説明

画像処理装置

【課題】利便性を向上しつつ神経線維の三次元位置の視認容易性を向上させることができる画像処理装置を提供する。
【解決手段】核磁気共鳴画像法にて撮像された画像を用いて三次元画像モデルを構築し、三次元画像モデルが有する形状情報を二次元平面上に投影した観察用画像を生成する画像処理装置1であって、画像に基づいて拡散テンソル画像を生成する拡散テンソル画像生成部12と、拡散テンソル画像から得られる拡散の異方性に基づいて、神経線維の延在方向を追跡し神経線維の三次元位置を取得する神経線維追跡部13と、神経線維追跡部13により追跡された神経線維、及び画像内の生体組織をそれぞれ異なる三次元表示手法で可視化させた観察用画像を生成する観察用画像生成部14と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置に関する。
【背景技術】
【0002】
従来の画像処理装置として、生体の神経線維(白質繊維)の延在方向を追跡して表示するものが知られている(例えば、特許文献1,2参照。)。特許文献1,2記載の画像処理装置は、核磁気共鳴画像法(MRI:Magnetic Resonance Imaging)装置に接続され、MRI装置によって撮像された拡散強調画像(DWI:Diffusion-Weighted Imaging)を用いて神経線維の走行を解析し、画面表示するものである。これらの装置では、神経線維の長手方向へは水分子が拡散しやすく、神経線維の長手方向に垂直な方向へは水分子が拡散しにくいという水分子の拡散異方性に着目して、神経線維の延在方向を追跡する。
【0003】
具体的には、最初に、MRI装置にて勾配磁場(MPG:Motion Probing Gradients)の方向を変更して撮像された複数のDWIを入力する。各DWIは、勾配磁場の印加方向における水分子の拡散を表示している。方向の異なる各DWIを用いて、始点となるボクセルにおける拡散テンソルを算出する。そして、拡散テンソルを対角化し、最も大きい固有値に対応した固有ベクトルの方向を取得する。次に、算出された固有ベクトルの方向に沿った隣接するボクセルにおいてテンソル解析を行い、当該ボクセルにおける最も大きい固有値に対応した固有ベクトルの方向を取得する。このように、ボクセルにおける拡散テンソルの最大固有値に対応した固有ベクトルの方向が、神経線維の延在方向と一致しているとし、固有ベクトルの方向を辿ることで神経線維の延在方向を追跡する。そして、追跡された神経線維を画面に表示する。
【0004】
追跡された神経線維の表示手法として、各ボクセルにおける拡散異方性を反映させた不透明度で神経線維を表示する手法が開示されている(例えば、特許文献3参照。)。また、追跡された神経線維の固有ベクトル及び固有値に基づいてハイパーストリームライン表現により表示する手法が開示されている(例えば、特許文献4参照。)。特許文献4記載の手法では、ハイパーストリームライン表現による神経線維を、異方性マップ、静止画像又はDWI等の背景画像に重畳させて表示する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第4248822号公報
【特許文献2】特許第4399353号公報
【特許文献3】特開2008−220950号公報
【特許文献4】特開2005−525206号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
神経線維を追跡・表示する画像処理装置は、近年、臨床応用されており、診断ツールの一つとして採用されている。このため、簡単な操作で一見して神経線維の三次元位置を把握することができる装置が望まれている。そこで、本発明は、利便性を向上しつつ神経線維の三次元位置の視認容易性を向上させることができる画像処理装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
すなわち、本発明に係る画像処理装置は、核磁気共鳴画像法にて撮像された画像を用いて三次元表示された観察用画像を生成する画像処理装置であって、前記画像に基づいて拡散テンソル画像を生成する拡散テンソル画像生成手段と、前記拡散テンソル画像から得られる拡散の異方性に基づいて、前記神経線維の延在方向を追跡し前記神経線維の三次元位置を取得する追跡手段と、前記追跡手段により追跡された前記神経線維、及び前記画像内の生体組織をそれぞれ異なる三次元表示手法で可視化させた前記観察用画像を生成する観察用画像生成手段と、を備えて構成される。なお、生体組織とは、例えば脳実質、脳腫瘍、神経線維、内臓、器官及び骨組織等であり、核磁気共鳴画像法により撮像可能な人体を構成する部位を意味する。
【0008】
本発明に係る画像処理装置によれば、観察用画像生成手段により、追跡手段によって追跡された神経線維と画像内の生体組織とをそれぞれ異なる三次元表示手法で可視化させた観察用画像を生成することができる。このように、追跡された神経線維と他の生体組織とがユーザの操作を介することなくそれぞれ異なる三次元表示手法で可視化されることにより、追跡された神経線維と他の生体組織との位置関係をユーザに対して直感的に理解させることが可能となる。よって、利便性を向上しつつ神経線維の走行位置の視認容易性を向上させることができる。
【0009】
ここで、前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維をサーフェイスレンダリング法でレンダリングし、前記画像内の前記生体組織をボリュームレンダリング法でレンダリングすることが好適である。
【0010】
このように構成することで、例えば神経線維の表面に色を付与して周囲に存在する生体組織とは明確に区別して表示することができるとともに、神経線維の周囲に存在する生体組織を透明感を持たせた状態で可視化させることが可能となる。このため、ユーザに対して神経線維の三次元位置を明確に識別させつつ、神経線維と周囲の生体組織との位置関係をユーザに対して適切に把握させることができる。また、神経線維はサーフェイスレンダリング法でレンダリングされるため、例えば神経線維の色彩に拡散テンソルのスカラー量を反映させることもできる。
【0011】
また、前記観察用画像生成手段は、サーフェイスレンダリング法でレンダリングされた前記神経線維の三次元位置と、ボリュームレンダリング法でレンダリングされた前記生体組織を表示するボクセルのうち所定値以上の不透明度を有するボクセルの三次元位置とを比較して、サーフェイスレンダリング法でレンダリングされた前記神経線維とボリュームレンダリング法でレンダリングされた前記生体組織との重畳位置を算出してもよい。
【0012】
このように構成することで、異なる三次元表示手法で表示された神経線維と生体組織とを適切な位置で重畳させることができる。
【0013】
また、前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維をサーフェイスレンダリング法でレンダリングし、前記生体組織の所定方向に沿った二次元断面画像をサーフェイスレンダリング法とは異なる三次元表示手法で可視化させ、前記神経線維と前記二次元断面画像とを重畳させてもよい。
【0014】
このように構成することで、追跡された神経線維を生体組織の二次元断面画像から伸びるように立体視された状態で三次元的に可視化することができる。このため、神経線維と周囲の生体組織との位置関係をユーザに対して適切に把握させることができる。
【0015】
また、前記画像には、当該画像の撮像条件及び撮像装置もしくは前記撮像装置の製造元に関する情報が付与されており、画像処理装置は、前記画像の前記撮像装置又は前記製造元に関する情報を取得する機器情報取得手段と、前記撮像装置もしくは前記製造元と前記撮像条件のデータ格納位置とを対応させたテーブルを参照し、前記撮像装置又は前記製造元に基づいて前記画像の前記撮像条件を取得する撮像条件取得手段と、を更に備え、前記拡散テンソル画像生成手段は、前記撮像条件に基づいて拡散テンソル画像を生成することが好適である。
【0016】
このように構成することで、機器情報取得手段により、画像の撮像装置又は撮像装置の製造元に関する情報が取得され、撮像条件取得手段により、撮像装置もしくは製造元と画像の撮像条件のデータ格納位置とを対応させたテーブルが参照されて、撮像装置又は製造元に基づいて画像に付与された撮像条件が取得される。このため、例えば、異なる撮像装置等により撮像された画像が混在する場合であっても、ユーザの操作を必要とせずに自動的に拡散テンソル解析を行うことができる。
【0017】
また、画像処理装置は、ユーザ操作により指定された前記神経線維の始点を定める始点領域を入力する始点領域入力手段を更に備え、前記追跡手段は、前記始点領域に含まれるボクセルから前記神経線維の延在方向を追跡してもよい。このように構成することで、ユーザにより注目された領域から開始する神経線維を適切に可視化することができる。
【0018】
また、前記追跡手段は、前記始点領域に含まれる前記ボクセルを間引きし、間引き後のボクセルを始点として神経線維の延在方向を追跡してもよい。このように構成することで、ユーザによって広い始点領域が選択された場合であっても、視認できる神経線維を適切な量で表示できるとともに、神経線維を迅速に可視化することが可能となる。
【0019】
また、画像処理装置は、ユーザ操作により指定された前記神経線維の終端を定める終端領域を入力する終端領域入力手段を更に備え、前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維のうち前記終端領域を通過する前記神経線維のみを可視化させた前記観察用画像を生成してもよい。このように構成することで、ユーザにより注目された領域で終了する神経線維を適切に可視化することができる。
【0020】
また、画像処理装置は、ユーザ操作により指定された回避領域を入力する回避領域入力手段を更に備え、前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維のうち前記回避領域を通過しない前記神経線維のみを可視化させた前記観察用画像を生成してもよい。このように構成することで、ユーザにとって不要な神経線維を可視化することを回避することができる。
【0021】
また、画像処理装置は、ユーザ操作により指定されたテンソル解析手法を入力する解析手法入力手段を更に備え、前記拡散テンソル画像生成手段は、前記テンソル解析手法に基づいて前記拡散テンソル画像を生成することが好適である。このように構成することで、テンソル解析手法がユーザによって選択されるため、ユーザが必要とする情報に応じて適切な神経線維の追跡を行うことができる。
【0022】
さらに、前記解析手法入力手段は、拡散の異方性を1つのテンソルを用いて1方向として表現する1テンソル解析手法、又は拡散の異方性を2つのテンソルを用いて2方向として表現する2テンソル解析手法を、ユーザ操作により指定されたテンソル解析手法として入力することが好適である。
【0023】
このように構成することで、処理時間は少ないが交叉神経の追跡が困難となる1テンソル解析手法と、処理時間は多くかかるが交叉神経の追跡が可能な2テンソル解析手法とを、必要とする情報に応じてユーザが選択することができるため、適切に神経線維の追跡を行うことができる。
【0024】
また、前記拡散テンソル画像生成手段は、基準となる拡散強調画像S、勾配磁場の印加方向g,勾配磁場の影響の強さb、第1の拡散テンソルD、第2の拡散テンソルD、第1の拡散テンソルDの重みfを用いて、ある方向の傾斜磁場を印可した拡散強調画像Sを、以下の数式で定義してもよい。
【数1】

このように、拡散の2つの方向を用いて前記拡散テンソル画像を生成してもよい。
【0025】
さらに、前記拡散テンソル画像生成手段は、1テンソル解析手法により得られた第1成分の固有ベクトル及び第2成分の固有ベクトルで形成される平面内に、2テンソルも拘束されていると仮定して、前記第1の拡散テンソルD、前記第2の拡散テンソルDを求めてもよい。このように構成することで、第1の拡散テンソルD、及び第2の拡散テンソルDを単純化して表現することができるので、計算コストを低減させることが可能となる。
【発明の効果】
【0026】
本発明によれば、利便性を向上しつつ神経線維の走行位置の視認容易性を向上させることができる。
【図面の簡単な説明】
【0027】
【図1】実施形態に係る画像処理装置の構成概要図である。
【図2】図1に示す画像処理装置の追跡処理を説明する概要図である。
【図3】図1に示す画像処理装置のデータ入力・解析処理を示すフローチャートである。
【図4】タグ情報テーブルの一例である。
【図5】図1に示す画像処理装置の神経線維追跡処理を示すフローチャートである。
【図6】図1に示す画像処理装置の観察用画像生成処理を示すフローチャートである。
【図7】サーフェイスレンダリング及びボリュームレンダリングを説明する概要図である。
【発明を実施するための形態】
【0028】
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
【0029】
本実施形態に係る画像処理装置は、例えばMRI装置により撮像された画像を用いて今後の病状についての医学的な見通しを行う場合や、手術のシミュレーション等を行う場合に好適に採用されるものである。
【0030】
図1は、本実施形態に係る画像処理装置の構成概要図である。図1に示す画像処理装置1は、物理的には、CPU、ROM及びRAM等の主記憶装置、ハードディスク等の補助記憶装置等を含む通常のコンピュータシステムとして構成される。また、画像処理装置1は、機能的には、画像入力部10、ユーザ操作入力部(始点領域入力手段、終端領域入力手段、回避領域入力手段、解析手法入力手段)11、拡散テンソル画像生成部(機器情報取得手段、撮像条件取得手段、拡散テンソル画像生成手段)12、神経線維追跡部(追跡手段)13及び観察用画像生成部(観察用画像生成手段)14を備えている。
【0031】
画像入力部10は、画像データベース20を参照し、画像データベース20に格納された画像を入力可能に構成されている。画像データベース20には、MRI装置で撮像された複数の画像が格納されている。例えば、生体組織に含まれるプロトンの縦緩和時間が強調されたT1強調画像、生体組織に含まれるプロトンの横緩和時間が強調されたT2強調画像、及び、所定の方向から印加された一対の勾配磁場によって生体組織に含まれるプロトンに生じたスピン位相の乱れが画像化されたDWI等が格納されている。
【0032】
画像データベース20に格納された画像は、例えばDICOM(Digital Imaging and Communication in Medicine)規格に準拠した形式の画像データである。すなわち、各画像には複数のデータ要素が付与されており、これらのデータ要素はタグ情報で識別可能に構成されている。DICOM規格においては、所定のタグで示すデータ格納位置に、当該画像を撮像したMRI装置名、型番又は製造元メーカー名等を格納する。なお、DWIの撮像条件については、MRI装置又は製造元メーカーごとに異なる位置に格納される。撮像条件には、例えば、MPGの傾斜方向(Gradient Orientation)、傾斜方向の数、及びMPGの影響の強さを示すb値が含まれている。
【0033】
画像入力部10は、観察対象となる生体組織が撮像された複数のDWI及びT2強調画像を入力する機能を有している。そして、画像入力部10は、入力した画像を拡散テンソル画像生成部12へ出力する機能を有している。
【0034】
ユーザ操作入力部11は、ユーザ操作を入力する機能を有している。例えば、ユーザ操作入力部11は、マウスやキーボード等のユーザインターフェイスと接続されている。そして、ユーザ操作入力部11は、ユーザ操作によって指定された後述する始点領域、終端領域、回避領域、テンソル解析手法、マウスのポイント位置等を入力する機能を有している。また、ユーザ操作入力部11は、入力された情報を拡散テンソル画像生成部12、神経線維追跡部13及び観察用画像生成部14へ出力する機能を有している。
【0035】
拡散テンソル画像生成部12は、複数のDWI及びT2強調画像を用いて拡散テンソル解析を行い、拡散テンソル画像(DTI:Diffusion Tensor Imaging)を生成する機能を有している。拡散テンソル画像生成部12は、拡散テンソル解析を行うにあたり、DWIそれぞれに付与された撮像条件を取得する機能を有している。DWIそれぞれの撮像条件を取得するために、例えば、拡散テンソル画像生成部12は、MRI装置名又は製造元メーカー名が格納されているタグに基づいて、解析対象のDWIを撮像したMRI装置名又は当該装置の製造元メーカー名を取得可能に構成されている。そして、拡散テンソル画像生成部12は、MRI装置名又は製造元メーカー名に基づいて撮像条件のデータ格納位置を特定するために、タグ情報テーブル21を参照可能に構成されている。タグ情報テーブル21には、タグと当該タグが示す意味が対応付けされたテーブルが、MRI装置又は当該MRI装置の製造元メーカーごとに関連付けされて格納されている。拡散テンソル画像生成部12は、対象のDWIの撮像条件であるMPGの傾斜方向、傾斜方向の数及びb値を取得して、拡散テンソル解析を行う機能を有している。
【0036】
拡散テンソル画像生成部12は、複数のテンソル解析手法から選択されたテンソル解析手法でDTIを生成可能に構成されている。拡散テンソル画像生成部12は、例えば、ユーザ操作入力部11を介してユーザにより選択されたテンソル解析手法でDTIを生成可能に構成されている。例えば、拡散テンソル画像生成部12は、1テンソル解析手法又は2テンソル解析手法を実行可能に構成されている。
【0037】
ここで、1テンソル解析手法及び2テンソル解析手法について概要を説明する。1テンソル解析手法は、拡散の異方性を1つのテンソルを用いて1方向として表現するものであり、2テンソル解析手法は、拡散の異方性を2つのテンソルを用いて2方向として表現するものである。
【0038】
1テンソル解析手法は、1つのボクセル内における水の拡散が1つの楕円体であると仮定して解析する手法である。あるMPGの印加方向g=(g,g,gにおいて得られる信号値S=S(x,y,z)は以下の式1で表すことができる。
【数2】

ここで、SはベースラインDWIであり、DWIの一部としてMRIスキャナから提供される既知の値である。また、g,bもスキャナで設定、ファイルフォルダを通して提供される既知の値である。DTIテンソル画像を生成するには、異なる方向の傾斜磁場を印可して得られる複数の画像Sから、行列式を生成し、未知の値Dを数値演算で求める。数値演算には線形方程式の解を求める手法を用いる。未知の値Dは線形方程式を求める数値演算法で求める事ができる。調査点ごとにテンソル値の内DXX、DXY、DXZ、DYY、DYZ、DZZを計算する。少なくとも6方向のMPGによるDWI及びT2強調画像を用いて任意の位置での拡散テンソルを決定し、DTIを生成することができる。
【0039】
次に、2テンソル解析手法の概要を説明する。ある方向の傾斜磁場を印可したDWI画像Sは以下の式2の様に2テンソルD,Dで定義される。
【数3】

ここで、Sは基準となるベースラインDWI(基準拡散強調画像)であり、DWIの一部としてMRIスキャナから提供される既知の値である。また、g,bもスキャナで設定、ファイルフォルダを通して提供される既知の値である。DTIテンソル画像を生成するには、異なる方向の傾斜磁場を印可して得られる複数の画像Sから、行列式を生成し、これを数値演算で求める。数値演算には非線形方程式の解を求める手法を用いる。求めるべき未知の変数はこの段階で第1の拡散テンソルD,第2の拡散テンソルD,第1の拡散テンソルの重みfである。1テンソルのDWIの計算法を用いて、第1成分の固有ベクトル及び第2成分の固有ベクトルで形成される平面内に、2テンソルも拘束されていると仮定する。この場合、D,Dは以下の様に単純化される。λはシングルテンソル画像の生成時に求められるので、未知の値は7個のd値である。これをLevenberg-Marquardt法等の手法で求めると二つのテンソルを求めることができる。
【数4】

【0040】
拡散テンソル画像生成部12は、上述した1テンソル解析手法及び2テンソル解析手法の何れかの手法を用いてDTIを生成する機能を有している。そして、拡散テンソル画像生成部12は、DTIを神経線維追跡部13へ出力する機能を有している。また、拡散テンソル画像生成部12は、DTIのスカラー量を算出して観察用画像生成部14へ出力する機能を有している。スカラー量としては、例えば、拡散テンソルの固有値、見かけの拡散係数(ADC:Apparent Diffusion coefficient)、拡散の異方性の指標であるFA(Fractional Anisotropy)等である。さらに、拡散テンソル画像生成部12は、DTI生成後において、ユーザ操作入力部11により入力されたb値を用いて再度DTIを生成する機能を有してもよい。b値の設定時期を柔軟に行える構成とすることで、利便性を向上させることができる。
【0041】
神経線維追跡部13は、DTIに基づいて神経線維の延在方向を追跡する機能を有している。まず、1テンソル解析手法を用いたDTIに基づいて神経線維の延在方向を追跡する機能を説明する。神経線維追跡部13は、あるボクセルにおいて、1テンソル解析手法で得られた拡散テンソルを対角化して得られる最大の固有値に対応した固有ベクトル(拡散テンソルの主方向)を神経線維の延在方向とする。次に、演算対象のボクセルを、当該ボクセルから延在方向に沿って隣接するボクセルに変更する。そして、変更後のボクセルにおいて、上述した拡散テンソルの主方向を取得する。このように、拡散テンソルの主方向の決定処理と演算対象のボクセルの変更を繰り返し行うことにより神経線維を追跡する。なお、神経線維追跡部13は、終端条件を満たした場合には、神経線維の追跡を終了する。終端条件としては、例えば、拡散の異方性の指標であるFAの大きさが所定値以下となった場合、元画像の信号の大きさが所定値以下となった場合、もしくは神経線維の屈曲度合いが所定角度以下となった場合等又はこれらの組合せが用いられる。
【0042】
次に、2テンソル解析手法を用いたDTIに基づいて神経線維の延在方向を追跡する機能を説明する。例えば、神経線維追跡部13は、1テンソル解析手法と同様に、2テンソル解析手法で得られた2つの拡散テンソルをそれぞれ対角化して得られる最大の固有値に対応した固有ベクトル(拡散テンソルの主方向)を神経線維の延在方向とする。そして、延在方向に隣接するボクセルにおいて、拡散テンソルの主方向を決定する。ここで、1テンソル解析手法では、2つの神経線維が交叉する場合、当該ボクセルにおける主方向が一方向となるため、交叉部分以降の追跡をすることが困難である。これに対して、2テンソル解析手法では、2つの拡散テンソルを用いるため、1つのボクセル内における2方向の拡散を解析することができる。このように、ボクセルの拡散方向を2つの方向で定義することにより、2つの神経線維が交叉する部分においても適切な追跡を行うことが可能となる。終端条件等は、1テンソル解析手法を用いたDTIに基づいて追跡する場合と同様である。
【0043】
神経線維追跡部13の一例を、図2を用いて説明する。図2は、神経線維の追跡処理を説明する概要図である。図2では、追跡する点に符号を付して示しており、r(s)をs番目の点、次の点をr(s)としている。点r(s)から点r(s)における第1主成分の固有ベクトル分だけ移動した点が点r(s)であるとして、神経線維の追跡を行う。すなわち、以下の式4が成立する。
【数5】

ここで、係数αは0〜1の範囲の数値であって、以下の式5で算出することができる。
【数6】

r´は1次微分であるが、精度に応じて2次微分、4次微分を採用してもよい。式5で求めたαを用いてr2,r3と追跡を順次連続的に行う。
【0044】
なお、神経線維追跡部13は、上記の第1主成分ベクトル(principal eigenvector)を用いた追跡手法の他に、第2主成分(medium eigenvector)を用いる方法又は第3主成分(minior eigenvector)を用いる方法を採用することができる。
【0045】
また、神経線維追跡部13は、ユーザ操作入力部11により出力された始点領域を入力し、追跡を開始するボクセルを決定する機能を有している。始点領域は、神経線維の追跡を開始する領域である。ここで、始点領域は二次元的な領域であってもよいし、三次元的な領域であってもよい。神経線維追跡部13は、例えば、二次元表示されたDWI上の始点領域を入力し、始点領域内で規則的な格子点を決定し、格子点に対応するボクセルを、追跡を開始するボクセルとして決定する。また、神経線維追跡部13は、例えば始点領域内のボクセルの数が所定値以上である場合には、始点領域内のボクセルを間引きし、間引き後のボクセルを始点として神経線維の延在方向を追跡する機能を有していてもよい。例えば、神経線維追跡部13は、始点領域内で決定した規則的な格子点を所定間隔で削除し、あるいは所定間隔でサンプリングすることで間引き処理を実行する。
【0046】
また、神経線維追跡部13は、ユーザ操作入力部11により出力された終端領域を入力し、追跡中の神経線維が終端領域を通過する場合には、通過時点で神経線維の追跡を終了し神経線維の終端とする機能を有していてもよい。終端領域は、神経線維の追跡を終了する領域である。また、神経線維追跡部13は、ユーザ操作入力部11により出力された回避領域を入力し、追跡中の神経線維が回避領域を通過する場合には、回避領域の通過時点で神経線維の追跡を終了する機能を有していてもよい。回避領域は、当該領域を通過する神経線維を表示対象の神経線維から除くための領域である。
【0047】
また、神経線維追跡部13は、DTI、T2強調画像又はDWI上のマウスのポイント位置を入力して、当該ポイント位置を始点としてリアルタイムに神経線維の追跡を行う機能を有してもよい。あるいは、神経線維追跡部13は、後述する三次元表示された観察用画像上のマウスのポイント位置を入力して、当該ポイント位置を始点としてリアルタイムに神経線維の追跡を行う機能を有してもよい。
【0048】
神経線維追跡部13は、ユーザ操作により始点領域のみ指定された場合には、始点領域から全ての方向に向かう神経線維を追跡する機能を有している。また、神経線維追跡部13は、上述した始点領域と回避領域及び終端領域の少なくとも一方とを組み合わせて神経線維を追跡する機能を有している。さらに、神経線維追跡部13は、上記手法によって追跡した神経線維の三次元位置を観察用画像生成部14へ出力する機能を有している。
【0049】
観察用画像生成部14は、神経線維追跡部13により出力された神経線維の三次元位置を用いて、サーフェイスレンダリング法によりレンダリングする機能を有している。例えば、観察用画像生成部14は、神経線維の三次元位置に対応するボクセルを特定するとともに、投影面から当該ボクセルまでの距離(zバッファ)を算出してシェーディングを行う。このとき、DTIのスカラー量に応じた色を付与してもよい。また、観察用画像生成部14は、神経線維追跡部13により出力された神経線維の三次元位置を用いて、各神経線維の位置情報の差分を算出し、算出された差分が所定値以内に含まれる神経線維同士を1つのグループとしてグループ化し、グループ化された神経線維群を1つの神経線維として表示してもよい。また、観察用画像生成部14は、神経線維追跡部13により出力された神経線維の三次元位置を用いて、神経線維の長さを算出し、ユーザにより指定された神経線維の最大長さ又は最小長さに基づいて、画像化する神経線維を特定してもよい。観察用画像生成部14はサーフェイスレンダリング法によりレンダリングした画像を記憶領域に記録する。
【0050】
また、観察用画像生成部14は、拡散テンソル画像生成部12により出力されたDTIを用いてボリュームレンダリング法によりレンダリングする機能を有している。例えば、観察用画像生成部14は、複数のDTIを入力し、DTIのスカラー量がそれぞれ対応付けられたボクセルにより三次元画像モデルを構築するとともに、各ボクセルに対して不透明度等の表示属性をスカラー量に応じて付与する機能を有している。そして、視線方向に沿った光源減衰を全ボクセルで表現する。例えば、入射光源量とボクセルの有する不透明度とを乗算して当該ボクセルの輝度値を算出する。上記処理を視線方向に順次積算することにより三次元表示された画像を生成する。観察用画像生成部14はボリュームレンダリング法によりレンダリングした画像を記憶領域に記録する。
【0051】
さらに、観察用画像生成部14は、サーフェイスレンダリング法によりレンダリングされた画像とボリュームレンダリング法によりレンダリングされた画像とを重ね合わせて三次元表示された観察用画像を生成する機能を有している。例えば、観察用画像生成部14は、ボリュームレンダリング法で表示された生体組織のボクセルのうち、所定の不透明度以上を有するボクセルを特定し、視点から当該ボクセルまでの距離を算出する。そして、算出された距離を視線方向における生体組織までの距離(ボリュームレンダリングにおける視点から表面までの距離)として取得する。次に、観察用画像生成部14は、サーフェイスレンダリング法で表示された神経線維のボクセルのzバッファと、当該ボクセルを通過する視線方向において、ボリュームレンダリングにおける視点から表面までの距離とを比較する。そして、比較結果に基づいて、サーフェイスレンダリング法により表示される神経線維と、ボリュームレンダリング法により表示される生体組織との三次元重畳位置を特定し、前後関係を明らかにして、両者の画像を重ね合わせた観察用画像を生成する。
【0052】
あるいは、観察用画像生成部14は、神経線維追跡部13により出力された神経線維をサーフェイスレンダリング法でレンダリングし、生体組織の所定方向に沿った二次元断面画像を挿入して立体視させ、神経線維と二次元断面画像とを重畳させる機能を有してもよい。
【0053】
観察用画像生成部14は、上述した一連の画像処理を例えばユーザ操作入力部11により出力された視線方向に合わせて実行する。そして、観察用画像生成部14は、生成した画像を表示装置30へ出力する。
【0054】
表示装置30は、観察用画像生成部14により出力された観察用画像を表示する機能を有している。表示装置30として、例えばディスプレイ装置等が用いられる。
【0055】
次に、本実施形態に係る画像処理装置1の動作について説明する。最初に、本実施形態に係る画像処理装置1の画像入力動作及びテンソル解析動作について、図3を用いて説明する。図3は、本実施形態に係る画像処理装置1の画像入力動作及びテンソル解析動作を示すフローチャートである。図3に示す制御処理は、例えばユーザ操作入力部11により、画像入力の指示がされたタイミングで実行される。なお、説明理解の容易性を考慮して、DWIはDICOM規格に準拠しており、DWIの撮像装置の装置メーカー名は、所定のタグ情報に対応して格納されているものとして説明する。
【0056】
図3に示すように、最初に画像処理装置1は画像入力処理を実行する(S10)。S10の処理では、画像入力部10が、画像データベース20を参照して複数のDWI及びT2協調画像を入力する。なお、入力されるT2協調画像は少なくとも方向の異なる6つのDWIと対応しており、画像入力部10は、これらの画像セットを複数入力する。S10の処理が終了すると、装置メーカー情報取得処理へ移行する(S12)。
【0057】
S12の処理では、拡散テンソル画像生成部12が、S10の処理で入力された画像に付与された装置メーカー情報を画像ごとに取得する。拡散テンソル画像生成部12は、入力された画像の所定のタグ情報(装置メーカー名)を参照し、画像ごとに装置メーカー名を取得する。S12の処理が終了すると、タグ情報取得処理へ移行する(S14)。
【0058】
S14の処理では、拡散テンソル画像生成部12が、S12の処理で得られた装置メーカー名に基づいて、画像の撮像条件を格納したタグ情報を取得する。拡散テンソル画像生成部12は、装置メーカー名と画像の撮像条件を格納したタグ情報とを関連付けしたタグ情報テーブル21を参照し、S12の処理で得られた装置メーカー名に基づいて、画像の撮像条件を格納したタグ情報を特定する。この処理について、図4を用いて詳細に説明する。図4は、タグ情報テーブル21の一例である。図4に示すように、タグ情報テーブル21は、タグと当該タグが示す意味とが関連付けされたテーブルである。このタグ情報テーブル21は、装置メーカー名ごとに異なるテーブルとして管理されている。例えば、S12の処理で得られた装置メーカー名がA社であるとする。この場合、拡散テンソル画像生成部12は、A社のNo.1のテーブルを参照して、タグと当該タグが示す意味との対応関係を取得する。拡散テンソル画像生成部12は、撮像条件として、MPGの方向、方向の数、b値を指定し、これらに対応するタグ(AAA,BBB)、(CCC,DDD)、(EEE,FFF)を取得する。S14の処理が終了すると、判定処理へ移行する(S16)。
【0059】
S16の処理では、拡散テンソル画像生成部12が、S14の処理で得られたタグに基づいて、S10の処理で得られた画像の付与情報を参照して撮像条件が格納されているか否かを判定する。S16の処理において、撮像条件が格納されていると判定した場合には、格納された撮像条件を取得する(S18)。一方、S16の処理において、撮像条件が格納されていないと判定した場合には、デフォルト値設定処理へ移行する(S20)。S20の処理では、拡散テンソル画像生成部12が、例えば予め定めたデフォルト値を撮像条件として設定する。なお、デフォルト値は、ユーザ操作によって適宜変更可能である。S18又はS20の処理により、撮像条件の取得が終了すると、拡散テンソル画像生成処理へ移行する(S22)
【0060】
S22の処理では、拡散テンソル画像生成部12が、S10の処理で入力した画像セットと、S18又はS20の処理により取得された当該画像セットにおける撮像条件(MPGの方向、方向の数、b値)とを用いてDTIを生成する。例えば、拡散テンソル画像生成部12は、ユーザ操作入力部11を介して予めユーザにより指定されたテンソル解析手法に基づいてDTIを生成する。S22の処理が終了すると、図3に示す制御処理を終了する。
【0061】
以上で図3に示す制御処理を終了する。ユーザ操作により画像の入力開始が指示されたタイミングで図3に示す制御処理を実行することにより、DWI及びT2拡散画像が入力されるとともに装置メーカー名に基づいて各画像の撮像条件が取得されてDTIが生成される。このように、撮像条件が装置メーカー名に基づいて取得されるので、装置メーカーが異なる場合であっても撮像条件を設定するためのユーザ操作を必要とせず、画像入力処置及びテンソル解析処理が一連の処理として自動的に実行される。テンソル解析処理は、処理時間がかかるため、画像入力処理と一連の処理として自動実行することで、観察用画像の表示に至るまでの時間を短縮することができる。
【0062】
次に、本実施形態に係る画像処理装置1の神経線維追跡動作について説明する。図5は、本実施形態に係る画像処理装置1の神経線維追跡動作を示すフローチャートである。図5に示す制御処理は、例えば図3に示すテンソル解析処理の実行後に実行される。なお、以下では説明理解の容易性を考慮して、ユーザにより始点領域、回避領域及び終端領域が指定されているものとする。例えば、画像処理装置1が、表示装置30にDTIあるいは三次元表示された生体組織の画像を表示させ、ユーザからの各領域の指定操作を受け付けたものとして説明する。
【0063】
図5に示すように、最初に画像処理装置1は始点領域入力処理を実行する(S30)。S30の処理では、ユーザ操作入力部11がユーザにより指定された始点領域を入力する。S30の処理で始点領域を入力すると、異方性入力処理へ移行する(S32)。
【0064】
S32の処理では、神経線維追跡部13が、S30の処理で入力された始点領域内のボクセルの中から追跡の始点となるボクセルを特定する。例えば、神経線維追跡部13は、始点領域内で規則的な格子点を決定し、格子点に対応するボクセルを、追跡を開始するボクセルとして決定する。このとき、始点となるボクセルが所定値以上存在する場合には、格子点をサンプリングし、間引きした後の格子点に対応するボクセルを、追跡を開始するボクセルとして決定する。そして、神経線維追跡部13は、図3で生成したDTIに基づいて、決定したボクセルにおける異方性を入力する。S32の処理が終了すると、隣接ボクセル特定処理へ移行する(S34)。
【0065】
S34の処理では、神経線維追跡部13が、S32の処理で特定された異方性に基づいて、異方性方向に沿って始点のボクセルに隣接するボクセルを特定する。S34の処理が終了すると、回避領域判定処理へ移行する(S36)。
【0066】
S36の処理では、神経線維追跡部13が、S34の処理で特定したボクセルがユーザにより指定された回避領域内であるか否かを判定する。S36の処理において、S34の処理で特定したボクセルがユーザにより指定された回避領域内であると判定した場合には、神経線維の追跡履歴を記録することなく図5に示す制御処理を終了する。一方、S36の処理において、S34の処理で特定したボクセルがユーザにより指定された回避領域内でないと判定した場合には、終端判定処理へ移行する(S38)。
【0067】
S38の処理では、神経線維追跡部13が、S34の処理で特定したボクセルにおいて終端条件を満たすか否かを判定する。神経線維追跡部13は、終端条件として、FA値、元画像信号値、屈曲度合い等を採用して神経線維の終端を判定する。同時に、S34の処理で特定したボクセルがユーザにより指定された終端領域内であるか否かを判定する。S38の処理において、終端条件を満たさず、かつ終端領域内とならないと判定した場合には、当該隣接したボクセルを次の処理対象のボクセルとする(S40)。そして、変更後のボクセルを処理対象にして、S32の処理を再度実行する。このように、隣接するボクセルが回避領域・終端領域に存在せず、かつ終端条件を満たさない間は、S32〜S40の処理を繰り返し実行する。
【0068】
一方、S38の処理において、処理対象のボクセルにおいて終端条件を満たし、又は処理対象のボクセルが終端領域内であると判定した場合には、記録処理へ移行する(S42)。S42の処理では、S32〜S40の処理で処理対象となったボクセルの三次元的な位置情報を履歴として記録する。S42の処理が終了すると、図5に示す制御処理を終了する。
【0069】
以上で図5に示す制御処理を終了する。図5に示す制御処理を実行することにより、始点領域内のボクセルから拡散方向の異方性に基づいて隣接するボクセルが特定され、当該ボクセルの拡散方向の異方性に基づいて隣接するボクセルが順次特定される。このように、ボクセルの異方性に基づいて神経線維の延在方向が追跡されて記録される。また、回避領域を通過する神経線維は記録されない。さらに、終端領域を通過する神経線維は仮に終端条件を満たさなくても追跡が終了する。このように、ユーザの指定する領域に基づいて神経線維を追跡することができる。
【0070】
次に、本実施形態に係る画像処理装置1の観察用画像生成動作について説明する。図6は、本実施形態に係る画像処理装置1の観察用画像生成動作を示すフローチャートである。図6に示す制御処理は、例えば図5に示す神経線維追跡処理の実行後に実行される。なお、以下では説明理解の容易性を考慮して、ユーザにより三次元表示の視線方向が指定されているものとする。例えば、画像処理装置1が、表示装置30にDTIあるいは三次元表示された生体組織の画像を表示させ、ユーザからの視線方向を受け付けたものとして説明する。
【0071】
図6に示すように、最初に画像処理装置1は神経線維の描画処理を実行する(S50)。S50の処理では、観察用画像生成部14が、図5の処理で得られた神経線維の三次元位置情報に基づいて、ユーザにより指定された視線方向から神経線維を立体視可能な画像をサーフェイスレンダリング法で生成する。観察用画像生成部14は、例えば拡散テンソルの固有値をRBGの三原色に割り当てて神経線維の表面に表示する。あるいは、ADC又はFA値を大きいほど赤くするように配色し神経線維の表面に表示する。なお、観察用画像生成部14は、ユーザの指定に基づいて、神経線維のグループ化処理、神経線維の長さに基づく神経線維の選択処理を実行し、画像化する神経線維を特定してもよい。S50の処理が終了すると、生体組織の描画処理へ移行する(S52)。
【0072】
S52の処理では、観察用画像生成部14が、図3の処理で得られたDTIに基づいて、ユーザにより指定された視線方向から生体組織を立体視可能な画像をボリュームレンダリング法で生成する。S52の処理が終了すると、重畳位置算出処理へ移行する(S54)。
【0073】
S54の処理では、観察用画像生成部14が、S50の処理で得られた神経線維と、S52の処理で得られた画像との重畳位置をボクセルごとに決定する。この処理について、図7を用いて詳細を説明する。図7の(A)は、サーフェイスレンダリングを説明する概要図、図7の(B)は、ボリュームレンダリングを説明する概要図である。図7の(A)に示すように、観察用画像生成部14は、S50の処理においてサーフェイスレンダリング法で表示された神経線維のボクセルのzバッファ(図中点線)を取得する。次に、図7の(B)に示すように、観察用画像生成部14は、S52の処理においてボリュームレンダリング法で表示された生体組織のボクセルのうち、サーフェイスレンダリング法で表示された神経線維のボクセルを通過する視線方向において所定の不透明度以上を有するボクセルBoを特定し、視点から当該ボクセルBoまでの距離を算出する。そして、算出された距離を視線方向における生体組織までの距離(ボリュームレンダリングにおける視点から表面までの距離)として取得する。次に、観察用画像生成部14は、神経線維のボクセルのzバッファと、ボクセルBoまでの距離とを比較する。そして、比較結果に基づいて、S50の処理において描画した神経線維と、S52の処理において描画した生体組織との前後関係を明らかにして、三次元重畳位置を算出する。観察用画像生成部14は、上記処理をサーフェイスレンダリング法で表示された神経線維のボクセル全てにおいて実行する。S54の処理が終了すると、観察用画像生成処理へ移行する(S56)。
【0074】
S56の処理では、観察用画像生成部14が、S56の処理で算出された三次元重畳位置で、S50の処理において描画した神経線維とS52の処理において描画した生体組織とを重ね合わせた観察用画像を生成する。S56の処理が終了すると、図6に示す制御処理を終了する。
【0075】
以上で図6に示す制御処理を終了する。図6に示す制御処理を実行することにより、サーフェイスレンダリング法により描画された神経線維と、ボリュームレンダリング法により描画された生体組織(脳腫瘍等)とが適切な位置で重畳されて表示される。
【0076】
上述したように、本実施形態に係る画像処理装置1によれば、観察用画像生成部14により、神経線維追跡部13によって追跡された神経線維と画像内の生体組織とをそれぞれ異なる三次元表示手法で可視化させた観察用画像を生成することができる。このように、追跡された神経線維と他の生体組織とがユーザの操作を介することなくそれぞれ異なる三次元表示手法で可視化されることにより、追跡された神経線維と他の生体組織との位置関係をユーザに対して直感的に理解させることが可能となる。よって、利便性を向上しつつ神経線維の走行位置の視認容易性を向上させることができる。
【0077】
また、本実施形態に係る画像処理装置1によれば、観察用画像生成部14により、サーフェイスレンダリング法で神経線維をレンダリングして表示するとともにボリュームレンダリング法で生体組織をレンダリングして表示することができる。このため、例えば神経線維の表面に色を付与して周囲に存在する生体組織とは明確に区別して表示することができるとともに、神経線維の周囲に存在する生体組織を透明感を持たせた状態で可視化させることが可能となる。よって、ユーザに対して神経線維の三次元位置を明確に識別させつつ、神経線維と周囲の生体組織との位置関係をユーザに対して適切に把握させることができる。
【0078】
また、本実施形態に係る画像処理装置1によれば、観察用画像生成部14により、サーフェイスレンダリング法でレンダリングされた神経線維の三次元位置と、ボリュームレンダリング法でレンダリングされた生体組織を表示するボクセルのうち所定値以上の不透明度を有するボクセルの三次元位置とを比較して、サーフェイスレンダリング法でレンダリングされた神経線維とボリュームレンダリング法でレンダリングされた生体組織との重畳位置を算出することができるので、異なる三次元表示手法で表示された神経線維と生体組織とを適切な位置で重畳させることができる。
【0079】
また、本実施形態に係る画像処理装置1によれば、観察用画像生成部14により、神経線維追跡部13により追跡された神経線維がサーフェイスレンダリング法でレンダリングされ、生体組織の所定方向に沿った二次元断面画像がサーフェイスレンダリング法とは異なる三次元表示手法で可視化され、神経線維と二次元断面画像とが重畳された状態で表示することができるので、追跡された神経線維を生体組織の二次元断面画像から伸びるように立体視された状態で三次元的に可視化することが可能となる。このため、神経線維と周囲の生体組織との位置関係をユーザに対して適切に把握させることができる。
【0080】
また、本実施形態に係る画像処理装置1によれば、拡散テンソル画像生成部12により、撮像装置の製造元に関する情報が取得され、製造元と画像の撮像条件のデータ格納位置とを対応させたタグ情報テーブル21が参照されて、製造元に基づいて画像に付与された撮像条件が取得される。このため、例えば、異なる撮像装置等により撮像された画像が混在する場合であっても、ユーザの操作を必要とせずに自動的に拡散テンソル解析を行うことができる。
【0081】
また、本実施形態に係る画像処理装置1によれば、始点領域、終端領域及び回避領域を用いることで、ユーザにより注目された領域から開始して終了する神経線維であって、不要な神経線維を省いて適切に可視化することができる。また、不要な処理を行わないことで神経線維を迅速に可視化することが可能となる。
【0082】
また、本実施形態に係る画像処理装置1によれば、拡散テンソル画像生成部12により、ユーザ操作入力部11により入力されたテンソル解析手法に基づいて拡散テンソル画像が生成される。このように、テンソル解析手法がユーザによって選択されるため、ユーザが必要とする情報に応じて適切な神経線維の追跡を行うことができる。
【0083】
また、本実施形態に係る画像処理装置1によれば、処理時間は少ないが交叉神経の追跡が困難となる1テンソル解析手法と、処理時間は多くかかるが交叉神経の追跡が可能な2テンソル解析手法とを、必要とする情報に応じてユーザが選択することができるため、適切に神経線維の追跡を行うことができる。
【0084】
さらに、本実施形態に係る画像処理装置1によれば、拡散テンソル画像生成部12が、1テンソル解析手法により得られた第1成分の固有ベクトル及び第2成分の固有ベクトルで形成される平面内に、2テンソルも拘束されていると仮定して、第1の拡散テンソルD、第2の拡散テンソルDを求めることで、第1の拡散テンソルD、及び第2の拡散テンソルDを単純化して表現することができるので、計算コストを低減させることが可能となる。
【0085】
以上、本発明の好適な実施形態について具体的に説明したが、上記実施形態は本発明に係る画像処理装置の一例を示すものである。本発明に係る画像処理装置は、上記各実施形態に係る画像処理装置1に限られるものではない。
【0086】
例えば、上述した実施形態では画像入力部10が画像データベース20から画像を直接入力する例を説明したが、通信を介して画像を取得してもよい。
【0087】
また、上述した実施形態では幾何学的特徴を利用して演算を容易とした2テンソル解析を採用する場合を説明したが、2テンソル解析はこれに限られるものではない。
【符号の説明】
【0088】
1…画像処理装置、10…画像入力部、11…ユーザ操作入力部(始点領域入力手段、終端領域入力手段、回避領域入力手段、解析手法入力手段)、12…拡散テンソル画像生成部(機器情報取得手段、撮像条件取得手段、拡散テンソル画像生成手段)、13…神経線維追跡部(追跡手段)、14…観察用画像生成部(観察用画像生成手段)、20…画像データベース、21…タグ情報テーブル、30…表示装置。

【特許請求の範囲】
【請求項1】
核磁気共鳴画像法にて撮像された画像を用いて三次元表示された観察用画像を生成する画像処理装置であって、
前記画像に基づいて拡散テンソル画像を生成する拡散テンソル画像生成手段と、
前記拡散テンソル画像から得られる拡散の異方性に基づいて、前記神経線維の延在方向を追跡し前記神経線維の三次元位置を取得する追跡手段と、
前記追跡手段により追跡された前記神経線維、及び前記画像内の生体組織をそれぞれ異なる三次元表示手法で可視化させた前記観察用画像を生成する観察用画像生成手段と、
を備える画像処理装置。
【請求項2】
前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維をサーフェイスレンダリング法でレンダリングし、前記画像内の前記生体組織をボリュームレンダリング法でレンダリングする請求項1に記載の画像処理装置。
【請求項3】
前記観察用画像生成手段は、サーフェイスレンダリング法でレンダリングされた前記神経線維の三次元位置と、ボリュームレンダリング法でレンダリングされた前記生体組織を表示するボクセルのうち所定値以上の不透明度を有するボクセルの三次元位置とを比較して、サーフェイスレンダリング法でレンダリングされた前記神経線維とボリュームレンダリング法でレンダリングされた前記生体組織との重畳位置を算出する請求項2に記載の画像処理装置。
【請求項4】
前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維をサーフェイスレンダリング法でレンダリングし、前記生体組織の所定方向に沿った二次元断面画像をサーフェイスレンダリング法とは異なる三次元表示手法で可視化させ、前記神経線維と前記二次元断面画像とを重畳させる請求項1に記載の画像処理装置。
【請求項5】
前記画像には、当該画像の撮像条件及び撮像装置もしくは前記撮像装置の製造元に関する情報が付与されており、
前記画像の前記撮像装置又は前記製造元に関する情報を取得する機器情報取得手段と、
前記撮像装置もしくは前記製造元と前記撮像条件のデータ格納位置とを対応させたテーブルを参照し、前記撮像装置又は前記製造元に基づいて前記画像の前記撮像条件を取得する撮像条件取得手段と、
を更に備え、
前記拡散テンソル画像生成手段は、前記撮像条件に基づいて拡散テンソル画像を生成する請求項1〜4の何れか一項に記載の画像処理装置。
【請求項6】
ユーザ操作により指定された前記神経線維の始点を定める始点領域を入力する始点領域入力手段を更に備え、
前記追跡手段は、前記始点領域に含まれるボクセルから前記神経線維の延在方向を追跡する請求項1〜5の何れか一項に記載の画像処理装置。
【請求項7】
前記追跡手段は、前記始点領域に含まれる前記ボクセルを間引きし、間引き後のボクセルを始点として神経線維の延在方向を追跡する請求項1〜6の何れか一項に記載の画像処理装置。
【請求項8】
ユーザ操作により指定された前記神経線維の終端を定める終端領域を入力する終端領域入力手段を更に備え、
前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維のうち前記終端領域を通過する前記神経線維のみを可視化させた前記観察用画像を生成する請求項1〜7の何れか一項に記載の画像処理装置。
【請求項9】
ユーザ操作により指定された回避領域を入力する回避領域入力手段を更に備え、
前記観察用画像生成手段は、前記追跡手段により追跡された前記神経線維のうち前記回避領域を通過しない前記神経線維のみを可視化させた前記観察用画像を生成する請求項1〜8の何れか一項に記載の画像処理装置。
【請求項10】
ユーザ操作により指定されたテンソル解析手法を入力する解析手法入力手段を更に備え、
前記拡散テンソル画像生成手段は、前記テンソル解析手法に基づいて前記拡散テンソル画像を生成する請求項1〜9の何れか一項に記載の画像処理装置。
【請求項11】
前記解析手法入力手段は、拡散の異方性を1つのテンソルを用いて1方向として表現する1テンソル解析手法、又は拡散の異方性を2つのテンソルを用いて2方向として表現する2テンソル解析手法を、ユーザ操作により指定されたテンソル解析手法として入力する請求項1〜10の何れか一項に記載の画像処理装置。
【請求項12】
前記拡散テンソル画像生成手段は、
基準となる拡散強調画像S、勾配磁場の印加方向g,勾配磁場の影響の強さb、第1の拡散テンソルD、第2の拡散テンソルD、第1の拡散テンソルDの重みfを用いて、ある方向の傾斜磁場を印可した拡散強調画像Sを、
【数7】

と定義し、拡散の2つの方向を用いて前記拡散テンソル画像を生成する請求項1〜11の何れか一項に記載の画像処理装置。
【請求項13】
前記拡散テンソル画像生成手段は、
1テンソル解析手法により得られた第1成分の固有ベクトル及び第2成分の固有ベクトルで形成される平面内に、2テンソルも拘束されていると仮定して、前記第1の拡散テンソルD、前記第2の拡散テンソルDを求める請求項1〜12の何れか一項に記載の画像処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−34772(P2012−34772A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−176295(P2010−176295)
【出願日】平成22年8月5日(2010.8.5)
【出願人】(503313373)株式会社AZE (10)
【Fターム(参考)】