説明

画像出力装置及び画像検査方法

【課題】記録媒体の幅サイズに満たない比較的小さな読み取り範囲(視野)のセンサを用いて、記録可能幅の全域を効率よく検査する。
【解決手段】本発明による画像出力装置は、記録媒体(14)の幅方向に沿って複数の画素が配列され、フルライン型の記録ヘッドにより記録媒体(14)に記録された画像を読み取る画像読取手段(70)と、画像読取手段(70)を前記幅方向に平行に移動させる走査手段(76)と、記録不良が発生する位置を予測する不良発生予測手段と、不良発生予測手段によって特定された位置に対応する部分に対して画像読取手段(70)による検査の頻度を増加させるように走査手段(76)を制御する制御手段と、を備える。例えば、画像読取手段の読取視野内における不吐出ノズル数の時間平均が単調増加傾向にある位置を重点検査する。また、画像データから吐出頻度の低いノズルの位置の検査頻度を増す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は画像出力装置及び画像検査方法に係り、特にインクジェットプリンタなどの画像出力機における出力画像の品質を検査する画像検査技術に関する。
【背景技術】
【0002】
従来、印刷分野において画像品質を維持するために、ラインカメラを複数配置して出力画像を撮像し、得られた撮像画像を所望の画像元データと比較する形態のオフセット印刷機用インライン検査装置が知られている。この種のインライン検査装置では、一般に、縮小光学系による検査方法が採用されており、用紙面から1/4〜5倍に縮小してラインCCDで撮像するものが多い。かかるラインCCDカメラによって用紙の全幅を観察するために、カメラを複数台配置し、出力画像の用紙幅方向を一括して読み取り、検査している。
【0003】
その一方、特許文献1では、シリアルスキャン方式のプリントヘッドのキャリッジに画像読み取りセンサ(光学スキャナ)を搭載し、読み取った画像データを基にプリントヘッドの較正を行う技術が提案されている。
【0004】
また、高速プリントを実現する観点から、上記のシリアルスキャン方式に代えて、用紙(記録媒体)の搬送方向と直交する幅方向に沿って多数のノズルを配列し、ページ幅の全域について印字範囲を確保したフルライン型の記録ヘッドを用い、ページ幅を1回で記録し得る構成(いわゆる「Single Pass、Page Width」方式)の装置が知られている。そして、このシングルパス方式のインクジェット記録装置に上述したオフセット印刷機用と同様のインライン検査装置を適用したシステムも提案されている。
【特許文献1】特開2003−159793号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
近年のヘッド製造技術の向上により、多ノズルを有するインクジェットヘッドの品質も高くなっており、常に全ノズルの不吐出、濃度ムラ、打滴間隔、打滴サイズ等を一括して検査する必要性が薄れてきている。とはいえ、完全に不吐出、濃度ムラ、打滴間隔異常、打滴サイズ異常が解消した訳ではなく、必要に応じた範囲で不吐出ノズルの有無、濃度ムラ、打滴間隔、打滴サイズ等を計測したいという要求がある。
【0006】
本発明はこのような事情に鑑みてなされたもので、記録媒体の幅サイズに満たない比較的小さな読み取り範囲(視野)のセンサを用いて、記録可能幅の全域を効率よく検査することができる画像出力装置及び画像検査方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は前記目的を達成するために、記録媒体を搬送する搬送手段と、液滴を吐出する複数のノズルが前記記録媒体の搬送方向と直交する幅方向に記録可能幅の全域にわたって配列されてなるフルライン型の記録ヘッドと、前記記録媒体の幅方向に沿って複数の画素が配列され、前記記録ヘッドにより前記記録媒体に記録された画像を読み取る画像読取手段と、前記画像読取手段により読み取られた画像に基づき出力画像の品質を検査する検査手段と、前記画像読取手段を前記画素の配列方向と平行な前記幅方向に移動させる走査手段と、前記記録ヘッドにおけるノズル配列のなかで記録不良が発生する位置を予測する不良発生予測手段と、前記不良発生予測手段によって特定された位置に対応する部分に対して前記画像読取手段による検査の頻度を増加させるように前記走査手段を制御する制御手段と、を備えたことを特徴とする画像出力装置を提供する。
【発明の効果】
【0008】
本発明によれば、不吐出などによる画像欠陥が予想される画像出力部分について、他の部分と比較して相対的に高い検査頻度で検査が行われるため、記録可能幅の全体を一様に検査する形態に比べ、効率良く検査することができる。
【0009】
また、全幅を一括して読み取る従来の構成に比べて、小さい検査視野の画像読取手段や光学系を用いて実現することができ、多様な記録媒体の幅寸法について対応することができる。
【発明を実施するための最良の形態】
【0010】
以下、添付図面に従って本発明の好ましい実施の形態について説明する。
【0011】
〔インクジェット画像記録装置の構成〕
図1は、本発明の実施形態に係るインクジェット画像記録装置の全体構成を示す概略構成図である。本実施形態に示すインクジェット画像記録装置10は、画像データに応じてインクを吐出して記録媒体14に所望の画像を形成するオンデマンド(版なし)画像記録装置である。
【0012】
同図に示すように、インクジェット画像記録装置10は、複数の搬送ドラム16(16−1〜16−7)の表面に記録媒体14を巻きつけて固定し、各搬送ドラム16−1〜16−7間を順次受け渡しながら記録媒体14を搬送するドラム搬送方式が適用される。各ドラム16−1〜16−7は、当該装置において使用される記録媒体14の最大幅に対応する幅を有し、不図示の駆動源(モータ)から与えられる駆動力によって所定に回動方向(各ドラム16の回動方向を矢印線で図示)に回動するように構成されている。また、各ドラムの外周面には記録媒体14が固定される構造を有している。
【0013】
記録媒体14を固定する構造(方式)には、各ドラム16の外周面を帯電させ、静電気によって記録媒体14を吸着する静電吸着方式や、各ドラム16の外周面に吸引口を設け、内部から吸引して記録媒体14を吸着するエア吸着方式、各ドラム16の外周面に設けられたニップ機構によって記録媒体14の両端部をニップするニップ方式などが挙げられる。なお、記録媒体14の固定方式は上述した方式に限定されず他の方式を適用することはできる。
【0014】
また、各ドラム16間における記録媒体14の受け渡し部分には、記録媒体14の先端を受け側のドラムに呼び込むガイドや記録媒体14の先端部を咥えるグリッパ等の受渡機構や、記録媒体14の有無を検出するセンサ、ドラムの回転位置を検出するセンサ等の検出機構が適宜設けられている。
【0015】
記録媒体14が給紙ドラム16−1の給紙位置にセットされると、給紙ドラム16−1を図1における時計回り方向に回動させて、記録媒体14を次段の処理液付与処理ドラム16−2に搬送する。記録媒体14が処理液付与処理ドラム16−2に受け渡されると処理液付与処理ドラム16−2の外周面に固定される。処理液付与処理ドラム16−2の記録媒体搬送路上(処理液付与処理ドラム16−2の外周面と対向する位置)には、記録媒体14にインクを凝集(増粘)させる機能を有する処理液を打滴する処理液ヘッド18と、処理液が付与された記録媒体14を乾燥させるヒータ20が設けられている。処理液付与処理ドラム16−2の外周面に固定された記録媒体14は、処理液付与処理ドラム16−2を図1における反時計回り方向に回動させることで所定の搬送方向に搬送され、処理液ヘッド18の直下の処理液付与領域において処理液ヘッド18から処理液が打滴された後に、処理液ヘッド18の記録媒体搬送方向下流側に設けられたヒータ20によって加熱される。即ち、処理液付与処理ドラム16−2によって搬送される記録媒体14には、処理液付与処理及び処理液乾燥処理が施される。
【0016】
処理液付与処理及び処理液乾燥処理が施された記録媒体14は、図1における時計回り方向に回動する中間搬送ドラム16−3を介して印字ドラム16−4に受け渡され、印字ドラム16−4の外周面に固定される。印字ドラム16−4の記録媒体搬送路上(印字ドラム16−4の外周面と対向する位置)には、K(黒)、C(シアン)、M(マゼンダ)、Y(イエロー)各色に対応し、記録媒体14の搬送方向に沿って搬送方向上流側からKCMYの順に並べられた記録ヘッド22K,22C,22M,22Yを含む印字部22と、印字部22によってKCMY各色のインクが付与された記録媒体14上の余分な溶媒を乾燥させる溶媒乾燥部24が設けられている。
【0017】
印字ドラム16−4の外周面に固定された記録媒体14は、印字ドラム16−4を図1における反時計周りに回動させることで所定の搬送方向に搬送され、印字部22の直下の画像形成領域において印字部22からインクが打滴され所望の画像が形成される。また、印字後の記録媒体14は印字部22の記録媒体搬送方向下流側に設けられた溶媒乾燥部24によって余剰溶媒除去処理が施される。その後、記録媒体14は図1における時計回り方向に回動する中間搬送ドラム16−5を介して検査ドラム16−6に受け渡される。
【0018】
検査ドラム16−6の記録媒体搬送路上(検査ドラム16−6の外周面と対向する位置)にはインライン検出部26が設けられている。検査ドラム16−6の外周面に固定された記録媒体14は、検査ドラム16−6を図1における反時計回りに回動させることで所定の搬送方向に搬送され、インライン検出部26の直下の検査領域においてインライン検出部26によって読み取られる。
【0019】
インライン検出部26は、記録媒体14の幅方向(記録媒体14の搬送方向と直交する方向)に沿って多数のフォトセル(「画素」に相当)が並べられたフォトセル列を複数列有し、更に複数のフォトセル列が記録媒体搬送方向に沿って並べられた構造を有している。インクジェット画像記録装置10は、インライン検出部26の読取結果に基づいて画像異常の有無を判断し、画像異常が発生している場合には画像データの補正、ヘッドの回復処理(メンテナンス処理)等の処理が施されるように構成されている。なお、インライン検出部26の構造及び異常検査方法の詳細は後述する。
【0020】
インライン検出部26による画像読み取りが終了した記録媒体14は、図1における時計回り方向に回動する排紙ドラム16−7を介して装置外部に排出される。図1には図示しないが、インクジェット画像記録装置10には、給紙ドラム16−1に記録媒体14を供給する給紙部が設けられている。複数種類の記録紙(記録媒体14)を利用可能な構成にした場合(記録媒体14が収容されるマガジンを複数備える場合)、紙の種類情報を記録したバーコード或いは無線タグなどの情報記録体を各マガジンに取り付け、その情報記録体の情報を所定の読取装置によって読み取ることで、使用される記録媒体の種類(メディア種)を自動的に判別し、メディア種に応じて適切なインク吐出及び処理液付与を実現するようにインク吐出制御及び処理液付与制御を行うことが好ましい。
【0021】
本例に適用可能な記録媒体14の具体例を挙げると、普通紙、インクジェット専用紙などの浸透性媒体、コート紙などの非浸透性又は低浸透性の媒体、裏面に粘着剤と剥離ラベルの付いたシール用紙、OHPシートなどの樹脂フィルム、金属シート、布、木など様々な媒体がある。なお、ロール状に巻かれた長尺の記録媒体14(連続用紙等)を用いる場合には、給紙ドラム16−1の前段に記録媒体14を所定の長さにカットするカッターが設けられている。裁断用のカッターの構成例を挙げると、記録媒体14の幅以上の長さを有する固定刃と、該固定刃に沿って移動する丸刃とから構成され、印字裏面側に固定刃が設けられ、記録媒体14の搬送路を挟んで印字面側に丸刃が配置される構成が挙げられる。
【0022】
図1には、記録媒体14の搬送機構の一態様としてドラム搬送形式を例示したが、ベルト搬送方式等の他の搬送方式を適用可能である。また、記録媒体14に処理液を付与する一態様としてインクジェット方式を例示したが、塗布ローラを用いた塗布やスプレー方式による付与などの他の付与方式を適用可能である。
【0023】
なお、図示は省略するが、インクジェット画像記録装置10には、印字部22の各記録ヘッド22K,22C,22M,22Yにインクを供給するインク貯蔵/装填部を備えている。インク貯蔵/装填部は、各記録ヘッド22K,22C,22M,22Yに対応する色のインクを貯蔵するインク供給タンク(図6に符号60で図示)を有し、各色のインクは所要のインク流路を介して各記録ヘッド22K,22C,22M,22Yと連通されている。また、インク貯蔵/装填部は、インク残量が少なくなるとその旨を報知する報知手段(表示手段、警告音発生手段)を備えるとともに、色間の誤装填を防止するための機構を有する部材が用いられる。
【0024】
処理液ヘッド18の記録媒体搬送方向下流側に設けられるヒータ20には、平板状の赤外線ヒータが好適に用いられる。ヒータ20の設定温度及び加熱時間は記録媒体14の種類や処理液の付与量、記録媒体14の搬送速度に応じて適宜設定される。なお、本例のヒータ20には、記録媒体14の表面に熱風を吹きつける方式を適用してもよいし、処理液付与処理ドラム16−2にヒータ20を内蔵してもよい。
【0025】
印字部22の後段に設けられる溶媒乾燥部24には、平板状の赤外線ヒータが好適に用いられる。ヒータを用いて印字後の記録媒体14を加熱することで、記録媒体14の表面に存在する余分な溶媒成分を蒸発させることができる。なお、溶媒乾燥部24には記録媒体14の溶媒に吸収部材を接触させて当該を接触除去する方式を適用してもよい。
【0026】
また、図示は省略するが、各ドラム16−1〜16−7に対応して(例えば、各ドラム16−1〜16−7の図1における下側に)、各ドラム16−1〜16−7の外周面(記録媒体14が固定される面)をクリーニングするクリーニング処理部が設けられている。記録媒体14を次のドラムに受け渡した後に、次の記録媒体14が搬送されてくる前に各ドラム16のクリーニング処理が実行される。クリーニング処理部の構成として、ブラシ・ロール、吸水ロール等をニップする方式、清浄エアを吹き掛けるエアーブロー方式、粘着ロール方式或いはこれらの組み合わせなどが挙げられる。
【0027】
〔印字部の説明〕
次に、印字部22について詳説する。図2に示すように、印字部22の各記録ヘッド22K,22C,22M,22Yは、記録媒体14における画像形成領域の最大幅に対応する長さを有し、そのインク吐出面には画像形成領域の全幅にわたりインク吐出用のノズル(図3に符号51で図示)が複数配列されたフルライン型のヘッドとなっている。
【0028】
記録ヘッド22K,22C,22M,22Yは、記録媒体14の搬送方向(副走査方向;符号Aで図示)に沿って上流側から黒(K),シアン(C),マゼンタ(M),イエロー(Y)の色順に配置され、それぞれの記録ヘッド22K,22C,22M,22Yが記録媒体搬送方向と直交する方向(主走査方向)に延在するように固定設置される。
【0029】
記録媒体14の全幅をカバーするノズル列を有するフルライン型のヘッドを各色インクに対してそれぞれ設ける構成によれば、記録媒体搬送方向について、記録媒体14と印字部22の各記録ヘッド22K,22C,22M,22Yとを相対的に移動させる動作を1回行うだけで(即ち、1回の副走査で)、記録媒体14の画像形成領域に画像を形成することができる(シングルパス方式)。これにより、記録ヘッド22K,22C,22M,22Yが記録媒体搬送方向と直交する主走査方向に往復動作するシリアル(シャトル)型ヘッドに比べて高速印字が可能であり、プリント生産性を向上させることができる。
【0030】
本例では、KCMYの標準色(4色)の構成を例示したが、インク色や色数の組み合わせについては本実施形態に限定されず、必要に応じて淡インク、濃インク、特別色インクを追加してもよい。例えば、ライトシアン、ライトマゼンタなどのライト系インクを吐出するインクヘッドを追加する構成も可能であり、各色ヘッドの配置順序も特に限定はない。
【0031】
〔ヘッドの構造〕
次に、記録ヘッド22K,22C,22M,22Yの構造について詳説する。各記録ヘッド22K,22C,22M,22Yの構造は共通しているので、以下、これらを代表して符号50によってヘッドを示す。
【0032】
図3(a)はヘッド50の構造例を示す平面透視図であり、図3(b)はその一部の拡大図である。また、図3(c)はヘッド50の他の構造例を示す平面透視図、図4はインク室ユニットの立体的構成を示す断面図(図3(a),(b)中の4−4線に沿う断面図)である。
【0033】
記録媒体14上に形成されるドットピッチを高密度化するためには、ヘッド50におけるノズルピッチを高密度化する必要がある。本例のヘッド50は、図3(a),(b)に示すように、インク滴の吐出孔であるノズル51と、各ノズル51に対応する圧力室52等からなる複数のインク室ユニット53をマトリクス状に(2次元的に)配置させた構造を有し、これにより、ヘッド長手方向(副走査方向)に沿って並ぶように投影される実質的なノズル間隔(投影ノズルピッチ)の高密度化を達成している。
【0034】
主走査方向に記録媒体14の全幅に対応する長さにわたり1列以上のノズル列を構成する形態は本例に限定されない。例えば、図3(a)の構成に代えて、図3(c)に示すように、複数のノズル51が2次元に配列された短尺のヘッドモジュール50’を千鳥状に配列して繋ぎ合わせることで記録媒体14の全幅に対応する長さのノズル列を有するラインヘッドを構成してもよい。また、図示は省略するが、短尺のヘッドモジュールを一列に並べてラインヘッドを構成してもよい。
【0035】
各ノズル51に対応して設けられている圧力室52は、その平面形状が概略正方形となっており、対角線上の両隅部にノズル51と供給口54が設けられている。図4に示すように、各圧力室52は供給口54を介して共通流路55と連通されている。共通流路55はインク供給源たるインク供給タンク(図4中不図示、図6に符号60で図示)と連通しており、該インク供給タンクから供給されるインクは図4の共通流路55を介して各圧力室52に分配供給される。
【0036】
圧力室52の一部の面(図4において天面)を構成し共通電極と兼用される振動板56には個別電極57を備えた圧電素子58が接合されており、個別電極57に駆動電圧を印加することによって圧電素子58が変形してノズル51からインクが吐出される。インクが吐出されると、共通流路55から供給口54を通って新しいインクが圧力室52に供給される。
【0037】
かかる構造を有するインク室ユニット53を図5に示す如く、主走査方向に沿う行方向及び主走査方向に対して直交しない一定の角度θを有する斜めの列方向に沿って一定の配列パターンで格子状に多数配列させることにより、本例の高密度ノズルヘッドが実現されている。
【0038】
即ち、主走査方向に対してある角度θの方向に沿ってインク室ユニット53を一定のピッチdで複数配列する構造により、主走査方向に並ぶように投影されたノズルのピッチPはd×cosθとなり、主走査方向については、各ノズル51が一定のピッチPで直線状に配列されたものと等価的に取り扱うことができる。このような構成により、主走査方向に並ぶように投影(正射影)される実質的なノズル列の高密度化を実現できる。
【0039】
なお、印字可能幅の全幅に対応した長さのノズル列を有するフルラインヘッドで、ノズルを駆動する時には、(1)全ノズルを同時に駆動する、(2)ノズルを片方から他方に向かって順次駆動する、(3)ノズルをブロックに分割して、ブロックごとに片方から他方に向かって順次駆動する等が行われ、記録媒体14の幅方向(記録媒体14の搬送方向と直交する方向)に1ライン(1列のドットによるラインまたは複数列のドットから成るライン)を印字するようなノズルの駆動を主走査と定義する。
【0040】
特に、図3(a),(b)に示すようなマトリクス状に配置されたノズル51を駆動する場合は、上記(3)のような主走査が好ましい。即ち、ノズル51-11、51-12、51-13、51-14、51-15、51-16を1つのブロックとし(他にはノズル51-21、…、51-26を1つのブロック、ノズル51-31、…、51-36を1つのブロック、…として)、記録媒体14の搬送速度に応じてノズル51-11、51-12、…、51-16を順次駆動することで記録媒体14の幅方向に1ラインを印字する。
【0041】
一方、上述したフルラインヘッドと記録媒体14とを相対移動することによって、上述した主走査で形成された1ライン(1列のドットによるラインまたは複数列のドットから成るライン)の印字を繰り返し行うことを副走査と定義する。
【0042】
そして、上述の主走査によって記録される1ラインの示す方向を主走査方向といい、上述の副走査を行う方向を副走査方向という。即ち、本実施形態では、記録媒体14の搬送方向が副走査方向であり、それに直交する記録媒体14の幅方向が主走査方向ということになる。なお、本発明の実施に際してノズルの配置構造は図示の例に限定されない。
【0043】
また、本実施形態では、ピエゾ素子(圧電素子)に代表される圧電素子58の変形によってインク滴を飛ばす方式が採用されているが、本発明の実施に際して、インクを吐出させる方式は特に限定されず、ピエゾジェット方式に代えて、ヒータなどの発熱体によってインクを加熱して気泡を発生させ、その圧力でインク滴を飛ばすサーマルジェット方式など、各種方式を適用できる。
【0044】
〔供給系の構成〕
図6はインクジェット画像記録装置10におけるインク供給系の構成を示した概要図である。インク供給タンク60はヘッド50にインクを供給する基タンクであり、先に説明したインク貯蔵/装填部に含まれる。インク供給タンク60の形態には、インク残量が少なくなった場合に不図示の補充口からインクを補充する方式と、タンクごと交換するカートリッジ方式とがある。使用用途に応じてインク種類を変える場合には、カートリッジ方式が適している。この場合、インクの種類情報をバーコード等で識別して、インク種類に応じた吐出制御を行うことが好ましい。
【0045】
図6に示すように、インク供給タンク60とヘッド50の中間には、異物や気泡を除去するためにフィルタ62が設けられている。フィルタ・メッシュサイズは、ノズル径と同等若しくはノズル径以下(一般的には、20μm程度)とすることが好ましい。
【0046】
なお、図6には示さないが、ヘッド50の近傍又はヘッド50と一体にサブタンクを設ける構成も好ましい。サブタンクは、ヘッドの内圧変動を防止するダンパー効果及びリフィルを改善する機能を有する。
【0047】
また、インクジェット画像記録装置10には、ノズル51の乾燥防止又はノズル近傍のインク粘度上昇を防止するための手段としてのキャップ64と、ヘッド50のインク吐出面の清掃手段としてクリーニングブレード66が設けられている。
【0048】
これらキャップ64及びクリーニングブレード66を含むメンテナンスユニット(メンテナンス手段)は、不図示の移動機構によってヘッド50に対して相対移動可能であり、必要に応じて所定の退避位置からヘッド50下方のメンテナンス位置に移動される。
【0049】
キャップ64は、図示せぬ昇降機構によってヘッド50に対して相対的に昇降変位される。電源OFF時や印刷待機時にキャップ64を所定の上昇位置まで上昇させ、ヘッド50に密着させることにより、ノズル面をキャップ64で覆う。
【0050】
印字中又は待機中において、特定のノズル51の使用頻度が低くなり、ある時間以上インクが吐出されない状態が続くと、ノズル近傍のインク溶媒が蒸発してインク粘度が高くなってしまう。このような状態になると、圧電素子58が動作してもノズル51からインクを吐出できなくなってしまう。
【0051】
このような状態になる前に(圧電素子58の動作により吐出が可能な粘度の範囲内で)圧電素子58を動作させ、その劣化インク(粘度が上昇したノズル近傍のインク)を排出すべくキャップ64(インク受け)に向かって予備吐出(パージ、空吐出、つば吐き、ダミー吐出)が行われる。
【0052】
また、ヘッド50内のインク(圧力室52内)に気泡が混入した場合、圧電素子58が動作してもノズルからインクを吐出させることができなくなる。このような場合にはヘッド50にキャップ64を当て、吸引ポンプ67で圧力室52内のインク(気泡が混入したインク)を吸引により除去し、吸引除去したインクを回収タンク68へ送液する。
【0053】
この吸引動作は、初期のインクのヘッドへの装填時、或いは長時間の停止後の使用開始時にも粘度上昇(固化)した劣化インクの吸い出しが行われる。なお、吸引動作は圧力室52内のインク全体に対して行われるので、インク消費量が大きくなる。したがって、インクの粘度上昇が小さい場合には予備吐出を行う態様が好ましい。
【0054】
クリーニングブレード66はゴムなどの弾性部材で構成されており、図示せぬブレード移動機構によりヘッド50のインク吐出面に摺動可能である。インク吐出面にインク液滴または異物が付着した場合、クリーニングブレード66をインク吐出面に摺動させることでインク吐出面を拭き取り、インク吐出面を清掃する。
【0055】
〔インライン検出部の説明〕
図7は、インライン検出部26の構成図である。インライン検出部26は、ラインCCDセンサ70(「画像読取手段」に相当)と、該ラインCCDセンサ70の受光面に画像を結像させるレンズ72とを一体とした読取センサ部74がスライドガイド76(「走査手段」に相当)に搭載された構造からなる走査型インラインセンサである。ラインCCDセンサ70は、RGBの各色のカラーフィルタを備えた色別のフォトセル(画素)アレイを有し、RGBの色分解によりカラー画像の読み取りが可能である。例えば、RGBの各色につきそれぞれ2ラインの合計6ラインのフォトセルアレイを有し、同色2列のフォトセルアレイは、互いにフォトセルの配列方向にセルの位置が半ピッチずれた千鳥状に配置されたものが採用される。
【0056】
具体的には、画素ピッチ0.002mm、21360画素×2×RGB、素子長(フォトセルの配列方向のセンサ幅)42.72mmの株式会社東芝製ラインCCD「TCD2964BFG」(商品名)を用いることができる。
【0057】
ラインCCDセンサ70は、フォトセルの配列方向と検査ドラム16−6の軸が平行になる配置形態でスライドガイド76のブロック78上に固定される。また、スライドガイド76のガイドレール79は検査ドラム16−6の軸と平行に配置される。
【0058】
レンズ72は、検査ドラム16−6上に巻かれた記録媒体14上の画像を所定の縮小率で結像させる縮小光学系用のレンズである。例えば、0.19倍に画像を縮小するレンズを採用した場合、記録媒体14上の224.7mm幅がラインCCDセンサ上に結像される。このとき、記録媒体14上の読み取り解像度は2400dpiとなる。
【0059】
図7のようにラインCCDセンサ70とレンズ72を一体とした読取センサ部74をスライドガイド76によって検査ドラム16−6の軸と平行に移動可能とし、打滴後の記録媒体14が巻かれた検査ドラム16−6の軸に平行に読取センサ部74を移動させて、記録媒体14上の画像を読み取る機構とした。なお、読取センサ部74を検査ドラム16−6の軸方向に移動(走査)させる直動(リニア)駆動手段としてのスライドガイド76には、例えば、駿河精機株式会社製の「KS112」(商品名)を用いることができる。
【0060】
また、図7には示されていないが、検出のための照明手段として、例えば、キセノン蛍光ランプが用いられ、定期的に白色基準板が画像と照明の間に挿入され、白基準を測定する。その状態でランプを消灯して、黒基準レベルを測定する。
【0061】
ラインCCDセンサ70の読み取り幅(一度に検査できる範囲)は、記録媒体14における画像記録領域の幅との関係で多様な設計が可能である。コスト面と検査効率の観点から、例えば、ラインCCDセンサ70の読み取り幅は、画像記録領域の幅(検査対象となり得る最大の幅)の1/2以下とし、好ましくは、1/3以下、より好ましくは1/4以下とする。本例では最大検査対象幅に対して1/4の読み取り幅を持つ読取センサ部74を採用する。
【0062】
〔記録解像度とセンサの読み取り解像度(分解能)との関係について〕
ここで、本実施形態で採用する走査型インラインセンサの分解能(解像度)と記録解像度の関係について説明する。説明を簡単にするために、記録解像度500dpi(主走査方向)のインクジェットヘッドを用い、いわゆる「1on1off」により1ノズルおきに各ノズルでそれぞれ所定複数ドットの連続打滴を行い、1ラインおきの用紙搬送方向に平行な線分の線パターンを形成し、そのパターンを走査型インラインセンサにて読み取る場合を例示する。
【0063】
なお、「1onNoff」(N=1,2,3…)の線パターンは、インクジェットヘッドの全ノズルについて各ノズルによる連続打滴ラインを記録するテストパターンであり、各ノズルからの連続打滴によりそれぞれ形成される1ドット列の線分(ライン)が互いに重なり合わないようにするため、実質的なノズル並び方向(ここでは主走査方向)について同時吐出するノズルの間隔をNノズル分空けて(N個のノズルをオフにして)打滴される。
【0064】
即ち、インクヘッドにおける実質的なノズル列の端からノズル番号i(i=0,1,2,3…)を付すものとし、mを0以上の整数として、(N+1)m、(N+1)m+s、(但し、s=1,2,…N)のノズル番号のグループごとに打滴タイミングを変えて、記録媒体14における副走査方向に記録位置を異ならせながら、(N+1)段のラインパターン群を形成する。こうして、インクジェットヘッドにおける全ノズルについて、異なるノズル間で互いに重なり合わない(孤立化した)ラインパターンを得る。
【0065】
このように、Nノズルの間隔を空けて、異なるノズル間のラインパターン同士の重なりを回避した各ドット列(ラインパターン)はそれぞれ対応するノズルの特性を反映しており、不吐出ノズルであれば当該ラインが記録されず、また、個々のノズルの特性に起因して、着弾位置(ドット位置)やドット径にばらつきが生じ、ラインパターンの不規則性となって現れる。
【0066】
図8は、上記500dpiのインクジェットヘッドにて用紙搬送方向に平行な1on1offの線パターンを形成し、この1ラインおきのパターンを用紙幅方向に1200dpi、600dpi、500dpi、400dpi、300dpiの各読み取り解像度で検知した場合のある時点でのインラインセンサ出力信号を示すものである。
【0067】
同図の横軸は、用紙(記録媒体)上の位置を表し、縦軸は出力信号の強さ(反射濃度)を示す。例えば、出力用紙中央部分の0.19〜0.23mm、幅0.05mmの1ラインが不吐出となった場合、それぞれの読み取り解像度において得られる検知信号は図8の様になる。図示のとおり、記録解像度に対して読み取りの分解能が高くとも、低くとも、不吐出ラインの有無検知、つまり、不吐出検知は可能である。
【0068】
図9は、上記500dpiのインクジェットヘッドにて用紙搬送方向に平行な1on1offの線パターンを形成し、この1ラインおきのパターンを、記録解像度の約半分(約250dpi)の読み取り解像度のセンサにより、移動量αのステップで走査する場合の出力を示すものである。
【0069】
この図9から明らかなように、読み取りの解像度が低いものであっても、センサを走査することで、より正確に不吐出位置を抽出することが可能となる。また、当然ながら、記録解像度よりも高い読み取り解像度(例えば、600dpi)で移動量αのステップで走査する場合でも、不吐出ノズルの発生位置を特定することができる(図10参照)。
【0070】
上述のとおり、ラインセンサを用紙幅方向に走査することにより、ノズルの不吐出や吐出不良による濃度ムラの検知位置精度を高めることが可能となる。また、読取センサ部(検査ユニット)を走査する形態にする事で光学系を大幅に削減することが可能となる。
【0071】
〔検査用のテストパターンについて〕
次に、本実施形態のインクジェット画像記録装置10において用いる検査用のテストパターンの例を説明する。図11は、記録媒体14における画像形成領域91とその前後(上下)の余白部分92,93を例示した図である。本実施形態のインクジェット画像記録装置10にて形成する検査用のテストパターン(図12,図13参照)は、図11に示した余白部分92,93の少なくとも一方に記録される。
【0072】
図12は不吐出と濃度ムラを検査するための検査用テストパターンの一例を示す図であり、図12のA部拡大図を図13に示す。
【0073】
図12のように、テストパターン100は、色別の4ヘッドに対応して、それぞれのヘッドで記録される4つのパターンブロック102K,102C,102M,102Yかららなる。
【0074】
各パターンブロック102K,102C,102M,102Yにおける縦線のパターン104が不吐出検知を行う部分である。かかる部分は、図13のように、2ノズルおきに1ノズルから打滴された、いわゆる1onNoffの「N=2」としたノズルチェックパターンとなっており、図示のように、各ノズルからの着弾インクによるドット106が副走査方向に複数個ライン状に並んだ1ドット列の線パターン108が形成される。
【0075】
各ノズルに対応した線パターン108はそれぞれ1つのノズルからの打滴で形成され、異なるノズルによる線パターン108が互いに重なり合わないように用紙搬送方向に位置を代えて、3段に打滴されている。
【0076】
この部分の縦線に欠け(線分の欠落)がある場合、不吐出が発生したと判断される。
【0077】
当該3段の線パターン108に続くベタ印字領域110が1色毎の濃度測定領域である。この領域で濃度(反射濃度)を測定し、一様画像データでのムラの発生を検査する。
【0078】
ベタ印字領域110は、当該ヘッドの1色で白地無し一様の画像データ入力によって打滴を行い、ドット被覆率は100%となっている。なお、ベタ印字領域110における濃度、ドット被覆率は適宜変更可能である。
【0079】
<検査項目と異常発生頻度の関係についての知見>
実際の装置において不吐出ノズルの発生状況を画像データと対比して調査したところ、画像データに関係なく不吐出になりやすいノズルと、画像データに依存して不吐出となりやすいノズルがあることが判明した。画像データ上、極端に吐出する機会の少ないノズルは、比較的不吐出の発生する確率が高い。これは、待機時間が長くなるとその間にノズル内のインクが乾燥、増粘し、不吐出になりやすい傾向があると考えられる。
【0080】
また、濃度ムラが発生する箇所に関しても、画像データに関係なく、発生するノズルと画像データに関連して発生し易い部分がある。加えて、図3(c)で説明したように、ヘッドモジュールを繋ぎ合わせて長尺のインクジェット出力ヘッドバーを構成する場合のモジュールとモジュールの繋ぎ目付近においては、ムラが発生し易い傾向にあることが解った。その一方で、打滴間隔、打滴サイズの変動に関しては、画像データ、出力ヘッド構造との関連は特に認められなかった。
【0081】
上記知見から検査項目と、特に検査が必要な箇所の関係を表1にまとめた。
【0082】
【表1】

【0083】
以上の通り、不吐出、濃度ムラ、打滴間隔異常、打滴サイズ異常に関しては、定期的に重点的に観察すべきノズル部分と、画像データから予測して重点的に観察すべき点がある事が判明した。
【0084】
これらの部分を検査するには、用紙幅全幅を常時一括して撮像する必要はなく、画像検出器が用紙幅方向に走査する構造を有し、画像データから検査すべき部分を予測して、その部分に画像検出器が移動して検査する形態。又は、不吐出、濃度ムラの発生状況から、発生頻度の高い部分を重点的に発生の有無を監視する形態が効率的である。
【0085】
以下、具体的な検査方法の例を説明する。
【0086】
〔方法1:移動平均による前兆予測機能を利用した重点検査について〕
本例のインクジェット画像記録装置10は、図13で説明したテストパターンを作成し、不吐出ノズルが検出された場合には、その不吐出ノズルの近隣ノズルからの打滴量を増やすなど、正常な出力の状態から不吐出が目立たないよう補正する処理が行われる。不吐出の発生状況と補正による画質の変化を観察したところ、ヘッドにおけるノズル配列の中で分散して不吐出が発生している状態では、かかる補正処理の効果は高く、不吐出ノズルの影響が目立ち難い。しかしながら、隣接する複数のノズルについて連続して不吐出が発生してきた場合、急激の補正の効果を失い、補正処理が限界に達する。補正の効果がある限界を越えた場合には、ヘッドクリーニング等を実施するメンテナンスモードに移行しなければならない。
【0087】
図14は、図13で説明したテストパターンを、ある一箇所で計測した場合の計測視野内(「読取視野内」に相当、本例では225mmの範囲)の不吐出ノズル数の変化を示すグラフである。図14のように、全体としては、概ね時間経過とともに不吐出ノズル数は増加する傾向にある。画像記録範囲の全幅を例えば、1/4範囲ずつ検査するにしても、各位置で一様に個数が増えている場合には、やがて不吐出の数がある値に達するため、時間に対して不吐出ノズル数の増加傾向を示す当該領域の検査時間を増やす(重点的に検査する)ことが好ましい。
【0088】
実験によれば、当該計測視野内の不吐出ノズルの総数が200個以下の場合であれば、不吐出を目立たなくする補正処理は有効であるが、その数が図15のように、時間平均(単純移動平均)を取った結果で連続して増加し、50個を越えた点で補正不能に至り、メンテナンスモート゛への移行が必要になる。
【0089】
すなわち、連続した時間平均に対して検出された不吐出ノズルの数が単調増加の傾向を示し、その時間平均の値が所定の基準値(ここでは、50個)を超えた場合に、予め設定したメンテナンスモードへ移行する制御がなされる画像出力装置となっている。
【0090】
このように、ある観察視野内(計測視野内)の不吐出ノズル数の傾向が解れば、メンテナンスモードへ移行させるタイミングを掴むことができる。計測視野内での不吐出ノズル数の時間平均が単調増加傾向にある点を見つけ、その点の検査頻度を増すことにより、補正不能となる前の適切なタイミングでメンテナンスモードへ移行することができる。
【0091】
これにより、不吐出補正不能に至ることを事前に予測して、異常出力してしまうことを回避することができる。
【0092】
なお、ある視野範囲で上記の様に観察して、メンテナンスモードへ移行させる場合、当該メンテナンスモードでは、例えば、打滴ヘッドを印字ドラム16−4の画像形成位置から退避させて、ヘッドのノズル(下)側よりキャップを押付け、インクを吸引する(吸引処理)。その後、更にヘッドがメンテナンス位置から元へ戻る際には、ノズル面をゴム製のスキージで拭く(ワイピング処理)。かかる一連のメンテナンス動作の後、再度画像を出力させて画質が回復した事を確認した。
【0093】
〔方法2:画像データからの異常発生予測機能を利用した重点検査について〕
本例のインクジェット画像記録装置10は、出力すべき画像のデータから、不吐出や濃度ムラの発生の予想される画像部分を集中的に検査するアルゴリズムを搭載し、画像依存の異常発生予測に基づき検査頻度を制御する構成が実現されている。
【0094】
はじめに、不吐出ノズルの発生と出力画像の関係を、各種の画像を連続して出力して調査した。その結果、1色の画像データに着目して、その出力画像にある打滴ドット数と不吐出ノズルの関係につき、一定の時間間隔で出力している画像より、その間隔がある値より開いた場合(吐出するまでのインターバルが長い場合)に、不吐出に至ることが多いことが判明した。図16はその実験結果を示すグラフである。実験では、出力用の画像データから記録媒体の搬送方向の所定長さに対する吐出ドット数の占める割合(打滴率)を計算し、不吐出ノズル数との関係を調べた。横軸は、用紙搬送方向の画素数に対する吐出数の割合を百分率(%)で示したものである。縦軸は、不吐出ノズル数の割合である。
【0095】
図示によれば、吐出数が少ないほど不吐出になる割合が大きく、特に、吐出数の割合(打滴率)が1%に満たない場合に不吐出が発生し易くなる。したがって、出力開始する前に、用紙搬送方向に見て画像データから画像に占める打滴率が1%に満たない部分を、他の部分より走査検知する頻度を上げて不吐出による異常出力を減らすことが可能になる。
【0096】
本実験結果によれば、打滴率1%を基準値として設定するが、具体的な装置態様ごとに同様の実験から適切な基準値が設定される。
【0097】
このように、画像データに応じて、不吐出の発生し易い部分の検査頻度を増して、補正を行うことで、走査型検出で有りながら、不良出力を見落とすことを回避することができる。
【0098】
〔方法3:履歴に基づく検査頻度の自動設定機能について〕
本例のインクジェット画像記録装置10は、当該画像出力装置に特有の画像欠陥の発生し易い部分を記憶手段(メモリ等)に記憶しておき、これに基づいて検査頻度分布を自動作成して、検査するプログラムを作成する機能が搭載されており、当該プログラムにしたがって画像欠陥の発生し易い場所を重点的に検査する制御が行われる。
【0099】
例えば、装置の製造時に、インクジェットヘッド毎に所定枚数分の打滴テストを行い、それぞれのヘッドについて不吐出発生状況を記録して、個々のヘッド固有の発生履歴を記録したプロファイルを作成する。かかる履歴情報を装置内の記憶手段(不揮発性メモリ等)に記憶し、不吐出発生頻度の高い位置を重点的に検査する。これにより、走査型検査の効率化並びにNGレベルのプリントを回避することができる。
【0100】
更に、出荷後の装置稼動後も、その発生履歴、プロファイルを蓄積して、不吐出発生の傾向の精度を高めていく。これにより、不吐出発生箇所の予測精度が一層向上する。
【0101】
図17に、ヘッドのノズル位置と不吐出発生頻度(相対値)の一例を示す。横軸はSingle Pass Page Width、ワンパスタイプのライン型インクジェットヘッドにおけるノズル並び方向(ページ幅方向)の位置、縦軸は各位置での不吐出発生頻度(相対値)を示す。
【0102】
図17によれば、ヘッドの中心に対して、両端での不吐出の発生頻度が高いことが読み取れる。この場合は、走査型インラインセンサの移動において、用紙幅方向に移動平均を求めて、走査型インラインセンサの検査時間が不吐出発生頻度に比例するように運用する。その結果、不吐出の発生を効率良く、早い段階で検知することが可能となった。
【0103】
〔方法4:指定箇所検査機能について〕
印刷出力に部分的にムラ、スジ、不吐出が発生していることが、出力画像から疑われた場合に、所定のユーザインターフェースを用いて、その場所を指定すると、走査型インラインセンサの検査ヘッドが当該指定場所の検査位置に移動し、不吐出テストパターン、濃度ムラ補正パターンの出力が行われその部分の異常の有無を検査することも可能となる。
【0104】
もちろん、方法1〜4の方法を適宜組み合わせて適用することも可能である。例えば、画像データに依存する不吐出発生の可能性が低い状況では、方法1、方法3により検査頻度の分布を決定し、画像データに依存する不吐出発生の可能性が高い状況では、方法2による検査頻度に重み付けを与える。このように、方法1〜3によりそれぞれ導かれる検査頻度のファクターに対して、適度な重み付けを与えて、それらの重ね合わせにより検査頻度の分布が決定される。なお、方法4については、随時所望のタイミングで利用することができるように設計される。
【0105】
<不吐出補正の説明>
図18は、不吐出検査を実施する場合のフローチャートである。
【0106】
はじめに、n枚目の用紙上の必要画像(画像形成領域)の上端、下端部分における非画像領域(図11で説明した余白部分92,93に相当)に不吐出テストパターンを描画する(ステップS10)。
【0107】
このn枚目用紙に描画された不吐出テストパターンを走査型インラインセンサで読み取り、検査を行う。このとき、センサは読み取り位置で停止させ、1回の通過で検査可能な範囲(計測視野内)を検査する(ステップS12)。
【0108】
次のn+1枚目の用紙についても同様に、必要画像(画像形成領域)の上端、下端部分における非画像領域(図11で説明した余白部分92,93に相当)に不吐出テストパターンを描画する(ステップS14)。
【0109】
そして、走査型インラインセンサを移動させて、異なる検査位置について、n+1枚目用紙の不吐出テストパターンを読み取り、検査を行う(ステップS16)。
【0110】
上記の処理(ステップS10〜S16)を繰り返し、全ノズルについて不吐出の有無を検査する。
【0111】
不吐出ノズルが発見されたときに行う補正は、不吐出となったノズルの隣接ノズルから代替打滴(打滴数増)を行うように画像データを変更する処理、若しくは、インク打滴サイズを大きく変更する処理が挙げられる。なお、補正が強すぎて逆に濃くなりスジとして目立つ事のない様に補正量の設定には細心の注意が必要である。
【0112】
(低周波ムラ補正の方法)
走査型インラインセンサにて読み取られた検出画像データを用いて、濃度ムラを解消する方法としては、理論上の値と比較して画像データと実際の画像との差を把握し、補正を行う方法が挙げられる。そのような補正方法は、米国特許第7090324号明細書などに記載されている。例えば、ある範囲の画像データ(x)に基づく理論上の濃度がyであるならば、ムラとして認識された部分の濃度が、yとならず離れている為にムラとして認識されている。その場合、y値となる様にムラが認識された部分の元のデータを変える補正を実施する。
【0113】
図19にその補正例を示す。例えば、図における入力画像データ「100」の値に注目すると、出力される平均的な濃度は「0.48」である。つまり、画像データ「100」の値に対して、濃度「0.48」であれば、ムラは発生しない(グラフ中の[1])。
【0114】
一方、画像データ「100」の値のときに、ムラが顕著に視認される点における濃度は「0.63」であり、平均的な濃度「0.48」に対してその差が大きく、ムラと認識される(グラフ中の[2])。
【0115】
図19のグラフによれば、このような濃度ムラの発生点におけるデータ値を「60」に変更することにより濃度「0.48」を実現し、ムラを解消する(グラフ中の[3])。
【0116】
(高周波ムラ補正の方法)
更に高分解能の検出によって打滴位置、打滴の大きさを検知できる場合には、濃度ムラの空間周波数特性を表すパワースペクトルの低周波成分を低減する補正条件に基づいてノズル(N個)の補正記録素子の濃度補正係数を決定して補正することが可能となる。この方法ではより高周波数なムラを補正することが可能となる。このような方法としては、例えば、特開2006−347164号公報に示されるものが挙げられる。
【0117】
<補正原理の説明>
ここで、打滴位置情報を用いてスジムラ補正を行う技術について概説する。以下に説明する補正方法は、あるノズルが持つ着弾位置誤差を補正する際に、そのノズルを含む周囲のノズルN本を用いて補正する。基本的な原理は特開2006−347164号公報に開示されている手法を適用することができる。
【0118】
図20は補正前の様子を示す図である。同図は、ラインヘッド(記録ヘッドに相当)150の左から3番目のノズル(nzl3)が着弾位置誤差を持っており、理想的な着弾位置(原点O)から図上で右方向(X軸で示した主走査方向)に着弾位置がずれて着弾する。また、図20の下側に示したグラフは、ノズルからの打滴による印字濃度を記録媒体搬送方向(副走査方向)に平均化して得られる、ノズル列方向(主走査方向)の濃度プロファイルを示したものである。ただし、図20ではノズルnzl3の印字に対する補正を考察するので、ノズルnzl3以外の濃度出力は図示を省略した。横軸(X軸)は主走査方向の位置を表し、縦軸は光学濃度(O.D.)を表す。
【0119】
各ノズルnzl1〜5の初期出力濃度をDi=Dini(ただし、iはノズル番号1〜5、Diniは一定値を表す)、ノズルnzl3の理想着弾位置を原点O、各ノズルnzl1〜5の着弾位置をXi とする。
【0120】
ここでDi は、物理的には記録媒体搬送方向に平均化したノズルの出力光学濃度を表し、データ処理上は各画素が持つ濃度データD(i,j) (ただし、iはノズル番号、jは記録媒体搬送方向の画素番号を表す)に対して「j」について平均化したものを表している。
【0121】
図20に示したように、ノズルnzl3の着弾位置誤差は、ノズルnzl3の濃度出力(太線)の原点Oからのズレとして表される。今、この出力濃度のズレを補正することを考える。
【0122】
図21は補正後の様子を示す図である。ただし、ノズルnzl3以外は補正分のみを図示した。図21の場合、補正に用いるノズル数はN=3であり、ノズルnzl2, nzl3, nzl4 に濃度補正係数d2, d3, d4 が乗ぜられている。ここでいう濃度補正係数di は、補正後の出力濃度をDi’とするとき、Di’=Di+di×Diで定義される係数である。
【0123】
本実施形態では、濃度ムラの視認性が最小となるよう、各ノズルの濃度補正係数が決定される。
【0124】
濃度ムラ等の空間構造の視認性は、空間周波数特性によって評価できることが知られており(例えば、「Application of FourierAnalysis to the Visibility of Gratings」Journal of Physiology 197 551-566(1968) F.W.Campbell and J.G.Robson 1967、「NoisePerception in Electrophotography」Journalof Applied Photographic Engineering 5:190-196(1979) R.P.Dooley andR. Shawを参照))、人間の視覚は低周波成分の感度が高く、高周波成分ほど感度が低いことが明らかにされている。すなわち、濃度ムラの視認性の尺度として、空間周波数特性の低周波エネルギーを用いることが適切である。そのため、本実施形態では、パワースペクトルの低周波成分を最小化するように、各ノズルの濃度補正係数が決定される。
【0125】
濃度補正係数diを決定する式の導出について詳細は後述するが、結果のみを先に示すと、特定のノズルの着弾位置誤差に対する濃度補正係数diは、以下の式より決定される。
【0126】
【数1】

【0127】
ここで、xi はそれぞれ補正対象ノズルの理想着弾位置を原点とした各ノズルの着弾位置である。Πは、補正に用いるN本のノズル内で積をとることを意味する。
【0128】
〔濃度補正係数の導出〕
濃度ムラのパワースペクトルの低周波成分を最小化するという条件から、理論的に各ノズルの濃度補正係数を導くことができる。
【0129】
まず、各ノズルの誤差特性を取り込んだ濃度プロファイルを次式のように定義する。
【0130】
【数2】

【0131】
画像の濃度プロファイルD(x)は、各ノズルが印字する濃度プロファイルの和であり、ノズルの印字を表すのが印字モデル(1ノズルが印字する濃度プロファイル)である。印字モデルはノズル出力濃度Diと標準濃度プロファイルz(x)に分離して表現される。
【0132】
標準濃度プロファイルz(x)は、厳密にはドット径に等しい有限の広がりを持つものであるが、位置誤差の補正を濃度ズレのバランシングの問題であると考えると、重要なのは濃度プロファイルの重心位置(着弾位置)であって、濃度プロファイルの広がりは副次的な要素である。そのため、プロファイルをδ関数で置き換える近似は妥当である。このような標準濃度プロファイルを仮定すると数学的な取り扱いが容易となり、補正係数の厳密解が得られる。
【0133】
図22(a)は現実に即した印字モデルであり、図22(b)はδ関数型印字モデルである。δ関数モデルで近似する場合、標準濃度プロファイルは次式で表される。
【0134】
【数3】

【0135】
補正係数を導出するにあたり、ある特定のノズル(i=0)の着弾位置誤差Δx0を、周辺ノズルN本によって補正することを考える。なお、ここでは補正対象ノズルの番号をi=0とした。また、周辺のノズルも、所定の着弾位置誤差を持ち得ることに注意する。
【0136】
補正対象ノズル(中心ノズル)を含むN本のノズルの番号(index)は、次式で表される。
【0137】
【数4】

【0138】
なお、この式においては、Nは奇数である必要があるが、本発明の実施に際しては、Nを奇数に限定する必要はない。
【0139】
初期出力濃度(補正前の出力濃度)はi=0のみ値を持つものとして、次式で表される。
【0140】
【数5】

【0141】
濃度補正係数をdiとするとき、補正後出力濃度Di’は、次式で表される。
【0142】
【数6】

【0143】
つまり、i=0では初期出力濃度値と補正値(di×Dini)の和で表され、i≠0では補正値のみとなる。
【0144】
各ノズルiの着弾位置xiは、次式で表される。
【0145】
【数7】

【0146】
δ関数型印字モデルを用いると、補正後の濃度プロファイルは、次式で表される。
【0147】
【数8】

【0148】
これに対してFourier変換を行うと、次式、
【0149】
【数9】

【0150】
と表される。なお、Diniは共通の定数のため省略した。
【0151】
濃度ムラの視認性を最小化することは、すなわち、次式のパワースペクトルの低周波成分を最小化することである。
【0152】
【数10】

【0153】
これは、数学的にはT(f)の f=0における微分係数(1次、2次、…)がゼロである
ことで近似できる。今、未知数di’はN個であるから、DC成分の保存条件も含めると、N−1次までの微分係数がゼロの条件を用いれば、全ての(N個の)未知数di’が厳密に定まる。このようにして、以下の補正条件が定まる。
【0154】
【数11】

【0155】
δ関数モデルにおいては、各補正条件を展開していくと、容易な計算によってDiにつ
いてのN本の連立方程式に帰着する。各補正条件を展開したものを整理すると、以下の条件群(方程式群)が得られる。
【0156】
【数12】

【0157】
これらの方程式群の意味するところは、1式目はDC成分の保存であり、2式目は重心位置の保存を表している。3式目以降は統計学におけるN−1次モーメントがゼロであることを表している。
【0158】
このようにして得られた条件式を行列形式で表すと、以下のように表すことができる。
【0159】
【数13】

【0160】
この係数行列Aは、いわゆるVandermonde型の行列であり、その行列式は差積を用いて次式となることが知られている。
【0161】
【数14】

【0162】
このため、Crammerの公式を用いてdi’の厳密解を求めることができる。計算の詳細な過程は省略するが、代数計算によって、その解は次式となることが示される。
【0163】
【数15】

【0164】
よって、求めるべき補正係数diは、次式となる。
【0165】
【数16】

【0166】
以上のように、パワースペクトルの原点微分係数をゼロにするという条件から、濃度補正係数diの厳密解が導かれる。補正に用いる周辺ノズル数Nを増やすほど、より高次の
微分係数をゼロにすることが可能になるため、低周波エネルギーがより小さくなり、ムラの視認性は一層低減する。
【0167】
本実施形態では、原点微分係数をゼロにする条件を用いたが、完全にゼロとせずとも、補正前の微分係数に比べて十分小さい値(例えば、補正前の1/10)に設定しても、濃度ムラのパワースペクトルの低周波成分を十分に小さくすることができる。つまり、濃度ムラが視認されない程度にパワースペクトルの低周波成分を小さくするという条件の観点で、パワースペクトルの原点微分係数を十分に小さい値(略0)に設定するという意味から、その値の範囲として補正前の微分係数の絶対値の1/10以下までを許容する。
【0168】
上記説明は、ある特定の1ノズル(例えば、図20におけるノズルnzl3)に対する濃度補正係数の決定方法である。実際には、ヘッド内の全てのノズルが何らかの着弾位置誤差を持っているため、全ての着弾位置誤差に対して補正を行うことが好ましい。
【0169】
すなわち、全てのノズルに対して、周囲N個のノズルにおける上記の濃度補正係数を求める。濃度補正係数を決定する際に用いる後述のパワースペクトル最小化方程式は線形なので、ノズルごとに重ね合わせが可能である。そのため、トータルの濃度補正係数は、上述のようにして得られた濃度補正係数の和を取れば求められる。
【0170】
つまり、ノズルkの持つ位置誤差に対するノズルiの濃度補正係数をd(i,k)とおくと
、このd(i,k)は[数1]の方程式で求められる。そして、ノズルiのトータルの濃度補
正係数diは、次式として求められる。
【0171】
【数17】

【0172】
なお、上記の例では、全ノズルの着弾位置誤差を補正対象としてインデックスkを足し合わせているが、ある値ΔX_threshを閾値として予め設定しておき、この閾値を超える
着弾位置誤差をもつノズルのみを補正対象とするように選択的に補正する構成も可能である。
【0173】
前述のとおり、補正に用いるノズル数Nの値を増加させると補正精度が向上するが、濃度補正係数の変化幅も増加して再現画像の破綻を招く可能性がある。そのため、画像破綻を起こさないための補正係数制限範囲(上限値d_maxと下限値d_min)を定めておき、上記[数17]の式で求まるトータルの濃度補正係数が制限範囲内に収まるようにN値を設定することが望ましい。すなわち、d_min<di<d_maxを満たすようN値を定める。
実験的な知見によれば、d_min≧−1、d_max≦1を満たすならば画像破綻を起こさない。
【0174】
<濃度補正係数算出(更新)時のフローチャート>
図23は、本実施形態による濃度補正係数算出時のフローチャートである。濃度補正係数の算出は、画像出力時に毎回実行する必要はなく、ヘッドの吐出特性が変化したときのみ実行すれば十分である。したがって、装置製造時(出荷時)の他、例えば、以下のいずれかの条件で濃度補正係数の算出演算(更新処理)が開始される。
【0175】
すなわち、(a)印字結果を監視する自動チェック機構(センサ)によって印字画像にスジムラが生じていると判断された場合、(b)人間(オペレータ)が印字画像を見て画像内にスジムラが生じていると判断して所定の操作(更新処理を開始させる指令の入力など)を行った場合、(c)事前に設定していた更新タイミングに達した場合(タイマー等による時間管理やプリント枚数カウンタなどによる稼働実績管理などによって更新タイミングを設定並びに判断可能)、のいずれかの条件で行われる。
【0176】
濃度補正係数の算出時には、まず、ヘッドの吐出特性を把握するためのテストパターン(予め定められている所定の印字パターン)のプリントが実行される(ステップS70)。なお、着弾位置の情報を取得するためのテストパターンと、不吐出ノズルの情報を取得するためのテストパターンは、別々のパターンであってもよいし、同じパターンであってもよい。
【0177】
次いで、そのテストパターンの印字結果から着弾誤差データ、すなわち各ノズルから打滴される実際の打滴点着弾位置を測定する(ステップS72)。
【0178】
着弾誤差データの測定及び不吐出ノズルの検出には、イメージセンサ(撮像素子)を利用した画像読取装置(撮像信号を処理する信号処理手段を含む)を用いることができる。読み取った画像のデータから実際の打滴点の位置を測定し、理想の着弾位置(吐出異常等が無いとした場合の設計上の理想着弾位置)との差から着弾位置誤差の情報が得られる。また、着弾位置情報の他、打滴点の光学濃度情報も測定され、打滴不能のノズルについては「不吐出」として検知される。このように、テストパターンの読み取りから得られる各種の情報(実際の着弾位置情報、着弾位置誤差情報、光学濃度情報など)を総称する用語として「着弾誤差データ」という用語を用い、不吐出ノズルの位置を特定する情報を「不吐出ノズル情報」とよぶ。
【0179】
次いで、ステップS72で得られた着弾誤差データを利用して、濃度補正係数を導出する(ステップS74)。
【0180】
こうして、求めた濃度補正係数の情報はEEPROM等の書き換え可能な記憶手段に記憶され、以後、最新の補正係数が用いられる。
【0181】
<インクジェット画像記録装置における画像出力時の処理の流れ>
図24は画像出力時の手順を示すフローチャートである。図示の処理は画像を出力するごとに実行されるものである。画像を出力(プリント)する際には、まず、出力すべき画像(プリント対象となる画像)のデータを入力する(ステップS80)。入力時の画像のデータ形態は、特に限定されないが、例えば、24ビットカラーのRGBデータとする。この入力画像に対して、ルックアップテーブルによる濃度変換処理を行い(ステップS82)、プリンタの持つインク色に対応した濃度データD(i,j)に変換する。なお、(i,j)は画素の位置を表し、各画素について濃度データが割り当てられる。
【0182】
ここでは、説明の便宜上、入力画像の解像度とプリンタの解像度(ノズル解像度)は一致しているものとするが、両者が一致しない場合は、プリンタ解像度に合わせて、入力画像について画素数変換の処理が行われる。
【0183】
ステップS82における濃度変換処理は一般的な処理であり、下色除去(UCR:Under color Removal)処理、或いはライトインク(同色系の淡インク)を使用するシステムの
場合におけるライトインクへの分配処理などが含まれる。
【0184】
例えば、C(シアン)M(マゼンタ)Y(イエロー)の3色インクの構成の場合には、CMYの濃度データD(i,j)に変換される。或いはまた、上記3色に加えてK(黒),L
C(ライトシアン),LM(ライトマゼンタ)などの他のインクを含むシステムの場合は、そのインク色を含む濃度データD(i,j)に変換される。
【0185】
濃度変換処理を経て得られた濃度データD(i,j)に対して、濃度補正係数を用いたムラ補正処理が行われる(ステップS84)。ここでは、対応するノズルに応じた濃度補正係数diを濃度データD(i,j)に乗ずる演算が行われる。
【0186】
図25の模式図に示したように、ノズルnzliの位置(主走査方向位置)iと副走査方向位置jによって画像上の画素位置(i,j)が特定され、各画素について濃度データD(i,j)が与えられる。今、図25の斜線で示した画素列の打滴を受け持つノズルについてムラ補正処理を行う場合、補正後の濃度データD’(i,j)は次式、
D’(i,j)=D(i,j)+di×D(i,j)
で計算される。こうして、補正済みの濃度データD’(i,j)が得られる。
【0187】
次いで、この補正済みの濃度データD’(i,j)からハーフトーニング処理(スクリーニング)を行うことによって(ステップS86)、ドットのオン/オフ信号(2値データ)、または、ドットサイズ変調を含む場合はドットの種類(ドットサイズの選択)を含んだ多値データに変換される。ハーフトーニングの手法は特に限定されず、誤差拡散法やディザ法など周知の2値(多値)化手法を用いることができる。
【0188】
このようにして得られた2値(多値)信号に基づいて各ノズルの打滴が実行され、画像が出力される(ステップS88)。すなわち、ハーフトーニング処理(ステップS86)から得られた2値(多値)のデータから、各ノズルのインク吐出(打滴)データが生成され、吐出動作が制御される。これにより、濃度ムラが抑制され、高品位な画像形成が可能である。
【0189】
〔制御系の説明〕
図26は、インクジェット画像記録装置10のシステム構成を示す要部ブロック図である。インクジェット画像記録装置10は、通信インターフェース170、システム制御部172、画像メモリ174、モータドライバ176、ヒータドライバ178、プリント制御部180、画像バッファメモリ(不図示)、ヘッドドライバ184、処理液ヘッドドライバ185、メンテナンス制御部190、画像処理部194等を備えている。
【0190】
通信インターフェース170は、ホストコンピュータ186から送られてくる画像データを受信するインターフェース部である。通信インターフェース170にはUSB(Universal Serial Bus)、IEEE1394、イーサネット(登録商標)、無線ネットワークなどのシリアルインターフェースやセントロニクスなどのパラレルインターフェースを適用することができる。この部分には、通信を高速化するためのバッファメモリ(不図示)を搭載してもよい。ホストコンピュータ186から送出された画像データは通信インターフェース170を介してインクジェット画像記録装置10に取り込まれ、一旦画像メモリ174に記憶される。
【0191】
画像メモリ174は、通信インターフェース170を介して入力された画像やインライン検出部26によって読み取られた画像の読取データ、画像処理部194による画像処理後の画像(データ)等を一旦格納する記憶手段であり、システム制御部172を通じてデータの読み書きが行われる。画像メモリ174は、半導体素子からなるメモリに限らず、ハードディスクなど磁気媒体を用いてもよい。
【0192】
システム制御部172は、中央演算処理装置(CPU)及びその周辺回路等から構成され、所定のプログラムに従ってインクジェット画像記録装置10の全体を制御する制御装置として機能するとともに、各種演算を行う演算装置として機能する。即ち、システム制御部172は、通信インターフェース170、画像メモリ174、モータドライバ176、ヒータドライバ178等の各部を制御し、ホストコンピュータ186との間の通信制御、画像メモリ174の読み書き制御等を行うとともに、搬送系のモータ188やヒータ189を制御する制御信号を生成する。
【0193】
EEPROM195には、システム制御部172のCPUが実行するプログラム及び制御に必要な各種データなどが格納されており、システム制御部172の指令に応じて、制御プログラムが読み出され、実行される。不吐出ノズルの発生履歴情報などのデータはこのEEPROM195に記憶される。
【0194】
なお、EEPROM195に代えて、磁気ディスク、光ディスクなどの外部記憶装置を用いてもよく、外部インターフェースを備え、メモリカードやPCカードを用いてもよい。画像メモリ174は、画像データの一時記憶領域として利用されるとともに、プログラムの展開領域及びCPUの演算作業領域としても利用される。また、システム制御部172等を構成するプロセッサ類に内蔵されるメモリを画像メモリ174として用いてもよい。
【0195】
モータドライバ176は、システム制御部172からの指示にしたがってモータ188を駆動するドライバである。図26には、装置内の各部に配置されるモータ(アクチュエータ)を代表して符号188で図示されている。例えば、図26に示すモータ188には、図1の搬送ドラム16−1〜16−7を駆動するモータが含まれる。
【0196】
ヒータドライバ178は、システム制御部172からの指示にしたがって、ヒータ189を駆動するドライバである。図26には、インクジェット画像記録装置10に備えられる複数のヒータを代表して符号189で図示されている。例えば、図26に示すヒータ189には、図1のヒータ20や、溶媒乾燥部24のヒータが含まれている。
【0197】
プリント制御部180は、システム制御部172の制御に従い、画像メモリ174内の画像データから印字制御用の信号を生成するための各種加工、補正などの処理を行う信号処理機能を有し、生成した印字データ(ドットデータ)をヘッドドライバ184及び処理液ヘッドドライバ185に供給する制御部である。プリント制御部180において所要の信号処理が施され、該画像データに基づいて、ヘッドドライバ184を介してヘッド50のインク液滴の吐出量や吐出タイミングの制御が行われる。これにより、所望のドットサイズやドット配置が実現される。また、当該画像データに基づいて処理液ヘッドドライバ185を介して処理液ヘッド18の処理液吐出量や吐出タイミングが制御される。
【0198】
プリント制御部180には不図示の画像バッファメモリが備えられており、プリント制御部180における画像データ処理時に画像データやパラメータなどのデータが画像バッファメモリに一時的に格納される。また、プリント制御部180とシステム制御部172とを統合して1つのプロセッサで構成する態様も可能である。
【0199】
ヘッドドライバ184は、プリント制御部180から与えられる画像データに基づいてヘッド50の圧電素子58に印加される駆動信号を生成するとともに、該駆動信号を圧電素子58に印加して圧電素子58を駆動する駆動回路を含んで構成される。なお、図26に示すヘッドドライバ184には、ヘッド50の駆動条件を一定に保つためのフィードバック制御系を含んでいてもよい。また、処理液ヘッドドライバ185にもヘッドドライバ184と同様の構成が適用される。なお、処理液のドットにはインクのドットと同程度の解像度は要求されないので、処理液のドット解像度をインクのドット解像度よりも粗くすることも可能である。
【0200】
即ち、処理液ヘッド18のノズル径をインクのヘッド22K,22C,22M,22Yのノズル径よりも大きくし、処理液ヘッド18のノズル密度をインクのヘッド22K,22C,22M,22Yのノズル密度よりも粗くしてもよい。
【0201】
印刷すべき画像のデータは、通信インターフェース170を介して外部から入力され、画像メモリ174に蓄えられる。この段階では、RGBの画像データが画像メモリ174に記憶される。
【0202】
画像メモリ174に蓄えられた画像データは、システム制御部172を介してプリント制御部180に送られ、該プリント制御部180においてインク色ごとのドットデータに変換される。即ち、プリント制御部180は、入力されたRGBデータをKCMYの4色のドットデータに変換するRIP処理を行う。プリント制御部180で生成されたドットデータは、不図示の画像バッファメモリに蓄えられる。また、処理液のドットデータも同様に形成することができる。なお、処理液のドットデータをインクのドットデータと異なる専用のドットデータとして形成してもよい。
【0203】
システム制御部172は、画像データから不吐出ノズルの発生位置を予測する演算手段として機能するとともに、インライン検出部26から得られる情報を解析して移動平均(時間平均)を算出して不吐出の前兆を予測する演算手段として機能する。また、システム制御部172は、インライン検出部26の走査駆動部197を制御する制御手段として機能し、画像欠陥の発生が予測された位置を含む検査位置に対して重点的に検査を行うよう、インライン検出部26の走査を制御し、全検査範囲に対して重点検査位置の検査頻度を高くする制御を行い、検査頻度に分布を与える。つまり、システム制御部172は、「第1の予測演算手段」、「第2の予測演算手段」、「第3の予測演算手段」として機能する。なお、走査駆動部197には、図7で説明したスライドガイド76を含む機構とその動力源(アクチュエータやモータなど)が含まれる。
【0204】
インライン検出部26によって読み取られた読取画像データは、ノイズ除去や増幅、波形整形などの所定の信号処理が施された後にシステム制御部172を介して画像処理部194に送られる。画像処理部194では、当該読取画像データに対して所定の画像処理を施した後に処理済のデータを画像メモリ174内の所定領域に記憶する。また、システム制御部172ではこの処理済みデータに基づいて当該画像に画像異常が発生しているか否かを判断する。
【0205】
読取画像に画像異常が発生している場合には、システム制御部172において当該画像異常がデータ上の補正で対応可能であるか、ヘッドの回復動作が必要であるかを判断し、その判断結果に基づいて装置各部を制御する。
【0206】
メンテナンス制御部190は、システム制御部172から送出される指令信号に基づいて、図6に示したキャップ64、クリーニングブレード66、ポンプ67を含むメンテナンス処理ブロックの各部を動作させるメンテナンス駆動部192に制御信号を送出する制御機能ブロックである。即ち、システム制御部172においてヘッドの回復処理が必要であると判断されると、装置の動作モードがヘッドのメンテナンスモード(回復処理モード)に変更されるとともに、システム制御部172からヘッド50の回復処理を実行する旨の指令信号がメンテナンス制御部190に送られる。メンテナンス駆動部192は、システム制御部172から送られた指令信号に基づいてメンテナンス駆動部192を介して、図6のキャップ64を移動させる駆動系や、クリーニングブレード66を移動させる駆動系、ポンプ67等の各部を適宜動作させる。
【0207】
なお、図26には図示を省略したが、インクジェット画像記録装置10の各部には、搬送系の位置を検出する位置検出センサ、温度を検出する温度センサなど多種、多数のセンサが設けられ、各センサから得られた検出信号はシステム制御部172に送られるとともに、必要に応じて所定のメモリに記憶される。
【0208】
上記構成から成る本実施形態に係るインクジェット画像記録装置によれば、Single Pass Page Width、ワンパスタイプのラインヘッドを有するインクジェット画像記録装置において、ラインCCDセンサ70を用紙幅方向に走査して、不吐出検知、濃度ムラを検知する走査型インラインセンサを有する画像出力装置が実現される。
【0209】
本実施形態によれば、吐出解像度に対して、インラインセンサの解像度は低解像度、高解像度いずれでも良く、副走査することによって、不吐出検知、濃度ムラ、吐出間隔、吐出サイズ検知が可能である。
【0210】
更に、下記〔1〕〜〔4〕の機能を有することで走査型検知でありながら、効率的な検査が可能であり、検知漏れを少なくすることが可能となる。
【0211】
〔1〕走査による読み取り検査を行い、不吐出ノズルの発生状況から、メンテナンスモードへの移行時期を予測する機能を備える。
【0212】
具体的には、走査光学系の検査範囲内(計測視野内)での不吐出ノズルのノズル数を計測してその時間平均(移動平均)を計算し、その時間平均が単調増加傾向にある点を検知し、その点の検査頻度を増加させて重点的に検査を行う機能を備える。
【0213】
〔2〕出力画像データから不吐出に至ることが予測される部分を特定し、その予測位置に対して、検査頻度を増加させる機能を備える。
【0214】
具体的には、出力対象の画像データから用紙搬送方向の所定長さ(単位長さ)に対する吐出されるドット数の占める割合を算出し、所定の基準値よりも吐出ドット数の少ない位置を、不吐出が発生し易い位置(画像欠陥の発生が予測される部分)として特定し、その予測位置に対して、検査頻度を増加させて重点的に検査を行う機能を備える。
【0215】
〔3〕製造出荷時に予め不吐出の発生分布をデータとして蓄え、プロファイルとして各ヘッドに対応して記憶しておく。走査による検査を行う場合には、そのプロファイルにしたがって、検査時間、検査頻度に重み付けをし、不吐出発生頻度の高い位置ほど検査頻度を高くして検査を行う機能を備える。
【0216】
〔4〕出力画像のオフライン検査において異常が疑われた場合などに、その不良位置に対応する位置を指定して、当該位置に走査型インラインセンサを移動させて検査する機能を備える。このように、走査型インラインセンサの位置を遠隔操作して、随時、所望の範囲につき、出力結果を評価できる機能を備える。
【0217】
本実施形態によれば、検査対象となる用紙の幅が広がっても、用紙幅分と同等の検査光学系やインラインセンサを並べる必要がない。また、不良発生確率の高い位置ほど検査頻度を高くする頻度分布により、効率的な検査が可能であり、検査の見落としを小さくすることが可能となる。
【0218】
上述の実施形態では、印刷用のインクジェット画像記録装置への適用を例に説明したが、本発明の適用範囲はこの例に限定されない。「画像出力装置」という用語の解釈においては、写真プリントやポスター印刷などのいわゆるグラフィック印刷の用途に限定されず、例えば、インクジェット技術を利用したレジスト印刷装置、電子回路の配線パターンを描画する配線描画装置、マテリアルデポジション用の材料を用いて微細構造物を形成する微細構造物形成装置など、液状機能性材料を用いて様々な形状や画像として把握できるパターンを形成し得る装置にも広く適用できる。
【0219】
<付記>
上記に詳述した実施形態等の記載から把握されるとおり、本明細書では以下に示す発明を含む多様な技術思想の開示を含んでいる。
【0220】
(発明1):記録媒体を搬送する搬送手段と、液滴を吐出する複数のノズルが前記記録媒体の搬送方向と直交する幅方向に記録可能幅の全域にわたって配列されてなるフルライン型の記録ヘッドと、前記記録媒体の幅方向に沿って複数の画素が配列され、前記記録ヘッドにより前記記録媒体に記録された画像を読み取る画像読取手段と、前記画像読取手段により読み取られた画像に基づき出力画像の品質を検査する検査手段と、前記画像読取手段を前記画素の配列方向と平行な前記幅方向に移動させる走査手段と、前記記録ヘッドにおけるノズル配列のなかで記録不良が発生する位置を予測する不良発生予測手段と、前記不良発生予測手段によって特定された位置に対応する部分に対して前記画像読取手段による検査の頻度を増加させるように前記走査手段を制御する制御手段と、を備えたことを特徴とする画像出力装置を提供する。
【0221】
画像欠陥の発生が予測される部分について他の部分と比べて相対的に「検査頻度」を増加させることには、検査回数を増やす、検査時間を長くすることなどが含まる。
【0222】
「フルライン型の記録ヘッド」は、記録可能な全幅に対応する長さに満たないノズル列を有する比較的短尺のヘッドモジュールを複数個組み合わせ、これらを繋ぎ合わせることで長尺化して、全体として記録可能幅の全幅に対応する長さのノズル列を構成する態様がある。
【0223】
また、記録媒体と記録ヘッドを相対的に移動させる手段として、停止した(固定された)ヘッドに対して記録媒体を搬送する態様、停止した記録媒体に対してヘッドを移動させる態様、或いは、ヘッドと記録媒体の両方を移動させる態様がある。
【0224】
「記録媒体」は、記録ヘッドのノズル(吐出口)から吐出される液滴の付着を受ける媒体の総称であり、インクジェットプリンタにおける印字媒体、被画像形成媒体、被記録媒体、受像媒体、被吐出媒体、中間転写体などが含まれる。記録媒体の形態や材質については、特に限定されず、連続用紙、カット紙、シール用紙、OHPシート等の樹脂シート、フィルム、布、配線パターン等が形成されるプリント基板、ゴムシート、金属シート、その他材質や形状を問わず、様々な媒体を含む。
【0225】
本発明に係る画像出力装置の一態様としてのインクジェット画像記録装置は、ドットを形成するためのインク液滴を吐出するためのノズル(吐出口)及び吐出圧を発生させる圧力発生素子(圧電アクチュエータや加熱発泡用の発熱体)を含む液滴吐出素子(インク液室ユニット)を高密度に多数配置した液体吐出ヘッド(記録ヘッド)を備えるとともに、入力画像から生成されたインク吐出用データ(ドットデータ)に基づいて記録ヘッドからの液滴の吐出を制御する吐出制御手段とを備え、ノズルから吐出した液滴によって記録媒体上に画像を形成する。
【0226】
例えば、画像入力手段を介して入力された画像データ(印字データ)に基づいて色変換やハーフトーニング処理が行われ、インク色に応じたインク吐出データが生成される。このインク吐出データに基づいて、液体吐出ヘッドの各ノズルに対応する圧力発生素子の駆動が制御され、ノズルからインク滴が吐出される。
【0227】
高解像度の画像出力を実現するためには、インク液を吐出するノズル(吐出口)と、該ノズルに対応した圧力室及び圧力発生素子とを含んで構成される液滴吐出素子(インク室ユニット)を高密度に多数配置した記録ヘッドを用いる態様が好ましい。
【0228】
インクジェットプリンタにおいて用いてカラー画像を形成する場合は、複数色のインク(記録液)の色別に記録ヘッドを配置してもよいし、1つの記録ヘッドから複数色のインクを吐出可能な構成としてもよい。
【0229】
(発明2):発明1に記載の画像出力装置において、前記不良発生予測手段は、前記画像読取手段の読取視野内における不吐出ノズル数の時間平均を演算し、その時間平均の値が単調増加傾向にある位置を特定する第1の予測演算手段を備えることを特徴とする画像出力装置を提供する。
【0230】
発明2において、更に、演算された時間平均の値が規定値に達するまでの期間は、不吐出ノズルの近隣ノズルによる代用打滴等による補正を行い、規定値に達した場合に、メンテナンスモードに移行するという制御も好ましい。
【0231】
(発明3):発明1又は2に記載の画像出力装置において、前記不良発生予測手段は、前記記録ヘッドによって出力する画像の画像データに基づき、吐出頻度が所定の基準値よりも低いノズルに対応する位置を特定する第2の予測演算手段を備えることを特徴とする画像出力装置を提供する。
【0232】
例えば、出力している画像データから記録媒体の搬送方向の所定長さに対する吐出ドット数の占める割合(打滴率)を計算し、その値が所定の基準値よりも小さい位置を重点的に検査する態様がある。
【0233】
(発明4):発明1乃至3のいずれか1項に記載の画像出力装置において、前記不良発生予測手段は、前記記録ヘッドにおける前記幅方向についての記録不良の発生分布を示す情報を記憶しておく記憶手段を備えるとともに、前記記憶手段に記憶されている情報に基づき記録不良が発生し易い位置を特定する第3の予測演算手段を備えることを特徴とする画像出力装置を提供する。
【0234】
記憶手段には、予めヘッドに固有の記録不良発生分布を示す情報を格納しておく態様がある。また、稼働後の不吐出検出の履歴を蓄積するなどして、情報を追加、更新する態様も好ましい。
【0235】
また、発明2〜4に記載した第1〜第3の予測演算手段を組み合わせ、それぞれの手段による特定結果について適宜の重み付けを行い、検査頻度の分布を決定してもよい。
【0236】
(発明5):発明1乃至4のいずれか1項に記載の画像出力装置において、前記画像読取手段によって検査すべき位置を指定する指令を入力する操作を行うための操作手段を備え、前記操作手段からの指定に係る位置に前記画像読取手段を移動させて、当該指定位置について前記検査手段による検査を実施しうる構成であることを特徴とする画像出力装置を提供する。
【0237】
不良発生の予測に基づき、画像読取手段の走査を制御する構成に加えて、オペレータが必要に応じて検査位置を指定することができるように構成されていることが望ましい。
【0238】
(発明6):記録媒体を搬送する搬送工程と、液滴を吐出する複数のノズルが前記記録媒体の搬送方向と直交する幅方向に記録可能幅の全域にわたって配列されてなるフルライン型の記録ヘッドを用いて打滴を行う打滴工程と、前記記録媒体の幅方向に沿って複数の画素が配列された画像読取手段を用いて、前記記録ヘッドにより前記記録媒体に記録された画像を読み取る読取工程と、前記画像読取手段により読み取られた画像に基づき出力画像の品質を検査する検査工程と、前記画像読取手段を前記画素の配列方向と平行な前記幅方向に移動させる走査工程と、前記記録ヘッドにおけるノズル配列のなかで記録不良が発生する位置を予測する不良発生予測工程と、前記不良発生予測工程によって特定された位置に対応する部分に対して前記画像読取手段による検査の頻度を増加させるように前記走査の動作を制御する制御工程と、を備えたことを特徴とする画像検査方法を提供する。
【図面の簡単な説明】
【0239】
【図1】本発明の実施形態に係るインクジェット画像記録装置の全体構成図
【図2】図1に示すインクジェット画像記録装置の印字部周辺の要部平面図
【図3】図1に示すヘッドの構成例を示す平面透視図
【図4】図3中4−4線に沿う断面図
【図5】図3に示すヘッドのノズル配列を示す拡大図
【図6】図1に示すインクジェット画像記録装置におけるインク供給系の構成を示す概要図
【図7】インライン検出部の構成を示す斜視図
【図8】解像度の異なるセンサを用いてテストパターンを読み取った場合に得られる検知信号の例を示すグラフ
【図9】低解像度(約250dpi)のセンサを移動量αのステップで走査する場合に得られた検知信号の例を示すグラフ
【図10】高解像度(600dpi)のセンサを移動量αのステップで走査する場合に得られた検知信号の例を示すグラフ
【図11】テストパターンが記録される記録媒体の平面図
【図12】テストパターンの例を示す図
【図13】図12のA部拡大図
【図14】計測視野内における不吐出ノズル数の時間変化を示すグラフ
【図15】視野内で時間平均した不吐出ノズル数の時間変化を示すグラフ
【図16】不吐出ノズルと画像データの関係を示すグラフ
【図17】ヘッドにおけるノズル位置と不吐出の相対発生率の関係を示すグラフ
【図18】不吐出検査のフローチャート
【図19】ムラ補正の方法の説明図
【図20】高分解能検査時における濃度ムラ補正前の濃度プロファイルの例を示す説明図
【図21】濃度ムラ補正後の様子を示す説明図
【図22】(a)は現実に即した印字モデルの濃度プロファイル図、(b)はδ関数型印字モデルの濃度プロファイル図
【図23】濃度補正係数算出時のフローチャート
【図24】画像出力時のフローチャート
【図25】濃度ムラ補正処理の概念図
【図26】本実施形態に係るインクジェット画像記録装置のシステム構成を示す要部ブロック図
【符号の説明】
【0240】
10…インクジェット画像記録装置、14…記録媒体、16…搬送ドラム、16−6…検査ドラム、22…印字部、22K,22C,22M,22Y…ヘッド、26…インライン検出部、51…ノズル、70…ラインCCDセンサ、72…レンズ、76…スライドガイド、172…システム制御部、180…プリント制御部、194…画像処理部、195…EEPROM、197…走査駆動部

【特許請求の範囲】
【請求項1】
記録媒体を搬送する搬送手段と、
液滴を吐出する複数のノズルが前記記録媒体の搬送方向と直交する幅方向に記録可能幅の全域にわたって配列されてなるフルライン型の記録ヘッドと、
前記記録媒体の幅方向に沿って複数の画素が配列され、前記記録ヘッドにより前記記録媒体に記録された画像を読み取る画像読取手段と、
前記画像読取手段により読み取られた画像に基づき出力画像の品質を検査する検査手段と、
前記画像読取手段を前記画素の配列方向と平行な前記幅方向に移動させる走査手段と、
前記記録ヘッドにおけるノズル配列のなかで記録不良が発生する位置を予測する不良発生予測手段と、
前記不良発生予測手段によって特定された位置に対応する部分に対して前記画像読取手段による検査の頻度を増加させるように前記走査手段を制御する制御手段と、
を備えたことを特徴とする画像出力装置。
【請求項2】
請求項1に記載の画像出力装置において、
前記不良発生予測手段は、前記画像読取手段の読取視野内における不吐出ノズル数の時間平均を演算し、その時間平均の値が単調増加傾向にある位置を特定する第1の予測演算手段を備えることを特徴とする画像出力装置。
【請求項3】
請求項1又は2に記載の画像出力装置において、
前記不良発生予測手段は、前記記録ヘッドによって出力する画像の画像データに基づき、吐出頻度が所定の基準値よりも低いノズルに対応する位置を特定する第2の予測演算手段を備えることを特徴とする画像出力装置。
【請求項4】
請求項1乃至3のいずれか1項に記載の画像出力装置において、
前記不良発生予測手段は、前記記録ヘッドにおける前記幅方向についての記録不良の発生分布を示す情報を記憶しておく記憶手段を備えるとともに、前記記憶手段に記憶されている情報に基づき記録不良が発生し易い位置を特定する第3の予測演算手段を備えることを特徴とする画像出力装置。
【請求項5】
請求項1乃至4のいずれか1項に記載の画像出力装置において、
前記画像読取手段によって検査すべき位置を指定する指令を入力する操作を行うための操作手段を備え、
前記操作手段からの指定に係る位置に前記画像読取手段を移動させて、当該指定位置について前記検査手段による検査を実施しうる構成であることを特徴とする画像出力装置。
【請求項6】
記録媒体を搬送する搬送工程と、
液滴を吐出する複数のノズルが前記記録媒体の搬送方向と直交する幅方向に記録可能幅の全域にわたって配列されてなるフルライン型の記録ヘッドを用いて打滴を行う打滴工程と、
前記記録媒体の幅方向に沿って複数の画素が配列された画像読取手段を用いて、前記記録ヘッドにより前記記録媒体に記録された画像を読み取る読取工程と、
前記画像読取手段により読み取られた画像に基づき出力画像の品質を検査する検査工程と、
前記画像読取手段を前記画素の配列方向と平行な前記幅方向に移動させる走査工程と、
前記記録ヘッドにおけるノズル配列のなかで記録不良が発生する位置を予測する不良発生予測工程と、
前記不良発生予測工程によって特定された位置に対応する部分に対して前記画像読取手段による検査の頻度を増加させるように前記走査の動作を制御する制御工程と、
を備えたことを特徴とする画像検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2010−6000(P2010−6000A)
【公開日】平成22年1月14日(2010.1.14)
【国際特許分類】
【出願番号】特願2008−170860(P2008−170860)
【出願日】平成20年6月30日(2008.6.30)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】