み込む入力手順、対象画像を、異なる複数の平滑化の度合いで平滑化し、複数の平滑画像を生成する画像平滑手順、対象画像の各画素位置において、対象画像の所定の色成分の画素値と平滑画像の所定の色成分とは異なる色成分の画素値との差分である色差を求め、平滑の度合いに応じた色差の分散を算出する演算手順、色差の分散に基づいて、各画素位置が色境界か否かを判定する判定手順、色境界の判定が偽と判定された画素位置の画素を対象画素として、色差の分散に基づいて各色成分の鮮鋭度を比較し、鮮鋭度が最も高い色成分を決定する決定手順、鮮鋭度が最も高い色成分に基づいて、対象画素の少なくとも1つの色成分の鮮鋭度を調整する調整手順、をコンピュータに実行させる。
【発明の効果】
【0018】
本発明によれば、変色や色抜けが生じることなく、軸上色収差を確度高く補正できる。
【図面の簡単な説明】
【0019】
【図1】一の実施形態に係る画像処理装置として動作させるコンピュータ10の構成を示すブロック図
【図2】色構造について説明する図
【図3】一の実施形態に係るコンピュータ10による画像処理の動作を示すフローチャート
【図4】注目画素と参照領域との関係を示す図
【図5】注目画素における標準偏差DEVr[k’]の分布を示す図
【図6】他の実施形態に係るコンピュータ10による画像処理の動作を示すフローチャート
【図7】本発明に係るデジタルカメラの構成の一例を示す図
【図8】補正後の色差成分の大きさに応じた補正出力率を示す図
【発明を実施するための形態】
【0020】
《一の実施形態》
図1は、本発明の一の実施形態に係る画像処理装置として動作させるコンピュータ10の構成を示すブロック図である。
【0021】
図1(a)に示すコンピュータ10は、CPU1、記憶部2、入出力インタフェース(入出力I/F)3およびバス4から構成される。CPU1、記憶部2および入出力I/F3は、バス4を介して情報伝達可能に接続される。また、コンピュータ10には、入出力I/F3を介して、画像処理の途中経過や処理結果を表示する出力装置30、ユーザからの入力を受け付ける入力装置40がそれぞれ接続される。出力装置30には、一般的な液晶モニタやプリンタ等を用いることができ、入力装置40には、キーボードやマウス等をそれぞれ適宜選択して使用できる。
【0022】
なお、コンピュータ10によって処理される対象画像は、各画素において、赤色(R)、緑色(G)、青色(B)の色成分それぞれの画素値を有することを前提とする。すなわち、本実施形態の対象画像は、3板式カラーのデジタルカメラで撮像された、または、単板式カラーのデジタルカメラで撮像され色補間処理された画像であるとする。また、対象画像は、デジタルカメラ等による撮像の際、撮像レンズによる軸上色収差の影響を有し、色成分間の鮮鋭度が異なるものとする。
【0023】
CPU1は、コンピュータ10の各部を統括的に制御するプロセッサである。例えば、CPU1は、入力装置40で受け付けたユーザからの指示に基づいて、記憶部2に記憶されている画像処理プログラムを読み込む。CPU1は、その画像処理プログラムの実行により、画像平滑部20、演算部21、判定部22、決定部23、調整部24、色差補正部25として動作し(図1(b))、対象画像の軸上色収差の補正処理を行う。CPU1は、その画像に対する画像処理の結果を、出力装置30に表示する。
【0024】
画像平滑部20は、平滑化の度合い(ぼかし指標)が相異なる、例えば、N個の公知のガウシアンフィルタを用い、各ガウシアンフィルタのぼかし指標に応じて対象画像を平滑化しN個の平滑画像を生成する(Nは2以上の自然数)。なお、本実施形態におけるぼかし指標とは、例えば、ぼかし半径の大きさを指す。
【0025】
演算部21は、後述するように、対象画像およびN個の平滑画像を用い、各画素の画素位置において、対象画像の色成分と平滑画像の対象画像の色成分とは異なる色成分との差分の絶対値から、ぼかし指標に応じた色差面(色差)およびその標準偏差(分散)の値を算出する。そして、演算部21は、各画素の画素位置における、ぼかし指標に対する標準偏差の分布に公知の内挿法を適用して、その画素位置で最小の標準偏差を与えるぼかし指標を求める。
【0026】
判定部22は、それぞれのぼかし指標における色差面間の標準偏差の値に基づいて、画素位置の色構造が色境界か否かを判定する。ここで、図2(a)は、例えば、白地の背景に一本の黒線の被写体を撮像した対象画像で、黒線に直交する走査方向でR成分(点線)、G成分(実線)、B成分(破線)の画素値の分布を示す。一方、図2(b)は、一例として、赤と白とからなる色境界を撮像した対象画像で、色境界に直交する走査方向でのR成分(点線)、G成分(実線)、B成分(破線)の画素値の分布を示す。なお、図2の対象画像を撮像したカメラの撮像レンズは、軸上色収差を有しG成分で合焦しているとする。
【0027】
図2(a)に示すように、G成分は色構造をよく再現するのに対し、軸上色収差によりR成分やB成分は色構造がぼけてしまう。これにより、黒線の部分は緑またはマゼンダに滲んでしまう。しかしながら、この場合の各色成分の分布は、本来互いに一致することから、後述するように、演算部21、決定部23、調整部24によるR成分およびB成分に対する軸上色収差の補正により、図2(a)に示す各色成分の分布を互いに一致させることができる。逆に言えば、本実施形態の軸上色収差の補正処理は、元の対象画素の各色成分の分布は、互いに一致していることを前提としている。
【0028】
一方、図2(b)に示すように、色境界では、各色成分の色構造が大きく異なり、上述した前提が成り立たない。したがって、調整部24は、演算部21が求めた最小の標準偏差を与えるぼかし指標で色境界でのG成分を平滑化したとしても、R成分やB成分の分布(または鮮鋭度)に一致させられず、軸上色収差を補正することができない。
【0029】
ところで、図2(b)に示すような色境界では、各色成分の色構造が大きく異なることから、各色成分間の色差の標準偏差の値も互いに大きく異なる。そこで、本実施形態の判定部22は、算出したそれぞれのぼかし指標における各色成分間の色差の標準偏差の値が、閾値ε以上のギャップがあるか否かを判定することにより、各画素位置の色構造が色境界か否かを判定する。判定部22が、その画素位置の色構造が色境界であると判定した場合、本実施形態では、その画素位置の画素に対する軸上色収差の補正を行わないようにする。これにより、色境界に対する軸上色収差の補正処理を施すことにより生じる変色を抑制することができる。
【0030】
さらに、判定部22は、色境界と判定された画素位置の色構造が、飽和領域周辺の濃度差による色にじみ、例えば、パープルフリンジであるか否かを、その画素位置およびその周辺における各色成分の画素値の分布に基づいて判定する。ここで、パープルフリンジとは、街灯等の光源の周囲や水面の照り返し等、光量が大きいために各色成分の画素値が飽和した高輝度領域(飽和領域)の周りに生じる紫色の色にじみのことである。図2(c)は、パープルフリンジの一例として、明るい光源を撮像した対象画像で、光源の中心を通る走査方向でのR成分(点線)、G成分(実線)、B成分(破線)の画素値の分布を示す。図2(c)に示すように、色成分ごとに飽和領域が異なり、光源から離れるに従ってG成分が最初に減少し、R成分が最も広い範囲まで分布する。このような分布により、紫色の色にじみとなって現れる。このような各色成分の分布は、図2(a)に示す軸上色収差の場合とも異なることから、判定部22は、パープルフリンジを色境界と判定してしまう。しかしながら、上述したように、図2(a)に示す黒線の部分が軸上色収差により緑またはマゼンダに滲むという点は、パープルフリンジと似ている。そこで、本実施形態では、パープルフリンジの画素位置に対して、軸上色収差と同様の補正処理を施す。
【0031】
そのために、判定部22は、図2(c)に示すように、画素位置を中心とする周辺領域、または対象画像全体における各色成分の画素値の分布を求め、その分布から各色成分の画素値の飽和領域を求める。判定部22は、最も広く分布する色成分の飽和領域(図2(c)の場合は、R成分)およびその飽和領域の端から幅β広げた領域をパープルフリンジ領域として抽出する。判定部22は、画素位置が抽出したパープルフリンジ領域に含まれるか否かを判定し、画素位置の色構造がパープルフリンジであるか否か判定する。そして、パープルフリンジと判定された画素位置の画素は、対象画素として軸上色収差の補正処理が施される。
【0032】
決定部23は、判定部22により色境界でないと判定された画素位置およびパープルフリンジと判定された画素位置の画素(対象画素)における、最小の標準偏差を与えるぼかし指標に基づいて、最も高い鮮鋭度の色成分を決定する。
【0033】
調整部24は、決定部23によって決定された最も高い鮮鋭度の色成分に基づいて、対象画素の画素位置での色成分間の鮮鋭度を調整する。
【0034】
色差補正部25は、鮮鋭度が調整された画素の各色成分の画素値を、色差空間において、調整前の色差の向きと同じになるように補正し、軸上色収差の補正処理によって生じる変色を抑制する。
【0035】
記憶部2は、対象画像とともに、対象画像における軸上色収差を補正するための画像処理プログラム等を記録する。記憶部2に記憶される画像やプログラム等は、バス4を介して、CPU1から適宜参照することができる。記憶部2には、一般的なハードディスク装置、光磁気ディスク装置等の記憶装置を選択して用いることができる。なお、記憶部2は、コンピュータ10に組み込まれるとしたが、外付けの記憶装置でもよい。この場合、記憶部2は、入出力I/F3を介してコンピュータ10に接続される。
【0036】
次に、本実施形態のコンピュータ10による軸上色収差を補正する画像処理の動作について、図3に示すフローチャートを参照しつつ説明する。
【0037】
ユーザは、入力装置40を用いて、画像処理プログラムのコマンドを入力、または、出力装置30に表示されたそのプログラムのアイコンをダブルクリック等することにより、画像処理プログラムの起動をCPU1に指示する。CPU1は、その指示を入出力I/F3を介して受け付け、記憶部2に記憶されている画像処理プログラムを読み込み実行する。CPU1は、図3のステップS10からステップS20の処理を開始する。
【0038】
ステップS10:CPU1は、入力装置40を介して、ユーザによって指定された補正対象の対象画像を読み込む。
【0039】
ステップS11:CPU1の画像平滑部20は、各ガウシアンフィルタのぼかし指標に応じ、読み込んだ対象画像を平滑化し、N個の平滑画像を生成する。なお、本実施形態では、対象画像自身も平滑画像の1つとし、本実施形態における平滑画像の総数は、(N+1)個である。
【0040】
ステップS12:CPU1の演算部21は、R成分とG成分との色差面Cr、B成分とG成分との色差面Cb、およびR成分とB成分との色差面Crbを対象画像と各平滑画像とを用いて算出する。
【0041】
例えば、演算部21は、対象画像の所定の色成分であるG成分の画素値G0(i,j)と、平滑画像の上記所定の色成分とは異なる色成分であるR成分の画素値Rk(i,j)との差分の絶対値を各画素位置において求め、次式(1)に示す色差面Cr[−k](i,j)を算出する。
Cr[−k](i,j)=|Rk(i,j)−G0(i,j)| …(1)
ここで、(i,j)は、各画素位置を注目画素としてその画素位置の座標を示す。kは、平滑画像のぼかし指標であり、0≦k≦Nの整数である。なお、式(1)において、ぼかし指標kがマイナスであるのは、マイナス側にR面を順次ぼかした色差面Crであることを表す。また、ぼかし指標k=0は、対象画像自身、すなわち平滑化されていない画像を表す。
【0042】
同様に、演算部21は、対象画像の所定の色成分であるR成分の画素値R0(i,j)と、平滑画像の上記所定の色成分とは異なる色成分であるG成分の画素値Gk(i,j)との差分の絶対値を注目画素の画素位置(i,j)において求め、次式(2)の色差面Cr[k](i,j)を算出する。
Cr[k](i,j)=|R0(i,j)−Gk(i,j)| …(2)
なお、式(2)において、ぼかし指標kがプラスであるのは、プラス側にG面を順次ぼかした色差面Crであることを表す。
【0043】
同様に、演算部21は、式(3)−(6)に基づいて、B成分とG成分との色差面Cb、R成分とB成分との色差面Crbそれぞれを注目画素の画素位置(i,j)において算出する。
Cb[−k](i,j)=|Bk(i,j)−G0(i,j)| …(3)
Cb[k](i,j)=|B0(i,j)−Gk(i,j)| …(4)
Crb[−k](i,j)=|Rk(i,j)−B0(i,j)| …(5)
Crb[k](i,j)=|R0(i,j)−Bk(i,j)| …(6)
ステップS13:演算部21は、ステップS12で算出した色差面Cr、Cb、Crbを用い、注目画素(i,j)における各色差面の標準偏差DEVr、DEVb、DEVrbを、ぼかし指標ごとに算出する。すなわち、演算部21は、図4に示すように、斜線で示す注目画素(i,j)を中心とする15ピクセル×15ピクセルの大きさの参照領域AR1(第1領域)にある画素の各色差面Cr、Cb、Crbの値を用い標準偏差を算出する。なお、本実施形態では、参照領域AR1の大きさを15ピクセル×15ピクセルとするが、CPU1の処理能力や軸上色収差の補正の精度に応じて適宜決めることが好ましく、例えば、一辺を10〜30ピクセルの範囲に設定されるのが好ましい。
【0044】
演算部21は、次式(7)−(9)を用い各色差面の標準偏差DEVr、DEVb、DEVrbを算出する。
【0045】
【数1】

【0046】
【数2】

【0047】
【数3】

ここで、k’は、−N〜Nの整数のぼかし指標である。rは、参照領域AR1の一辺のピクセル数を示し、本実施形態ではr=15ピクセルである。また、(l、m)および(x、y)は、参照領域AR1内の画素位置をそれぞれ表す。
【0048】
ステップS14:演算部21は、ステップS13で算出された各色差面の標準偏差DEVr、DEVb、DEVrbを用い、注目画素(i,j)において、最小の標準偏差の値を与えるぼかし指標k’を色差面ごとに求める。例えば、図5に示すように、演算部21は、ぼかし指標に応じた色差面Crの標準偏差DEVr[k’]の分布に基づいて、注目画素(i,j)において、その標準偏差が最小となるぼかし指標k’=αを求める。
【0049】
演算部21は、色差面Cbおよび色差面Crbの場合についても同様の処理を行い、最小の標準偏差DEVb、DEVrbを与えるぼかし指標k’=αおよびk’=αrbを求める。
【0050】
ステップS15:CPU1の判定部22は、注目画素(i,j)において、それぞれのぼかし指標k’における各色差面の標準偏差DEVr[k’]、DEVb[k’]、DEVrb[k’]の値に基づいて、注目画素(i,j)の色構造が色境界の色相を有するか否かを判定する。判定部22は、それらの標準偏差の値のいずれか1つが閾値ε以上となるか否かを判定する。なお、本実施形態の閾値εは、例えば、対象画像が255階調の画像の場合、50に設定されるものとする。ただし、閾値εの値は、対象画像の階調、注目画素の画素位置や参照領域AR1等に応じて決定されるのが好ましく、例えば、40〜60の範囲の値に設定されるのが好ましい。
【0051】
判定部22は、閾値ε以上となる標準偏差の値があった場合、注目画素(i,j)の色構造は色境界であると判定し、その注目画素の画素位置を不図示のワーキングメモリに記録し、ステップS16(YES側)へ移行する。一方、判定部22は、閾値ε以上となる標準偏差の値が無かった場合、注目画素(i,j)の色構造は色境界でないと判定し、注目画素を軸上色収差の補正処理の対象画素としてステップS17(NO側)へ移行する。
【0052】
ステップS16:判定部22は、ステップS15において色境界と判定された注目画素(i,j)の色構造がパープルフリンジであるか否かを判定する。判定部22は、図2に示すように、注目画素(i,j)およびその周辺画素、または対象画像全体の各色成分の画素値を用い、それらの分布を求める。判定部22は、色成分ごとに画素値の分布から画素値が飽和した飽和領域(255階調の画像の場合、画素値が255)をそれぞれ求める。判定部22は、各色成分の飽和領域の大きさのうち、最も領域が広い、例えば、R成分の飽和領域とその飽和領域の端から幅β広げた領域とを合わせた領域をパープルフリンジ領域とし、注目画素がそのパープルフリンジ領域内か否かを判定する。なお、本実施形態における幅βの値は、例えば、10ピクセル程度である。ただし、幅βの大きさは、CPU1の処理能力、軸上色収差の補正処理の精度や各色成分における飽和状態からの減少度合いに応じて決定されるのが好ましい。
【0053】
判定部22は、パープルフリンジ領域内の場合、注目画素の色構造はパープルフリンジと判定し、その注目画素の画素位置をワーキングメモリ(不図示)に記録する。判定部22は、その注目画素を軸上色収差の補正処理の対象画素として、ステップS17(YES側)へ移行する。一方、パープルフリンジ領域外の場合、注目画素の色構造は色境界と判定し、注目画素に対する軸上色収差の補正処理を行わず、ステップS20(NO側)へ移行する。
【0054】
ステップS17:決定部23は、ステップS14において求めた各色差面のぼかし係数α、α、αrbに基づいて、注目画素(i,j)における鮮鋭度が最も高い色成分を決定する。決定部23は、最小の標準偏差を与えるぼかし指標αが正の場合、注目画素(i,j)において鮮鋭度がより高いのはG成分であると決定する。一方、決定部23は、最小の標準偏差を与えるぼかし指標αが負の場合、注目画素(i,j)において鮮鋭度がより高いのはR成分であると決定する。決定部23は、ぼかし指標αおよびαrbに対しても、それらの符号に基づいて、鮮鋭度がより高い色成分をそれぞれ決定する。
【0055】
上記結果に基づいて、決定部23は、注目画素(i,j)において、最も鮮鋭度の高い色成分が決定できたか否かを判定する。すなわち、3つの色差面における結果のうち、2つで同一の色成分が決定された場合、決定部23は、その色成分を、注目画素(i,j)において鮮鋭度が最も高い色成分として決定し、ステップS18(YES側)へ移行する。
【0056】
一方、例えば、各色差面のぼかし係数α、α、αrbそれぞれに基づいて、R成分、G成分、B成分がそれぞれ決定された場合、決定部23は、注目画素(i,j)における最も鮮鋭度の高い色成分を1つに決定することができない。このような場合、決定部23は、不定と判定し、注目画素に対する軸上色収差の補正処理を行わず、ステップS20(NO側)へ移行する。なお、色差面ごとに決定された各色成分の鮮鋭度を比較し鮮鋭度が最も高い色成分を決定してもよい。
【0057】
ステップS18:CPU1の調整部24は、ステップS17において、決定された色成分に基づいて、注目画素(i,j)の色成分間の鮮鋭度を調整し軸上色収差を補正する。
【0058】
そのために、演算部21は、例えば、図5に示す色差面Crの標準偏差DEVrの分布に基づいて、注目画素(i,j)における真の意味での最小の標準偏差の値を与えるぼかし指標sを求める。すなわち、演算部21がステップS14で求められた標準偏差DEVrを最小にするぼかし指標αは、図5の点線が示すように、必ずしも真に最小の標準偏差DEVrを与えるぼかし指標ではない。そこで、演算部21は、算出された標準偏差DEVrが最小になるぼかし指標αと、隣接する両端のぼかし指標α−1およびα+1との3点に対し内挿法を適用し、より正確なぼかし指標(内挿点)sを求める。
【0059】
ここで、標準偏差DEVr[k’](i,j)の分布において、DEVr[α−1](i,j)>DEVr[α+1](i,j)の場合、ぼかし指標sは、次式(10)のように表される。
ぼかし指標s=((α+1)+α)/2+(DEVr[α+1](i,j)−DEVr[α](i,j))/2/a …(10)
ここで、係数aは傾きであり、(DEVr[α−1](i,j)−DEVr[α](i,j))/((α−1)−α)となる。
【0060】
一方、DEVr[α−1](i,j)<DEVr[α+1](i,j)の場合、ぼかし指標sは、次式(11)のように表される。
ぼかし指標s=((α−1)+α)/2+(DEVr[α−1](i,j)−DEVr[α](i,j))/2/a …(11)
なお、傾きaは(DEVr[α+1](i,j)−DEVr[α](i,j))/((α+1)−α)となる。
【0061】
そして、演算部21は、内挿点sとともに、ぼかし指標α、α+1のGα(i,j)、G(α+1)(j,j)を用いた公知の重み付け加算により、補正値G’(i,j)を算出する。
【0062】
以下は注目画素(i,j)で最も鮮鋭度が高いのがG面とした場合の例である。
【0063】
調整部24は、次式(12)に基づいて、注目画素(i,j)におけるR成分の鮮鋭度を調整し軸上色収差を補正する。
R’(i,j)=R0(i,j)+(G0(i,j)−G’(i,j)) …(12)
調整部24は、同様にB成分についても、B成分とG成分との色差面Cbの標準偏差DEVbの分布に基づいて、補正値G”(i,j)を算出し、次式(13)に基づいて、注目画素(i,j)におけるB成分の鮮鋭度を調整し軸上色収差を補正する。
B’(i,j)=B0(i,j)+(G0(i,j)−G”(i,j)) …(13)
ステップS19:CPU1の色差補正部25は、軸上色収差の補正処理が施された注目画素の各色成分の画素値に対して色差補正を行う。
【0064】
すなわち、ステップS18において、軸上色収差の補正処理が施された注目画素の各色成分の画素値は、補正前の画素値と比較した場合、特に、輝度色差の色空間における色差成分の向きが大きく変わる場合があるからである。そして、それにより注目画素(i,j)において変色が発生する。そこで、本実施形態では、その変色の発生を抑制するために、色差補正部25は、注目画素における補正後の色差成分が、輝度色差の空間において、補正前の色差成分の向きと同じになるように補正する。
【0065】
具体的には、色差補正部25は、注目画素の補正前後の各色成分の画素値を、公知の変換処理を適用して、RGBの画素値(R’,G,B’)をYCrCbの輝度成分と色差成分(Y’,Cr’,Cb’)に変換する。ここで、補正前の輝度成分および色差成分を(Y0,Cr0,Cb0)とする。そして、色差補正部25は、次式(14)により、注目画素の色差成分の向きを補正前の向きに補正する。なお、本実施形態において、輝度成分Y’は補正しない。
【0066】
【数4】

色差補正部25は、再度、上述した公知の変換処理を適用して、注目画素の色差補正後の輝度成分および色差成分(Y’,Cr”,Cb”)をRGBの画素値(R,G,B)に変換する。色差補正部25は、画素値(R,G,B)を注目画素(i,j)の画素値とする。
【0067】
ステップS20:CPU1は、対象画像の全ての画素について処理が終了したか否かを判定する。CPU1は、全ての画素について処理が終了していないと判定した場合、ステップS12(NO側)へ移行し、次の画素を注目画素として、ステップS12からステップS19の処理を行う。一方、CPU1は、全ての画素について処理が終了したと判定した場合、軸上色収差が補正された画像を、記憶部2に記録したり出力装置30に表示したりする。そして、CPU1は、一連の処理を終了する。
【0068】
このように、本実施形態では、各色差面の標準偏差の値に基づいて、各画素位置における色構造を判定することにより、軸上色収差の補正を確度高く行うことができる。
【0069】
また、色境界と判定された注目画素に対する軸上色収差の補正処理を行わないことにより、変色や色抜けの発生を抑制することができる。
【0070】
さらに、注目画素の補正後の画素値に対して、色差空間において補正前の画素値が有した色差成分の向きに補正することにより、変色や色抜けを抑制しつつ軸上色収差の補正をより精度よく行うことができる。
《他の実施形態》
本発明の他の実施形態に係る画像処理装置は、図1に示す一の実施形態に係る画像処理装置と同一である。よって、図1に示すコンピュータ10を本実施形態に係る画像処理装置とし、各構成要素について同一の符号を付し詳細な説明は省略する。
【0071】
なお、本実施形態のコンピュータ10と一の実施形態のものとの相違点は、(1)演算部21が、対象画像およびN個の平滑画像を用い、各画素の画素位置において、対象画像の色成分と平滑画像の対象画像の色成分とは異なる色成分との差分から、ぼかし指標に応じた色差面(色差)およびその標準偏差(分散)の値を算出し、(2)判定部22が、それぞれのぼかし指標における色差面間の標準偏差の値の差分を算出し、その絶対値に基づいて、画素位置の色構造が色境界か否かを判定することにある。
【0072】
次に、本実施形態のコンピュータ10による軸上色収差を補正する画像処理の動作について、図6に示すフローチャートを参照しつつ説明する。
【0073】
ユーザは、入力装置40を用いて、画像処理プログラムのコマンドを入力、または、出力装置30に表示されたそのプログラムのアイコンをダブルクリック等することにより、画像処理プログラムの起動をCPU1に指示する。CPU1は、その指示を入出力I/F3を介して受け付け、記憶部2に記憶されている画像処理プログラムを読み込み実行する。CPU1は、図6のステップS30からステップS40の処理を開始する。
【0074】
ステップS30:CPU1は、入力装置40を介して、ユーザによって指定された補正対象の対象画像を読み込む。
【0075】
ステップS31:CPU1の画像平滑部20は、各ガウシアンフィルタのぼかし指標に応じ、読み込んだ対象画像を平滑化し、N個の平滑画像を生成する。なお、本実施形態では、対象画像自身も平滑画像の1つとし、本実施形態における平滑画像の総数は、(N+1)個である。
【0076】
ステップS32:CPU1の演算部21は、R成分とG成分との色差面Cr、B成分とG成分との色差面Cb、およびR成分とB成分との色差面Crbを対象画像と各平滑画像とを用いて算出する。
【0077】
なお、本実施形態の演算部21は、上述したように、例えば、対象画像の所定の色成分であるG成分の画素値G0(i,j)と、平滑画像の上記所定の色成分とは異なる色成分であるR成分の画素値Rk(i,j)との差分を各画素位置において求め、次式(15)に示す色差面Cr[−k](i,j)を算出する。
Cr[−k](i,j)=Rk(i,j)−G0(i,j) …(15)
ここで、式(1)と同様に、(i,j)は、各画素位置を注目画素としてその画素位置の座標を示し、kは、平滑画像のぼかし指標を示す。
【0078】
同様に、演算部21は、対象画像の所定の色成分であるR成分の画素値R0(i,j)と、平滑画像の上記所定の色成分とは異なる色成分であるG成分の画素値Gk(i,j)との差分を注目画素の画素位置(i,j)において求め、次式(16)の色差面Cr[k](i,j)を算出する。
Cr[k](i,j)=R0(i,j)−Gk(i,j) …(16)
さらに、演算部21は、式(17)−(20)に基づいて、B成分とG成分との色差面Cb、R成分とB成分との色差面Crbそれぞれを注目画素の画素位置(i,j)において算出する。
Cb[−k](i,j)=Bk(i,j)−G0(i,j) …(17)
Cb[k](i,j)=B0(i,j)−Gk(i,j) …(18)
Crb[−k](i,j)=Rk(i,j)−B0(i,j) …(19)
Crb[k](i,j)=R0(i,j)−Bk(i,j) …(20)
ステップS33:演算部21は、一の実施形態のステップS13と同様に、ステップS32で算出した色差面Cr、Cb、Crbを用い、注目画素(i,j)における各色差面の標準偏差DEVr、DEVb、DEVrbを、ぼかし指標ごとに算出する。すなわち、演算部21は、図4に示すように、斜線で示す注目画素(i,j)を中心とする15ピクセル×15ピクセルの大きさの参照領域AR1(第1領域)にある画素の各色差面Cr、Cb、Crbの値を用い、式(7)−(9)に基づいて標準偏差を算出する。
【0079】
ステップS34:演算部21は、一の実施形態のステップS14と同様に、ステップS33で算出された各色差面の標準偏差DEVr、DEVb、DEVrbを用い、注目画素(i,j)において、最小の標準偏差の値を与えるぼかし指標k’(=α、α、αrb)を色差面ごとに求める。
【0080】
ステップS35:CPU1の判定部22は、注目画素(i,j)において、それぞれのぼかし指標k’における各色差面の標準偏差の差分、DEVr[k’]−DEVb[k’]、DEVb[k’]−DEVrb[k’]、DEVr[k’]−DEVrb[k’]を求め、その差分の絶対値に基づいて、注目画素(i,j)の色構造が色境界の色相を有するか否かを判定する。判定部22は、それらの標準偏差の差分の絶対値のいずれか1つが閾値ε以上となるか否かを判定する。なお、本実施形態の閾値εは、例えば、対象画像が255階調の画像の場合、50に設定されるものとする。ただし、閾値εの値は、対象画像の階調、注目画素の画素位置や参照領域AR1等に応じて決定されるのが好ましく、例えば、40〜60の範囲の値に設定されるのが好ましい。
【0081】
判定部22は、閾値ε以上となる標準偏差の差分の絶対値があった場合、注目画素(i,j)の色構造は色境界であると判定し、その注目画素の画素位置を不図示のワーキングメモリに記録し、ステップS36(YES側)へ移行する。一方、判定部22は、閾値ε以上となる標準偏差の差分の絶対値が無かった場合、注目画素(i,j)の色構造は色境界でないと判定し、注目画素を軸上色収差の補正処理の対象画素としてステップS37(NO側)へ移行する。
【0082】
ステップS36:判定部22は、一の実施形態のステップS16と同様に、ステップS35において色境界と判定された注目画素(i,j)の色構造がパープルフリンジであるか否かを判定する。
【0083】
判定部22は、パープルフリンジ領域内の場合、注目画素の色構造はパープルフリンジと判定し、その注目画素の画素位置をワーキングメモリ(不図示)に記録する。判定部22は、その注目画素を軸上色収差の補正処理の対象画素として、ステップS37(YES側)へ移行する。一方、パープルフリンジ領域外の場合、注目画素の色構造は色境界と判定し、注目画素に対する軸上色収差の補正処理を行わず、ステップS40(NO側)へ移行する。
【0084】
ステップS37:決定部23は、一の実施形態のステップS17と同様に、ステップS34において求めた各色差面のぼかし係数α、α、αrbに基づいて、注目画素(i,j)における鮮鋭度が最も高い色成分を決定する。決定部23は、注目画素(i,j)において、最も鮮鋭度の高い色成分が決定できた場合、ステップS38(YES側)へ移行する。
【0085】
一方、決定部23は、注目画素(i,j)における最も鮮鋭度の高い色成分を1つに決定することができなかった場合、注目画素に対する軸上色収差の補正処理を行わず、ステップS40(NO側)へ移行する。
【0086】
ステップS38:CPU1の調整部24は、一の実施形態のステップS18と同様に、ステップS37において、決定された色成分に基づいて、注目画素(i,j)の色成分間の鮮鋭度を調整し軸上色収差を補正する。
【0087】
ステップS39:CPU1の色差補正部25は、一の実施形態のステップS19と同様に、式(14)を用いて、軸上色収差の補正処理が施された注目画素の各色成分の画素値に対して色差補正を行う。
【0088】
ステップS40:CPU1は、対象画像の全ての画素について処理が終了したか否かを判定する。CPU1は、全ての画素について処理が終了していないと判定した場合、ステップS32(NO側)へ移行し、次の画素を注目画素として、ステップS32からステップS39の処理を行う。一方、CPU1は、全ての画素について処理が終了したと判定した場合、軸上色収差が補正された画像を、記憶部2に記録したり出力装置30に表示したりする。そして、CPU1は、一連の処理を終了する。
【0089】
このように、本実施形態では、各色差面の標準偏差の差分に基づいて、各画素位置における色構造を判定することにより、軸上色収差の補正を確度高く行うことができる。
【0090】
また、色境界と判定された注目画素に対する軸上色収差の補正処理を行わないことにより、変色や色抜けの発生を抑制することができる。
【0091】
さらに、注目画素の補正後の画素値に対して、色差空間において補正前の画素値が有した色差成分の向きに補正することにより、変色や色抜けを抑制しつつ軸上色収差の補正をより精度よく行うことができる。
《実施形態の補足事項》
(1)本発明の画像処理装置は、画像処理プログラムをコンピュータ10に実行させることで実現させたが、本発明はこれに限定されない。本発明に係る画像処理装置における処理をコンピュータ10で実現するためのプログラムおよびそれを記録した媒体に対しても適用可能である。
【0092】
また、本発明の画像処理プログラムを有した図7に示すようなデジタルカメラに対しても適用可能である。なお、図7に示すデジタルカメラにおいて、撮像素子102と、撮像素子102から入力される画像信号のA/D変換や、色補間処理等の信号処理を行うデジタルフロントエンド回路のDFE103とが、撮像部を構成することが好ましい。
【0093】
また、デジタルカメラを本発明の画像処理装置として動作される場合、CPU104は、画像平滑部20、演算部21、判定部22、決定部23、調整部24、色差補正部25の各処理をソフトウエア的に実現してもよいし、ASICを用いてこれらの各処理をハードウエア的に実現してもよい。
【0094】
(2)上記実施形態では、画像平滑部20が、複数のガウシアンフィルタを用いて、対象画像からN個の平滑画像を生成したが、本発明はこれに限定されない。例えば、図7に示すようなデジタルカメラの撮像レンズ101等の光学系の点広がり関数(PSF)が得られる場合、画像平滑部20は、ガウシアンフィルタを用いる代わりに、PSFを用いて平滑画像を生成してもよい。
【0095】
(3)上記実施形態では、R成分とG成分との色差面Cr、B成分とG成分との色差面Cb、R成分とB成分との色差面Crbに基づいて、対象画像の軸上色収差の補正を行ったが、本発明はこれに限定されない。例えば、3つの色差面のうち2つの色差面に基づいて、対象画像の軸上色収差の補正を行ってもよい。これにより、補正処理の高速化を図ることができる。
【0096】
(4)上記実施形態では、対象画像は、各画素においてR成分、G成分、B成分の画素値を有するとしたが、本発明はこれに限定されない。例えば、対象画像の各画素において、2つまたは4つ以上の色成分を有してもよい。
【0097】
また、図7に示すデジタルカメラの撮像素子102の受光面の各画素子に、R、G、Bのカラーフィルタが公知のベイヤ配列に従って配置されている場合、その撮像素子102によって撮像されたRAW画像に対しても、本発明は適用可能である。
【0098】
(5)上記実施形態では、色差補正部25は、軸上色収差の補正処理が施された注目画素全てに対して色差補正を行ったが、本発明これに限定されず、注目画素の補正後の色差成分の大きさL’の値が、補正前の色差成分の大きさLの値より小さい場合、色差補正を行わないようにしてもよい。
【0099】
また、色差補正部25は、補正後の色差成分の大きさL’が、補正前の色差成分の大きさL(所定の大きさ)より大きい場合、図8および次式(21)で定義される補正出力率φ(L’)を用いて、式(14)を変形した次式(22)に基づき補正後の色差成分の出力率を小さくしてもよい。
【0100】
【数5】

これにより、変色の発生をより正確に抑制することが可能となる。なお、関数clip(V,U,U)は、パラメータVの値が下限値Uと上限値Uとの範囲外の値の場合、下限値Uまたは上限値Uにクリップする。なお、係数WVは、補正出力率φ(L’)を上限値U(=1)から下限値U(=0)に変化させる幅を示し、本実施形態では、255階調の画像の場合、例えば、係数WV=5〜10の値とする。ただし、係数WVの値は、要求される変色の抑制の度合い等に応じて適宜設定されることが好ましい。
【0101】
(6)上記実施形態では、注目画素(i,j)の色構造が色境界の場合、軸上色収差の補正処理を行わないとしたが、本発明はこれに限定されない。例えば、色境界に位置する注目画素(i,j)に対して、ステップS17からステップS19またはステップS37からステップS39の処理を行ってもよい。ただし、調整部24は、ステップS18またはステップS38において、式(12)および(13)の代わりに次式(23)および(24)を用いて行うのが好ましい。この場合、ステップS19またはステップS39において、色差補正部25は、色境界と判定された注目画素に対しても色差補正を行うのが好ましい。
R’(i,j)=R0(i,j)+γ×(G0(i,j)−G’(i,j))…(23)
B’(i,j)=B0(i,j)+γ×(G0(i,j)−G”(i,j))…(24)
ここで、係数γは、0.1〜0.2以下の値とし、色境界による影響をあまり受けないようにするのが好ましい。なお、係数γの値は、注目画素(i,j)でのそれぞれのぼかし指標における各色差面の標準偏差の値または標準偏差の差分の絶対値等に応じて決定されるのが好ましい。また、係数γは色成分ごとに設定されてもよい。
【0102】
これにより、特に、パープルフリンジ領域の境界付近における補正処理の方法の不連続性による影響を回避し、画像の階調の空間的な連続性を保つことができる。なお、調整部24は、画像の階調の空間的な連続性を保つために、公知の平滑化処理を適用してもよい。
【0103】
(7)上記実施形態では、判定部22が、注目画素(i,j)の色構造が色境界か否か判定を、1つの閾値εを用いて行ったが、本発明はこれに限定されない。例えば、判定部22は、2つの閾値εおよびε(ε<ε)を用いて行ってもよい。この場合、式(12)および(13)に代えて、式(23)および(24)を用いるのが好ましい。
【0104】
例えば、標準偏差の値または標準偏差の差分の絶対値が閾値ε以下で、判定部22により注目画素の色構造が色境界でないと判定された場合、調整部24は、係数γ=1と設定して、注目画素(i,j)に対する軸上色収差の補正処理を行う。一方、標準偏差の値または標準偏差の差分の絶対値が閾値ε以上で、注目画素の色構造が色境界と判定された場合、調整部24は、係数γ=0または0.1〜0.2以下の小さな値に設定し、注目画素(i,j)に対する軸上色収差の補正処理を行う。標準偏差の値または標準偏差の差分の絶対値が閾値εから閾値εの間の場合、判定部22は、注目画素の色構造を不定と判定し、調整部24は、例えば、標準偏差の値または差分の絶対値の大きさと閾値εおよびεとの大きさに応じて、係数γを1から0の間の値に設定し、注目画素に対する軸上色収差の補正処理を行う。なお、この場合、ステップS19またはステップS39において、色差補正部25は、全ての注目画素に対して色差補正処理を行うのが好ましい。
【0105】
これにより、特に、パープルフリンジ領域の境界付近における補正処理の方法の不連続性による影響を回避し、画像の階調の空間的な連続性を保つことができる。なお、調整部24は、画像の階調の空間的な連続性を保つために、公知の平滑化処理を適用してもよい。
【0106】
(8)上記実施形態では、判定部22が、注目画素(i,j)およびその周辺画素の各色成分の画素値の分布に基づいてパープルフリンジ領域を求め、注目画素(i,j)の色構造がパープルフリンジであるか否かを判定したが、本発明はこれに限定されない。例えば、判定部22は、パープルフリンジ領域を求めるにあたり、最初に、対象画像の輝度成分に基づいて、輝度成分が飽和している領域を飽和領域として求めてもよい。
【0107】
ただし、求められた飽和領域にはショットノイズ等による数画素程度の大きさの領域も含まれる。そこで、判定部22は、例えば、公知の手法を用い、求められたそれぞれの飽和領域から1画素幅分程度の周辺領域を削除して飽和領域を縮小する。これにより、ショットノイズ等による数画素程度の大きさの飽和領域は除去される。そして、判定部22は、縮小した飽和領域に、例えば、1画素幅分程度の周辺領域を付加して、縮小した飽和領域を拡張する。判定部22は、最終的に飽和領域に幅β程度の領域が付加されるまで、この拡張処理を複数回行い、パープルフリンジ領域を求める。
【0108】
なお、判定部22は、ショットノイズ等による数画素程度の大きさの飽和領域を除去するために、公知のノイズ除去処理を適用してもよい。
【0109】
(9)上記一の実施形態では、演算部21が、式(1)−(6)を用いて、色差面Cr、Cb、Crbを、異なる色成分の画素値の差分の絶対値として求めたが、本発明はこれに限定されず、色差面Cr、Cb、Crbは、単に、異なる色成分の画素値の差分の値であってもよいし、その差分を2乗したものであってもよい。
【0110】
(10)上記他の実施形態では、演算部21が、式(15)−(20)を用いて、色差面Cr、Cb、Crbを、異なる色成分の画素値の差分として求めたが、本発明はこれに限定されず、色差面Cr、Cb、Crbは、異なる色成分の画素値の差分の絶対値であってもよいし、その差分を2乗したものであってもよい。
【0111】
以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図する。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。
【符号の説明】
【0112】
1 CPU、2 記憶部、3 入出力I/F、4 バス、10 コンピュータ、20 画像平滑部、21 演算部、22 判定部、23 決定部、24 調整部、25 色差補正部、30 出力装置、40 入力装置

【特許請求の範囲】
【請求項1】
複数の色成分の画素値を有する対象画像を、異なる複数の平滑化の度合いで平滑化し、複数の平滑画像を生成する画像平滑手段と、
前記対象画像の各画素位置において、前記対象画像の所定の色成分の画素値と前記平滑画像の前記所定の色成分とは異なる色成分の画素値との差分である色差を求め、前記平滑の度合いに応じた前記色差の分散を算出する演算手段と、
前記色差の分散に基づいて、前記各画素位置が色境界か否かを判定する判定手段と、
前記色境界の判定が偽と判定された画素位置の画素を対象画素として、前記色差の分散に基づいて前記各色成分の鮮鋭度を比較し、前記鮮鋭度が最も高い色成分を決定する決定手段と、
前記鮮鋭度が最も高い色成分に基づいて、前記対象画素の少なくとも1つの前記色成分の鮮鋭度を調整する調整手段と、
を備えることを特徴とする画像処理装置。
【請求項2】
請求項1に記載の画像処理装置において、
前記演算手段は、前記色差を前記差分の絶対値として求めることを特徴とする画像処理装置。
【請求項3】
請求項1または請求項2に記載の画像処理装置において、
前記判定手段は、前記各色成分の画素値の分布に基づいて、前記色境界が飽和領域周辺の濃度差による色にじみか否かを判定し、
前記決定手段は、前記色境界が前記色にじみと判定された場合、前記色境界と判定された画素位置の画素を前記対象画素とする
ことを特徴とする画像処理装置。
【請求項4】
請求項3に記載の画像処理装置において、
前記鮮鋭度が調整された前記対象画素の画素値を、色差空間において、前記鮮鋭度の調整前の画素値の色差の向きと同じになるように補正する色差補正部を備えることを特徴とする画像処理装置。
【請求項5】
請求項4に記載の画像処理装置において、
前記色差補正部は、前記色差空間において、前記鮮鋭度が調整された対象画素の画素値の色差成分の大きさが所定の大きさ以上の場合、前記鮮鋭度が調整された対象画素の画素値の色差成分の大きさを小さくすることを特徴とする画像表示装置。
【請求項6】
請求項1ないし請求項5のいずれか1項に記載の画像処理装置において、
前記演算手段は、前記画素位置を中心とする領域にある、前記対象画像の所定の色成分の画素値と前記平滑画像の前記所定の色成分とは異なる色成分の画素値とを用い、前記色差の分散を算出する
ことを特徴とする画像処理装置。
【請求項7】
請求項1ないし請求項6のいずれか1項に記載の画像処理装置において、
前記決定手段は、前記対象画素において、前記色差ごとに最小の分散値を与える前記平滑画像の色成分を前記鮮鋭度が高い色成分と決定し、決定された前記色成分の鮮鋭度を比較して前記鮮鋭度が最も高い色成分を決定することを特徴とする画像処理装置。
【請求項8】
請求項7に記載の画像処理装置において、
前記演算手段は、前記最小の分散値を内挿法に基づいて決定することを特徴とする画像処理装置。
【請求項9】
被写体を撮像して、複数の色成分の画素値を有する対象画像を生成する撮像手段と、
請求項1ないし請求項8のいずれか1項に記載の画像処理装置と、
を備えることを特徴とする撮像装置。
【請求項10】
複数の色成分の画素値を有する対象画像を読み込む入力手順、
前記対象画像を、異なる複数の平滑化の度合いで平滑化し、複数の平滑画像を生成する画像平滑手順、
前記対象画像の各画素位置において、前記対象画像の所定の色成分の画素値と前記平滑画像の前記所定の色成分とは異なる色成分の画素値との差分である色差を求め、前記平滑の度合いに応じた前記色差の分散を算出する演算手順、
前記色差の分散に基づいて、前記各画素位置が色境界か否かを判定する判定手順、
前記色境界の判定が偽と判定された画素位置の画素を対象画素として、前記色差の分散に基づいて前記各色成分の鮮鋭度を比較し、前記鮮鋭度が最も高い色成分を決定する決定手順、
前記鮮鋭度が最も高い色成分に基づいて、前記対象画素の少なくとも1つの前記色成分の鮮鋭度を調整する調整手順、
をコンピュータに実行させることを特徴とする画像処理プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−199900(P2012−199900A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【出願番号】特願2011−145919(P2011−145919)
【出願日】平成23年6月30日(2011.6.30)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】