説明

画像形成装置、及びプロセスカートリッジ

【課題】電子写真感光体の表面電位のムラが抑制された画像形成装置を提供すること。
【解決手段】基体と、感光層と、酸素及びガリウムを含有し、外周面側に存在する第1の領域、及び前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体を備え、その周囲に、電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、前記炭素原子によるsp構造を持つ被覆層を有する帯電手段と、帯電手段により帯電された電子写真感光体の表面を露光して静電潜像を形成する潜像形成手段と、トナーを含む現像剤を収納し、現像剤により、電子写真感光体に形成された静電潜像を現像してトナー像を形成する現像手段と、電子写真感光体に形成されたトナー像を記録媒体に転写する転写手段と、を備えた画像形成装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像形成装置、及びプロセスカートリッジに関するものである。
【背景技術】
【0002】
電子写真法は、複写機やプリンター等に幅広く利用されている。
近年、電子写真法を利用した画像形成装置に使用される電子写真感光体(以下、「感光体」と称す場合がある)に関し、該感光体の感光層表面に表面層(保護層)を設ける技術が検討されている。
【0003】
例えば、シリコンを主体とする非単結晶からなる光導電層を有する電子写真感光体であって、表面層にフッ化マグネシウムを主成分として含有させる技術が知られている(例えば、特許文献1参照)。
また、導電性基板上に有機感光層を形成し、この有機感光層上に特定の条件による触媒CVD法によりアモルファスシリコンカーバイドからなる表面保護層を成膜形成した電子写真感光体が知られている(例えば、特許文献2参照)。
また、感光体の表面層として、アモルファス炭素中にガリウムを含有する表面層(例えば、特許文献3参照)や、ダイヤモンド結合を有するアモルファス窒化炭素を含む表面層(例えば、特許文献4参照)、非単結晶の水素化窒化物半導体を含む表面層(例えば、特許文献5参照)が知られている。
更には、酸素と13族元素とを含み最表面における酸素の含有量が15原子%を超える表面層(例えば、特許文献6参照)、酸素と13族元素とを含み元素組成比(酸素/13族元素)が1.1以上1.5以下である表面層(例えば、特許文献7参照)が知られている。
【0004】
また、板状の放電電極の両面を絶縁性の誘電体で覆った帯電装置が知られている(例えば、特許文献8参照)。
放電生成物による板状グリッド表面の錆の発生を防止するために、板状グリッドのグリッド基材の表面に、グラファイトを含む導電性塗料スプレー法で均一に塗布して、導電層を形成する技術も知られている(例えば、特許文献9参照)
コロナ放電器の制御電極の基材表面に、グラファイト粒子及びニッケル粒子、アルミニウム化合物粒子のいずれか又は複数からなる導電性粒子を含む導電性被膜を形成することが知られている(例えば、特許文献10参照)。
コロナ放電器の対向電極部材の表面に、炭素原子、又は炭素原子と所望の他の原子あるいは他の複数原子を主成分として、炭素原子によるsp構造を有する被覆材で被覆した層を成膜することも知られている(例えば、特許文献11参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−29437号公報
【特許文献2】特開2003−316053号公報
【特許文献3】特開平2−110470号公報
【特許文献4】特開2003−27238号公報
【特許文献5】特開平11−186571号公報
【特許文献6】特開2006−267507号公報
【特許文献7】特開2008−268266号公報
【特許文献8】特開2002−268334号公報
【特許文献9】特開2004−198909号公報
【特許文献10】特開2005−227470号公報
【特許文献11】特開2008−233254号方向
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の課題は、下記特定の酸素及びガリウムを含有する保護層を有する電子写真感光体を採用した画像液性装置において、下記炭素原子によるsp構造を持つ被覆層を有さない帯電手段を採用した場合に比べ、画像の白抜けが抑制された画像形成装置を提供することである。
【課題を解決するための手段】
【0007】
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
基体と、感光層と、酸素及びガリウムを含有し、外周面側に存在する第1の領域、及び前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、前記炭素原子によるsp構造を持つ被覆層を有する帯電手段と、
前記帯電手段により帯電された前記電子写真感光体の表面を露光して静電潜像を形成する潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体に形成された前記静電潜像を現像してトナー像を形成する現像手段と、
前記電子写真感光体に形成された前記トナー像を記録媒体に転写する転写手段と、
を備えた画像形成装置。
【0008】
請求項2に係る発明は、
前記帯電手段を冷却する冷却手段を備える請求項1に記載の画像形成装置。
【0009】
請求項3に係る発明は、
前記冷却手段が、前記画像形成装置の外部から外気を前記帯電手段に送風する送風手段である請求項2に記載の画像形成装置。
【0010】
請求項4に係る発明は、
基体と、感光層と、酸素及びガリウムを含有し、外周面側に存在する第1の領域、及び前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、前記炭素原子によるsp構造を持つ被覆層を有する帯電手段と、
を備えたプロセスカートリッジ。
【発明の効果】
【0011】
請求項1に係る発明によれば、上記特定の酸素及びガリウムを含有する保護層を有する電子写真感光体を採用した画像液性装置において、炭素原子によるsp構造を持つ被覆層を有さない帯電手段を採用した場合に比べ、画像の白抜けが抑制される。
請求項2に係る発明によれば、冷却手段を採用しない場合に比べ、画像の白抜けが抑制される。
請求項3に係る発明によれば、冷却手段として送風手段を採用しない場合に比べ、簡易な構成で、画像の白抜けが抑制される。
請求項4に係る発明によれば、上記下記特定の酸素及びガリウムを含有する保護層を有する電子写真感光体を採用した画像液性装置において、炭素原子によるsp構造を持つ被覆層を有さない帯電手段を採用した場合に比べ、画像の白抜けが抑制される。
【図面の簡単な説明】
【0012】
【図1】本実施形態に係る電子写真感光体の層構成の一例を示す模式断面図である。
【図2】本実施形態に係る電子写真感光体の層構成の別の一例を示す模式断面図である。
【図3】本実施形態に係る電子写真感光体の層構成の別の一例を示す模式断面図である。
【図4】本実施形態に係る電子写真感光体の層構成の別の一例を示す模式断面図である。
【図5】本実施形態に係る電子写真感光体の保護層の形成に用いる成膜装置の一例を示す概略模式図である。
【図6】本実施形態に係る電子写真感光体の保護層の形成に用いるプラズマ発生装置の例を示す概略模式図である。
【図7】本実施形態に係る画像形成装置を示す概略構成図である。
【図8】他の本実施形態に係る画像形成装置を示す概略構成図である。
【図9】本実施形態に係る帯電装置を示す斜視図である。
【図10】本実施形態に係る帯電装置の要部断面図であり、図4(A)は帯電装置の右側の要部説明図、図4(B)は帯電装置の左側の要部説明図である。
【図11】本実施形態に係る網状電極部材の構成を示す平面図である。
【発明を実施するための形態】
【0013】
以下、本発明の一例である実施形態について説明する。
【0014】
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層を有する帯電手段と、電子写真感光体の表面を帯電する帯電手段と帯電手段により帯電された電子写真感光体の表面を露光して静電潜像を形成する潜像形成手段と、現像剤を収納し、現像剤により、電子写真感光体に形成された静電潜像を現像してトナー像を形成する現像手段と、電子写真感光体に形成されたトナー像を記録媒体に転写する転写手段と、を備える。
【0015】
そして、電子写真感光体として、電子写真感光体は、基体と、感光層と、酸素及びガリウムを含有する保護層であって、外周面側に存在する第1の領域、及び、第1の領域よりも基体に近い側に存在し、第1の領域に比べて原子数比〔酸素/ガリウム〕(以下、「原子数比〔O/Ga〕」とも表記する)が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体を採用する。
即ち、上記保護層は、層厚方向についての原子数比〔酸素/ガリウム〕の分布において、外周面側に存在する第1の領域と、第1の領域よりも基体に近い側に存在し、第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域と、を有する構成となっている。
なお、保護層は、必要に応じ、第1の領域及び第2の領域以外の領域を有していてもよい。
【0016】
ここで、一般に、電子写真感光体の感光層表面に、酸素及びガリウムを有する保護層を形成すると、保護層形成により電子写真感光体の感度が低下する傾向がある。特に、保護層において、原子数比〔酸素/ガリウム〕を小さくし、層の抵抗を低くし残留電位を小さくすると、可視域全体での光吸収のため層が着色し、感度の低下が大きくなる傾向がある。
ところが、今回検討した結果、酸素及びガリウムを含む領域(第2の領域)の基体から離れた側に、相対的に原子数比〔酸素/ガリウム〕が小さい領域(第1の領域)を配置させることで、保護層形成による感度の低下が抑制されることが明らかとなった。この原因については、第1の領域が電荷注入領域としての機能を有し、第2の領域が電荷輸送領域としての機能を有する結果、残留電位を低減でき同時に光吸収が低下するため、と推測される。ただし、本実施形態はこの原因によって限定されることはない。
そこで、電子写真感光体を、上記構成とすることにより、保護層が、外周面側に存在する第1の領域よりも原子数比〔酸素/ガリウム〕が大きい第2の領域を有しない場合と比較して、保護層形成による感度の低下が抑制される。更に、上記本実施形態の構成とすることにより、残留電位が低減される。
【0017】
一方で、上記特性を有する電子写真感光体では、保護層が衝撃等によりひび割れや陥没が生じ易い傾向にある。このひび割れや陥没は、直接画像欠陥とはなり難いものの、帯電の際に生じる放電生成物(例えば、無水硝酸(N)等)が、帯電装置に付着・堆積し、これが画像形成装置内温度の上昇に伴い、気化(昇華)すると、この放電生成物ガス(例えば、無水硝酸ガス)が、電子写真感光体の保護層に生じたひび割れや陥没した個所から電子写真感光体内部(保護層及び感光層内部)へ浸入し、その部分の抵抗が低下することがある。
【0018】
そこで、本実施形態に係る画像形成装置では、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層を有する帯電手段を採用し、炭素原子によるsp構造を持つ被覆層により、帯電手段に対して放電生成物が付着・堆積したり、酸化反応させ難くさせる。
このため、帯電手段に付着・堆積する放電生成物が低減されることから、気化する放電生成物ガス(例えば、無水硝酸ガス)も低減され、放電生成物ガス(例えば、無水硝酸ガス)が電子写真感光体の保護層に生じたひび割れや陥没した個所から電子写真感光体内部(保護層及び感光層内部)へ浸入し、その部分の抵抗が低下することが抑制される。その結果、電子写真感光体の部分的な抵抗低下による画像欠陥、即ち画像の白抜け(所謂、パーキングデリーション)が抑制される。
【0019】
ここで、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層を有する帯電手段は、炭素原子によるsp構造を持つ被覆層により、帯電手段に対して放電生成物が付着・堆積したり、酸化反応させ難くなるものの、少なからず放電生成物が付着・堆積したり、酸化反応したりしてしまうことがある。
【0020】
このため、本実施形態に係る画像形成装置では、帯電手段を冷却する冷却手段を備えることがよい。例えば、画像形成動作により画像形成装置内温度が上昇する際、冷却手段により帯電手段(その被覆層)を冷却することで、帯電装置(その被覆層)に少なからず付着した放電生成物が気化(昇華)し難くなる。その結果、放電生成物ガス(例えば、無水硝酸ガス)に起因した電子写真感光体の部分的な抵抗低下による画像欠陥、即ち画像の白抜け(所謂、パーキングデリーション)が抑制される。
特に、冷却手段として、画像形成装置の外部から外気を帯電手段に送風する送風手段を採用することで、外気により帯電装置(その被覆層)が冷却されることから、簡易な構成で、画像の白抜け(所謂、パーキングデリーション)が抑制される。また、送風手段による送風により、放電生成物が気化(昇華)が気化したとしても、帯電手段、電子写真感光体の周囲から、気化した放電生成物が排除され易くなる。
なお、冷却手段としては、上記送風方式の送付手段に限られず、例えば、水冷方式の冷却手段や、その他方式の冷却手段であってもよい。
【0021】
以下、本実施形態を図面を参照しつつ説明する。
図7は、本実施形態に係る画像形成装置を示す概略構成図である。
【0022】
本実施形態に係る画像形成装置101は、図7に示すように、例えば、矢印aで示すように、時計回り方向に回転する電子写真感光体10と、電子写真感光体10の上方に、電子写真感光体10に相対して設けられ、電子写真感光体10の表面を帯電させる帯電装置20(帯電手段の一例)と、帯電装置20により帯電した電子写真感光体10の表面に露光して、静電潜像を形成する露光装置30(静電潜像形成手段の一例)と、露光装置30により形成された静電潜像に現像剤に含まれるトナーを付着させて電子写真感光体10の表面にトナー像を形成する現像装置40(現像手段の一例)と、電子写真感光体10に接触しつつ矢印bで示す方向に走行するとともに、電子写真感光体10の表面に形成されたトナー像を転写するベルト状の中間転写体50と、電子写真感光体10の表面を清掃して転写残トナーを除去するクリーニング装置70(クリーニング手段の一例)とを備える。
【0023】
帯電装置20、露光装置30、現像装置40、中間転写体50、及びクリーニング装置70は、電子写真感光体10を囲む円周上に、時計周り方向に配設されている。
【0024】
中間転写体50は、内側から、支持ローラ50A、50B、背面ローラ50C、及び駆動ローラ50Dによって張力を付与されつつ保持されるとともに、駆動ローラ50Dの回転に伴い矢印bの方向に駆動される。中間転写体50の内側における電子写真感光体10に相対する位置には、中間転写体50をトナーの帯電極性とは異なる極性に帯電させて中間転写体50の外側の面に電子写真感光体10上のトナーを吸着させる一次転写装置51が設けられている。中間転写体50の下方における外側には、記録紙P(記録媒体の一例)をトナーの帯電極性とは異なる極性に帯電させて、中間転写体50に形成されたトナー像を記録紙P上に転写する二次転写装置52が背面ローラ50Cに対向して設けられている。なお、これら、電子写真感光体10に形成されたトナー像を記録紙Pへ転写するための部材が転写手段の一例に相当する。
【0025】
中間転写体50の下方には、さらに、二次転写装置52に記録紙Pを供給する記録紙供給装置53と、二次転写装置52においてトナー像が形成された記録紙Pを搬送しつつ、トナー像を定着させる定着装置80とが設けられている。
【0026】
記録紙供給装置53は、1対の搬送ローラ53Aと、搬送ローラ53Aで搬送される記録紙Pを二次転写装置52に向かって誘導する誘導スロープ53Bと、を備える。一方、定着装置80は、二次転写装置52によってトナー像が転写された記録紙Pを加熱・押圧することにより、トナー像の定着を行う1対の熱ローラである定着ローラ81と、定着ローラ81に向かって記録紙Pを搬送する搬送コンベア82とを有する。
【0027】
記録紙Pは、記録紙供給装置53と二次転写装置52と定着装置80とにより、矢印cで示す方向に搬送される。
【0028】
中間転写体50には、さらに、二次転写装置52において記録紙Pにトナー像を転写した後に中間転写体50に残ったトナーを除去するクリーニングブレードを有する中間転写体クリーニング装置54が設けられている。
【0029】
また、本実施形態に係る画像形成装置101は、空気流入口76a及び空気排出口76bが設けられている。空気流入口76a及び空気排出口76bには、それぞれ流入・排出させる外気を清浄化する清浄器、いわゆるフィルター77が設けられている。そして、画像形成装置101内には、空気流入口76aの周囲に、送風手段の一例としての送風機75が配置されており、送風機75が空気流入口76aを通じて外気を画像形成装置101内に取り込み、帯電装置20を通過して、空気流入口76aから排出するようにしている。
なお、図示しないが、壁部材や空気流入・排出管(ダクト)が配置され、画像形成装置101内に取り込んだ外気を、帯電装置20を通過して、空気流入口76aから排出するように案内させている。また、空気流入口76a及び空気排出口76bは複数あってもよく、それぞれに、外気が帯電装置を通過して、流入・排出されるように、壁部材や空気流入・排出管(ダクト)が配置して案内するようにしてもよい。
【0030】
以下、本実施形態に係る画像形成装置101における主な構成部材の詳細について説明する。
【0031】
(電子写真感光体)
電子写真感光体は、基体と、感光層と、酸素及びガリウムを含有する保護層であって、外周面側に存在する第1の領域、及び、第1の領域よりも基体に近い側に存在し、第1の領域に比べて原子数比〔酸素/ガリウム〕(以下、「原子数比〔O/Ga〕」とも表記する)が大きい第2の領域を有する保護層と、をこの順に有する
【0032】
電子写真感光体において、第1の領域及び第2の領域は、それぞれ、隣接する領域との界面が明確であっても、隣接する領域との界面が不明確であってもよい。
以下、隣接する領域との界面が明確である場合の第1の領域を「第1の層」といい、隣接する領域との界面が明確である場合の第2の領域を「第2の層」という。
即ち、保護層は、外周面側に存在する第1の層と、第1の層よりも基体に近い側に存在し、第1の層に比べて原子数比〔酸素/ガリウム〕が大きい第2の層と、を有する形態であってもよい。
【0033】
また、保護層が第1の層と第2の層とを有する場合、第1の層と第2の層との間に、原子数比〔酸素/ガリウム〕が、第1の層の原子数比〔酸素/ガリウム〕以上であり第2の層の原子数比〔酸素/ガリウム〕以下である中間層を有する形態が望ましい。
中間層を有する形態によれば、保護層形成による残留電位増加及び感度の低下がより低減される。この原因は、第1の層から第2の層への電荷の輸送がより効果的に行われるためと推定される。但し、本形態はこの原因によって限定されることはない。
【0034】
電子写真感光体において、保護層の組成や、原子数比〔酸素/ガリウム〕は、層厚方向の分布も含め、例えば、ラザフォードバックスキャタリング(RBS)により求める。
RBSは、例えば、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS−400、システムとして3S−R10を用いる。解析にはCE&A社のHYPRAプログラム等を用いる。
なお、RBSの測定条件は、He++イオンビームエネルギーは2.275eV、検出角度160°、入射ビームに対してGrazing Angleは109°である。
【0035】
RBS測定は、具体的には以下のようにして行う。
まず、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。組成比及び膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度が向上する。
ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度の3つの要素により決まる。
測定された組成から密度を計算によって仮定して、これを用いて層厚を算出する。密度の誤差は20%以内である。
【0036】
なお、本実施形態のように感光層上に第2の領域と第1の領域とが連続して形成されている場合でも、上記測定方法により表層部分(第1の領域)の破壊を抑制しつつ、第1の領域、第2の領域の各々の元素組成が測定される。
また、保護層全体中における各元素の含有量については、例えば、二次電子質量分析法やXPS(X線光電子分光法)で測定する。
【0037】
また、本実施形態における保護層は、必要に応じ、第1の領域及び第2の領域以外のその他の領域を有していてもよい。
例えば、第2の領域よりも基体に近い側に存在し、第2の領域に比べて原子数比〔酸素/ガリウム〕が小さい第3の領域を有していてもよい。
第3の領域を有する形態では、保護層の層厚方向についての原子数比〔酸素/ガリウム〕の分布は、外周面側の第1の領域から、一旦、原子数比〔酸素/ガリウム〕が大きくなり(第2の領域)、再び原子数比〔酸素/ガリウム〕が小さくなり(第3の領域)、そして感光層に至る分布となる。
第3の領域を有する形態によれば、繰り返し使用時における残留電位が抑制される。即ち、電子写真感光体の繰り返し特性が向上する。この原因については、繰り返し使用により感光層で生じた正孔を、第3の領域に注入するためと推測される。但し、本形態はこの原因によって限定されることはない。
また、第3の領域は、他の領域との界面が明確な、第3の層であってもよい。
【0038】
また、一般に、保護層の層厚を厚くすると電子写真感光体としての耐久性が向上する反面、保護層形成による感度の低下が大きくなる傾向がある。
本実施形態における保護層は、前述の通り、保護層形成による感度の低下を抑制する効果を有するため、保護層の層厚が厚い形態に好適である。即ち、本実施形態によれば、層厚を厚くしたときでも、保護層形成による感度の低下が抑制される。
従って、耐久性向上と、保護層形成による感度の低下抑制と、を両立させる観点より、保護層の層厚は1.0μm以上であることが望ましい。さらに、1.5μm以上がより望ましく、2.0μm以上が更に望ましく、2.5μm以上が特に望ましい。
保護層の層厚の上限には特に限定はないが、保護層形成による感度低下と、残留電位上昇と、をより低減する観点から、6.0μmである。
電子写真感光体の耐久性の確認方法としては、例えば、画像形成を繰り返し行った際の電子写真感光体の表面の傷の有無を調べる方法が挙げられる(傷が少ない程、耐久性が高い)。
また、画像形成を繰り返し行った際、形成された画像中に、電子写真感光体の表面の傷に起因する白筋状の画像欠陥があるかどうかを調べてもよい(白筋状の画像欠陥が少ない程、耐久性が高い)。
【0039】
また、保護層における第2の領域は、原子数比〔酸素/ガリウム〕が1.30以上1.50以下であることが望ましい。
この範囲であれば、第2の領域の着色が抑制され(即ち、透明性が向上し)、紫外から赤外までの波長領域(例えば、350nm以上800nm以下の波長領域)の光の透過率が向上する。その結果、帯電された電子写真感光体を除電するために、感光体外部から光を照射した際、保護層における該光の吸収が抑制される。従って、照射された光が効率よく感光層に到達するため、ひいては、電子写真感光体の感度が向上する。
更に、第2の領域における原子数比〔酸素/ガリウム〕を1.30以上1.50以下としても、第2の領域よりも基体から離れた側には、前述の第1の領域が存在するため、前述のとおり残留電位は抑制される。
【0040】
また、保護層における第2の領域は、更に、亜鉛(Zn)を含有することが望ましい。
第2の領域が亜鉛を含有することにより、感度の低下がより抑制され、残留電位が更に抑制される。
この原因については、第2の領域に亜鉛を含有させることにより、該第2の領域の電荷輸送性が向上するためと推測される。ただし、本実施形態はこの原因によって限定されない。
残留電位抑制の観点から、第2の領域における亜鉛の含有量は、0.4原子%以上25原子%以下であることが望ましく、0.5原子%以上20原子%以下であることがより望ましく、10原子%以上20原子%以下であることが特に望ましい。
ここで、第2の領域における亜鉛の含有量は、第2の領域が、ガリウムと酸素と亜鉛とからなる場合には、これらの合計の原子数に対する亜鉛の原子数の割合(%)である。
また、感度の低下抑制の観点から、第2の領域における原子数比〔酸素/(ガリウム+亜鉛)〕は、1.00以上1.40以下であることが望ましい。
また、感度の低下抑制の観点から、第2の領域における原子数比〔亜鉛/ガリウム〕は、1.00以下であることが望ましく、0.01以上0.50以下であることがより望ましく、0.20以上0.50以下であることが特に望ましい。
感度の低下抑制の観点から、第2の領域における亜鉛の含有量は、0.4原子%以上25原子%以下であることが望ましく、0.5原子%以上20原子%以下であることがより望ましく、1原子%以上15原子%以下であることが特に望ましい。
【0041】
−電子写真感光体の構成−
以下、本実施形態に係る電子写真感光体の構成について、図1乃至図4を参照して説明するが、本実施形態は図1乃至図4によって限定されることはない。
図1は、本実施形態に係る電子写真感光体の層構成の一例を示す模式断面図である。
図1中、1は基体、2は感光層、2Aは電荷発生層、2Bは電荷輸送層、3は保護層、3Aは第1の領域、3Bは第2の領域を表す。4は下引層である。
図1に示す感光体は、基体1上に、下引層4、電荷発生層2A、電荷輸送層2B、保護層3がこの順に積層された層構成を有し、感光層2は電荷発生層2A及び電荷輸送層2Bの2層から構成される。
保護層3は、外周面側に存在する第1の領域3A、及び、第1の領域3Aよりも基体1に近い側に存在する第2の領域3Bを有して構成されている。
図1では、図示の都合上、第1の領域3Aと第2の領域3Bとの境界が明確となっている(即ち、第1の領域3Aが第1の層であり、第2の領域3Bが第2の層である形態となっている)が、この境界は明確であることに限定されない。下記、図2及び図3中の第1の領域3Aと第2の領域3Bとの境界、図3中の第2の領域3Bと第3の領域3Cとの境界についても同様である。
【0042】
図2は、本実施形態に係る電子写真感光体の層構成の他の例を示す模式断面図であり、図2中、6は感光層を表し、他は、図1中に示したものと同様である。
図2に示す感光体は、基体1上に、下引層4、感光層6、保護層3がこの順に積層された層構成を有し、感光層6は、図1に示す電荷発生層2A及び電荷輸送層2Bの機能が一体となった層である。
なお、感光層2及び感光層6は、有機高分子から形成されたものでもよいし、無機材料から形成されたものでもよいし、それらが組み合わされたものでもよい。
【0043】
図3は、本実施形態に係る電子写真感光体の層構成の他の例を示す模式断面図であり、図3中、3は保護層を、3Aは第1の領域を、3Bは第2の領域を、3Cは第3の領域を、それぞれ表し、他は、図1中に示したものと同様である。
図3に示す感光体は、基体1上に、下引層4、感光層2、第3の領域3C、第2の領域3B、第1の領域3Aがこの順に積層された層構成を有している。
保護層3は、外周面側に存在する第1の領域3A、第1の領域3Aよりも基体1に近い側に存在する第2の領域3B、及び、第2の領域よりも基体1に近い側に存在する第3の領域3C、を有して構成されている。
【0044】
図4は、本実施形態に係る電子写真感光体の層構成の他の例を示す模式断面図であり、図4中、3は保護層を、3Dは第1の層を、3Eは第2の層を、3Fは中間層を、それぞれ表し、他は、図1中に示したものと同様である。
図4に示す感光体は、基体1上に、下引層4、感光層2、第2の層3E、中間層3F、第1の層3Dがこの順に積層された層構成を有している。
保護層3は、外周面側に存在する第1の層3D、第1の層3Dよりも基体1に近い側に存在する第2の層3E、第1の層3Dと第2の層3Eとの間に存在する中間層3Fを有して構成されている。
図4に示す感光体は、更に、感光層2と第2の層3Eとの間に、前述の第3の領域を有していてもよい。
【0045】
以下、本実施形態に係る電子写真感光体の構成要素である、保護層、感光層、基体について説明する。
【0046】
−保護層−
本実施形態における保護層は、前述のとおり、酸素(O)及びガリウム(Ga)を含有する層であり、基体上に設けられた感光層の更に上に設けられる層である。
保護層は、例えば、電子写真感光体の表面の傷を抑制すること、研磨バラツキを抑制すること、窒素酸化物などの吸着を抑制すること、オゾンや窒素酸化物による酸化雰囲気に対する耐性を向上すること、等の目的で設けられる層である。保護層は、透明性が高く緻密で硬度に優れた膜であることが望ましい。
本実施形態における保護層は、表面電荷を表面にトラップしても、また内部にトラップするものでもよい。また表面電荷を積極的に注入させるものでもよい。保護層の内部に電荷を注入する場合には有機感光層との界面に電荷がトラップする構成を有することが望ましい。また、負帯電で表面層が電子を注入する場合には正孔輸送層の表面が電荷トラップの機能を果たしてもよいし、電荷注入阻止とトラップのための層を設けてもよい。正帯電性の場合にも同様に構成される。
【0047】
保護層は、酸素(O)及びガリウム(Ga)を含有する、微結晶膜、多結晶膜、非晶質膜などの非単結晶膜であることが望ましい。
これらの中で非晶質は表面の平滑性で特に望ましいが、微結晶膜は硬度の点でより望ましい。
さらに、保護層の成長断面は柱状構造をとっていてもよいが、滑り性の観点からは平坦性の高い構造が望ましく、非晶質が望ましい。
感光層との密着性を高めつつ、表面の滑りを良くするためには、感光層との界面側の領域(例えば、第2の領域)を微結晶膜とし、表面側の領域(例えば、第1の領域)を非晶質膜としてもよい。
保護層中には、さらに導電型の制御のために、例えば、n型の場合、C、Si、Ge、Snから選ばれる1つ以上の元素を含んでいてもよい。また、例えば、p型の場合、N、Be、Mg、Ca、Srから選ばれる1つ以上の元素を含んでいてもよい。
【0048】
また、保護層は、酸素(O)及びガリウム(Ga)以外に、水素及びハロゲン元素の少なくとも1種を含むことが望ましい。
保護層が、微結晶、多結晶、非晶質の場合には、結合欠陥や転位欠陥や結晶粒界の欠陥などが多くなる傾向があるが、層中に水素やハロゲン元素を含むことで、結合欠陥の不活性化が行われるため望ましい。
水素やハロゲン元素は、結晶内の結合欠陥や結晶粒界の欠陥などに取り込まれ、電気的な補償を行う。このため、光キャリア発生やキャリアの拡散や移動に関係するトラップが少なくなり、反応活性点が少なくなり、より安定な保護層が構成される。
保護層中における「水素及びハロゲン元素の少なくとも1種」の含有量は、5原子%以上25原子%以下であることが望ましく、10原子%以上25原子%以下であることがより望ましい。
【0049】
保護層中における水素の含有量は、例えば、ハイドロジェンフォワードスキャタリング(HFS)により絶対値を測定することにより求める。また、赤外吸収スペクトルによって推定してもよい。
HFSは、加速器としてNEC社の3SDH Pelletronを用い、エンドステーションとしてCE&A社のRBS−400を用い、システムとしてCE&A社の3S−R10を用いる。
解析にはCE&A社のHYPRAプログラムを用いる。
【0050】
HFSの測定条件は、以下の通りである。
He++イオンビームエネルギー:2.275eV
検出角度160°入射ビームに対してGrazing Angle30°である。
【0051】
HFS測定は、He++イオンビームに対して検出器が30°に、試料が法線から75°になるようにセットすることにより、試料の前方に散乱する水素のシグナルを拾う。この時検出器をアルミ箔で覆い、水素とともに散乱するHe原子を取り除くことがよい。定量は参照用試料と被測定試料との水素のカウントを阻止能で規格化した後に比較することによっておこなう。参照用試料としてSi中にHをイオン注入した試料と白雲母を使用する。
白雲母は水素濃度が6.5原子%であることが知られている。
最表面に吸着しているHは、例えば、清浄なSi表面に吸着しているH量を差し引くことによって補正を行う。
【0052】
−−第1の領域−−
第1の領域は、保護層のうち、膜厚方向において、外周面側(支持体から離れた側)に存在する領域である。
第1の領域の組成には特に限定はないが、例えば、ガリウム及び酸素を含有する組成が挙げられる。
第1の領域がガリウム及び酸素を含有する場合、原子数比〔O/Ga〕は、1.00以上1.35未満であることが望ましく、1.10以上1.30以下であることがより望ましい。
また、第1の領域は、感光体の感度の低下をより効果的に低減する観点から、水素を含んでいてもよい。
第1の領域における水素の含有量は、5原子%以上25原子%以下が望ましく、10原子%以上25原子%以下がより望ましい。
その他、第1の領域の望ましい形態は、保護層の望ましい形態として前述したとおりである。
【0053】
第1の領域は、前述のとおり、導電型の制御のためにn型の元素やp型の元素を含むことがあるが、この場合、第1の領域を、電荷注入阻止層としてもよいし、電荷注入層としてもよい。電荷注入層とした場合には、第2の領域や感光層表面で電荷がトラップされる。
負帯電の場合、n型層は電荷注入層として機能し、p型層は電荷注入阻止層として機能する。正帯電の場合、n型層は電荷注入阻止層として機能し、p型層は電荷注入層として機能する。
【0054】
−第2の領域−
第2の領域は、保護層のうち、第1の領域よりも基体に近い側に存在し、第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい領域である。
第2の領域の組成は、前述の通り、ガリウム及び酸素(及び、必要に応じ亜鉛)を含有する組成である。
第2の領域は、更に、感光体の感度の低下をより効果的に低減する観点から、水素を含んでいてもよい。
第2の領域における水素の含有量は、5原子%以上25原子%以下が望ましく、10原子%以上25原子%以下がより望ましい。
その他、第2の領域の望ましい形態は、保護層の望ましい形態として前述したとおりである。
【0055】
−−第3の領域−−
第3の領域は、保護層中、必要に応じて設けられる領域であり、第2の領域よりも基体に近い側に(望ましく感光層と接して)存在する領域であり、第2の領域に比べて原子数比〔酸素/ガリウム〕が小さい領域である。
第3の領域の組成には特に限定はないが、例えば、ガリウム及び酸素を含有する組成が挙げられる。
第3の領域がガリウム及び酸素を含有する場合、原子数比〔O/Ga〕は、1.00以上1.40未満であることが望ましく、1.10以上1.35以下であることがより望ましい。
また、第3の領域は、感光体の感度の低下をより効果的に低減する観点から、水素を含んでいてもよい。
第3の領域における水素の含有量は、5原子%以上25原子%以下が望ましく、10原子%以上25原子%以下がより望ましい。
その他、第3の領域の望ましい形態は、保護層の望ましい形態として前述したとおりである。
【0056】
−−中間層−−
中間層は、保護層中、必要に応じて設けられる層であり、保護層が第1の層と第2の層とを有する場合において、第1の層と第2の層との間に、原子数比〔酸素/ガリウム〕が第1の層の原子数比〔酸素/ガリウム〕以上であり第2の層の原子数比〔酸素/ガリウム〕以下である組成で設けられる層である。
中間層の組成は、ガリウム及び酸素(及び、必要に応じ亜鉛)を含有する組成である。
中間層は、更に、感光体の感度の低下をより効果的に低減する観点から、水素を含んでいてもよい。
中間層における水素の含有量は、5原子%以上25原子%以下が望ましく、10原子%以上25原子%以下がより望ましい。
その他、中間層の望ましい形態は、保護層の望ましい形態として前述したとおりである。
【0057】
保護層は、第1の領域、第2の領域、第3の領域、中間層以外にも、必要に応じ、その他の層又は領域を有していてもよい。
【0058】
−保護層の形成方法−
次に、前述した保護層の形成方法について説明する。
保護層の形成には、プラズマCVD(Chemical Vapor Deposition)法、有機金属気相成長法、分子線エキタピシー法、蒸着、スパッタリング等の公知の気相成膜法が利用される。
【0059】
図5は、本実施形態に係る電子写真感光体の保護層の形成に用いる成膜装置の一例を示す概略模式図であり、図5(A)は、成膜装置を側面から見た場合の模式断面図を表し、図5(B)は、図5(A)に示す成膜装置のA1−A2間における模式断面図を表す。図5中、210は成膜室、211は排気口、212は基材回転部、213は基材支持部材、214は基体、215はガス導入管、216はガス導入管215から導入したガスを噴射する開口を有するシャワーノズル、217はプラズマ拡散部、218は高周波電力供給部、219は平板電極、220はガス導入管、221は高周波放電管部である。
【0060】
図5に示す成膜装置において、成膜室210の一端には、不図示の真空排気装置に接続された排気口211が設けられており、成膜室210の排気口211が設けられた側と反対側に、高周波電力供給部218、平板電極219及び高周波放電管部221からなるプラズマ発生装置が設けられている。
このプラズマ発生装置は、高周波放電管部221と、高周波放電管部221内に配置され、放電面が排気口211側に設けられた平板電極219と、高周波放電管部221外に配置され、平板電極219の放電面と反対側の面に接続された高周波電力供給部218とから構成されたものである。なお、高周波放電管部221には、高周波放電管部221内にガスを供給するためのガス導入管220が接続されており、このガス導入管220のもう一方の端は、不図示の第1のガス供給源に接続されている。
【0061】
なお、図5に示す成膜装置に設けられたプラズマ発生装置の代わりに、図6に示すプラズマ発生装置を用いてもよい。図6は、図5に示す成膜装置において利用されるプラズマ発生装置の他の例を示す概略模式図であり、プラズマ発生装置の側面図である。図6中、222が高周波コイル、223が石英管を表し、220は、図5中に示すものと同様である。このプラズマ発生装置は、石英管223と、石英管223の外周面沿って設けられた高周波コイル222とからなり、石英管223の一方の端は成膜室210(図6中、不図示)と接続されている。また、石英管223のもう一方の端には、石英管223内にガスを導入するためのガス導入管220が接続されている。
【0062】
図5において、平板電極219の放電面側には、放電面に沿って延びる棒状のシャワーノズル216が接続されており、シャワーノズル216の一端は、ガス導入管215と接続されており、このガス導入管215は成膜室210外に設けられた不図示の第2のガス供給源と接続されている。
また、成膜室210内には、基材回転部212が設けられており、円筒状の基材214が、シャワーノズル216の長手方向と基材214の軸方向とが沿って対面するように基材支持部材213を介して基材回転部212に取りつけられるようになっている。成膜に際しては、基材回転部212が回転することによって、基材214が周方向に回転する。なお、基材214としては、例えば、予め感光層まで積層された感光体、感光層上に第2の領域までが積層された感光体、感光層上に第3の領域までが積層された感光体、等が用いられる。
【0063】
保護層の形成は、例えば、以下のように実施する。
まず、酸素ガス(又は、ヘリウム(He)希釈酸素ガス)、ヘリウム(He)ガス、及び必要に応じ水素(H)ガスを、ガス導入管220から高周波放電管部221内に導入すると共に、高周波電力供給部218から平板電極219に、13.56MHzのラジオ波を供給する。この際、平板電極219の放電面側から排気口211側へと放射状に広がるようにプラズマ拡散部217が形成される。ここで、ガス導入管220から導入されたガスは成膜室210を平板電極219側から排気口211側へと流れる。平板電極219は電極の周りをアースシールドで囲んだものでもよい。
次に、トリメチルガリウムガスをガス導入管215、活性化手段である平板電極219の下流側に位置するシャワーノズル216を介して成膜室210に導入することによって、基材214表面にガリウムと酸素とを含む非単結晶膜を成膜する。
基材214としては、例えば、感光層が形成された基体を用いる。
また、第2の領域として、亜鉛を含む形態の第2の領域を成膜する際には、ガス導入管215から導入するガスとして、例えば、トリメチルガリウムガスと有機亜鉛(例えば、ジメチル亜鉛又はジエチル亜鉛)ガスとを用いる。このとき、トリメチルガリウムと、有機亜鉛と、は別々の容器から気体としてガス導入管215に導入する。
【0064】
保護層の成膜時の基材214表面の温度は、有機感光層を有する有機感光体を用いる場合には、150℃以下が望ましく、100℃以下がより望ましく、30℃以上100℃以下が特に望ましい。
基材214表面の温度が成膜開始当初は150℃以下であっても、プラズマの影響で150℃より高くなる場合には有機感光層が熱で損傷を受ける場合があるため、この影響を考慮して基材214の表面温度を制御することが望ましい。
また、アモルファスシリコン感光体を用いる場合には、保護層の成膜時の基材214表面の温度は、例えば、30℃以上350℃以下とされる。
基材214表面の温度は加熱及び/又は冷却手段(図中、不図示)によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。基材214を加熱する場合にはヒータを基材214の外側や内側に設置してもよい。基材214を冷却する場合には基材214の内側に冷却用の気体又は液体を循環させてもよい。
放電による基材214表面の温度の上昇を避けたい場合には、基材214表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。
【0065】
また、トリメチルガリウムガスの代わりにアルミニウムを含む有機金属化合物やジボラン等の水素化物を用いることもでき、これらを2種類以上混合してもよい。
例えば、保護層の形成の初期において、トリメチルインジウムをガス導入管215、シャワーノズル216を介して成膜室210内に導入することにより、基材214上に窒素とインジウムとを含む膜を成膜すれば、この膜が、継続して成膜する場合に発生し、感光層を劣化させる紫外線を吸収する。このため、成膜時の紫外線の発生による感光層へのダメージが抑制される。
【0066】
また、保護層には、その導電型を制御するためにドーパントを添加してもよい。
成膜時におけるドーパントのドーピングの方法としては、n型用としてはSiH,SnHを、p型用としては、ビスシクロペンタジエニルマグネシウム、ジメチルカルシウム、ジメチルストロンチウム、などをガス状態で使用する。また、ドーパント元素を表面層中にドーピングするには、熱拡散法、イオン注入法等の公知の方法を採用してもよい。
具体的には、例えば、少なくとも一つ以上のドーパント元素を含むガスをガス導入管215、シャワーノズル216を介して成膜室210内に導入することによって、n型、p型等の導電型の保護層を得る。
【0067】
図5及び図6を用いて説明した成膜装置では、放電エネルギーにより形成される活性窒素又は活性水素を、活性装置を複数設けて独立に制御してもよいし、NHなど、窒素原子と水素原子を同時に含むガスを用いてもよい。さらにHを加えてもよい。また、有機金属化合物から活性水素が遊離生成する条件を用いてもよい。
このようにすることで、基材214表面上には、活性化された、炭素原子、ガリウム原子、窒素原子、水素原子、等が制御された状態で存在する。そして、活性化された水素原子が、有機金属化合物を構成するメチル基やエチル基等の炭化水素基の水素を分子として脱離させる効果を有する。
このため、三次元的な結合を構成する硬質膜(保護層)が形成される。
【0068】
図5及び図6に示す成膜装置のプラズマ発生手段は、高周波発振装置を用いたものであるが、これに限定されるものではなく、例えば、マイクロ波発振装置を用いたり、エレクトロサイクロトロン共鳴方式やヘリコンプラズマ方式の装置を用いてもよい。また、高周波発振装置の場合は、誘導型でも容量型でもよい。
さらに、これらの装置を2種類以上組み合わせて用いてもよく、あるいは、同種の装置を2つ以上用いてもよい。プラズマの照射によって基材214表面の温度上昇を抑制するためには高周波発振装置が望ましいが、熱の照射を抑制する装置を設けてもよい。
【0069】
2種類以上の異なるプラズマ発生装置(プラズマ発生手段)を用いる場合には、同じ圧力で同時に放電が生起されるようにすることが望ましい。また、放電する領域と、成膜する領域(基体が設置された部分)とに圧力差を設けてもよい。これらの装置は、成膜装置内をガスが導入される部分から排出される部分へと形成されるガス流に対して直列に配置してもよいし、いずれの装置も基体の成膜面に対向するように配置してもよい。
【0070】
例えば、2種類のプラズマ発生手段をガス流に対して直列に設置する場合、図5に示す成膜装置を例に上げれば、シャワーノズル216を電極として成膜室210内に放電を起こさせる第2のプラズマ発生装置として利用される。この場合、例えば、ガス導入管215を介して、シャワーノズル216に高周波電圧を印加して、シャワーノズル216を電極として成膜室210内に放電を起こさせる。あるいは、シャワーノズル216を電極として利用する代わりに、成膜室210内の基材214と平板電極219との間に円筒状の電極を設けて、この円筒状電極を利用して、成膜室210内に放電を起こさせる。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧(例えば70000Pa以上110000Pa以下)で行ってもよい。大気圧で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
【0071】
なお、表面層等の形成に際しては、上述した方法以外にも、通常の有機金属気相成長法や分子線エピタキシー法が使用されるが、これらの方法による成膜に際しても、活性窒素及び/又は活性水素、活性酸素を使用することは低温化に有効である。この場合、窒素原料としてはN,NH,NF,N、メチルヒドラジンなどの気体、液体を気化したり、あるいは、キャリアガスでバブリングしたものが利用される。酸素原料としては酸素、HO,CO,CO,NO,NOなどが使用される。
【0072】
本実施形態における保護層の形成は、例えば、成膜室210に基体上に感光層を形成した基材214を設置し、各々組成の異なる混合ガスを導入して、第2の領域、第1の領域を連続的に形成する。必要に応じ、第2の領域の形成前に第3の領域を形成する。また、必要に応じ、第2の領域と第1の領域との間に中間層を形成する。
また、各領域(又は各層)の形成を別個独立に行ってもよい。
【0073】
また、成膜条件としては、例えば高周波放電により放電する場合、低温で良質な成膜を行うには、周波数として10kHz以上50MHz以下の範囲とすることが望ましい。また、出力は基体の大きさに依存するが、基体の表面積に対して0.01W/cm以上0.2W/cm以下の範囲とすることが望ましい。基体の回転速度は0.1rpm以上500rpm以下の範囲が望ましい。
各領域(又は各層)の成膜条件は同一としてもよいが、例えば、第2の領域の形成を低温で行うため出力を低めとし、第1の領域の形成を出力を高めにして行ってもよい。
【0074】
−基体及び感光層−
感光層は、電子写真感光体において、基体と保護層との間に設けられる層である。
本実施形態に係る電子写真感光体は、その層構成が、基体上に感光層と保護層とがこの順に積層されたものであれば特に限定されず、基体と感光層の間に必要に応じて下引層等を設けてもよい。また、感光層は、2層以上であってもよく、更に、機能分離型であってもよい。さらに、本実施形態に係る電子写真感光体は、感光層がシリコン原子を含むいわゆるアモルファスシリコン感光体であってもよい。
【0075】
アモルファスシリコン感光体の場合には、表層部として本実施形態における保護層を用いれば、高湿時の画像ボケが抑制され、耐久性と高画質とが両立される。
特に、感光層が、有機感光材料等の有機材料を含むいわゆる有機感光体であることが望ましい。有機感光体の場合、磨耗が起こりやすいが、表層部に本実施形態における保護層を用いれば、磨耗が抑制される。
【0076】
まず、電子写真感光体が、有機感光体である場合の望ましい構成について、その概要を説明する。
感光層を形成する有機高分子化合物は熱可塑性であっても熱硬化性のものであっても、また2種類の分子を反応させて形成するものでもよい。感光層と第1の領域との間に設けられる第2の領域は、硬度や膨張係数、弾力性の調整、密着性の向上などの観点から、第1の領域の物性及び感光層(機能分離型の場合は電荷輸送層)の物性の両者に対して、中間的な特性を示すものが好適である。また、第2の領域は、電荷をトラップする領域として機能してもよい。
【0077】
有機感光体の場合には、感光層は、図1、図3、及び図4に示すように電荷発生層と電荷輸送層に分かれた機能分離型でもよいし、図2に示すように機能一体型であってもよい。機能分離型の場合には感光体の表面側に電荷発生層を設けたものでもよいし、表面側に電荷輸送層を設けたものでもよい。
【0078】
感光層上に、前述の方法により保護層を形成する場合、熱以外の短波長電磁波の照射により感光層が分解したりすることを防ぐため、感光層表面には、保護層を形成する前に紫外線などの短波長光吸収層を予め設けてもよい。また、短波長光が感光層に照射されないように、保護層を形成する初期の段階で、バンドギャップの小さい層を最初に形成してもよい。感光層側に設けられるバンドギャップの小さい層の組成としては、例えば、Inを含んだ13族元素比はGaIn(1−X)(0≦X≦0.99)が好適である。
【0079】
また、紫外線吸収剤を含む層(例えば、高分子樹脂に分散させた層を塗布等を利用して形成される層)を感光層表面に設けてもよい。
このように、保護層を形成する前に感光体表面に紫外線吸収剤を含む層を設けることで、保護層を形成するときの紫外線や、画像形成装置内で感光体が使用された場合のコロナ放電や各種の光源からの紫外線などの短波長光による感光層への影響が低減される。
【0080】
次に、電子写真感光体が、アモルファスシリコン感光体である場合の望ましい構成について、その概要を説明する。
アモルファスシリコン感光体は、正帯電用でも負帯電用の感光体でもよい。
例えば、基体上に、電荷注入阻止層(下引層)と、光導電層と、電荷注入阻止表面層と、をこの順に設けたものが使用される。
本実施形態における保護層は、電荷注入阻止表面層上に形成される。
【0081】
また、感光層の最上層(保護層側の層)としては、例えば、p型アモルファスシリコン層、n型アモルファスシリコン層、Si1−X:H層、Si1−X:H層、Si1−X:H層、アモルファスカーボン層、などが用いられる。
【0082】
次に、電子写真感光体を構成する基体及び感光層の詳細や、必要に応じて設けられる下引層の詳細について、電子写真感光体が機能分離型の感光層を有する有機感光体である場合について説明する。
【0083】
−基体−
基体としては、導電性基体が用いられる。
なお、本明細書中において「導電性」とは、体積抵抗率が1013Ω・cm未満である性質を指し、「絶縁性」とは、体積抵抗率が1013Ω・cm以上である性質を指す。
導電性基体としては、アルミニウム、銅、鉄、ステンレス、亜鉛、ニッケル等の金属ドラム;シート、紙、プラスチック、ガラス等の基材上にアルミニウム、銅、金、銀、白金、パラジウム、チタン、ニッケル−クロム、ステンレス鋼、銅−インジウム等の金属を蒸着したもの;酸化インジウム、酸化スズ等の導電性金属化合物を上記基材に蒸着したもの;金属箔を上記基材にラミネートしたもの;カーボンブラック、酸化インジウム、酸化スズ−酸化アンチモン粉、金属粉、ヨウ化銅等を結着樹脂に分散し、上記基材に塗布することによって導電処理したもの等が挙げられる。また、基体の形状は、円筒形であることが望ましい。
【0084】
また、導電性基体として金属製パイプ基体を用いる場合、当該金属製パイプ基体の表面は素管のままのものであってもよいが、予め表面処理により基体表面を粗面化しておいてもよい。かかる粗面化により、露光光源としてレーザービーム等の可干渉光源を用いた場合に、感光体内部で発生し得る干渉光による木目状の濃度ムラが抑制される。表面処理の方法としては、鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニング等が挙げられる。
【0085】
特に、感光層との密着性向上や成膜性向上の点で、アルミニウム基体の表面に陽極酸化処理を施したものを導電性基体として用いることが望ましい。
【0086】
以下、表面に陽極酸化処理を施した導電性基体の製造方法について説明する。
まず、基体として純アルミ系あるいはアルミニウム合金(例えば、JISH4080に規定されている合金番号1000番台、3000番台、6000番台のアルミニウムあるいはアルミニウム合金)を用意する。次に陽極酸化処理を行う。陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行うが、硫酸浴による処理がよく用いられる。陽極酸化処理は、例えば、硫酸濃度:10質量%以上20質量%以下、浴温:5℃以上25℃以下、電流密度:1A/dm以上4A/dm以下、電解電圧:5V以上30V以下、処理時間:5分以上60分以下程度の条件で行われるが、これに限定するものではない。
【0087】
このようにしてアルミニウム基体上に成膜された陽極酸化皮膜は、多孔質であり、又絶縁性が高く、表面が非常に不安定であるため、皮膜形成後にその物性値が経時的に変化しやすくなっている。この物性値の変化を抑制するため、陽極酸化皮膜を更に封孔処理することが行われる。封孔処理の方法には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。これらの方法のうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最もよく用いられる。
【0088】
このようにして封孔処理が行われた陽極酸化皮膜の表面には、封孔処理により付着した金属塩等が過剰に残留している。金属塩等が基体の陽極酸化皮膜上に過剰に残存すると、陽極酸化皮膜上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまう傾向にあるため、この基体を感光体に用いて画像を形成した場合に地汚れの発生原因になる。
【0089】
そこで、封孔処理に引き続き、封孔処理により付着した金属塩等を除去するために陽極酸化皮膜の洗浄処理が行われる。洗浄処理は純水により基体の洗浄を1回行うことでも構わないが、多段階の洗浄工程により基体の洗浄を行うのが望ましい。この際、最終の洗浄工程における洗浄液としては、例えば、脱イオンされた洗浄液を用いる。また、多段階の洗浄工程のうち、いずれか1工程において、ブラシ等の接触部材を用いた物理的なこすり洗浄を施すことがよりさらに望ましい。
【0090】
以上のようにして形成される導電性基体表面の陽極酸化皮膜の膜厚は、3μm以上15μm以下程度の範囲内であることが望ましい。陽極酸化皮膜上には多孔質陽極酸化膜のポーラスな形状の極表面に沿ってバリア層といわれる層が存在する。バリア層の膜厚は本実施形態に係る電子写真感光体においては1nm以上100nm以下の範囲内であることが望ましい。以上のようにして、陽極酸化処理された導電性基体が得られる。
【0091】
このように得られた導電性基体は、陽極酸化処理により基体上に成膜された陽極酸化皮膜が高いキャリアブロッキング性を有している。そのため、この導電性基体を用いた感光体を画像形成装置に装着して反転現像(ネガ・ポジ現像)を行う場合に発生する点欠陥(黒ポチ、地汚れ)が抑制されるとともに、接触帯電時に生じやすい接触帯電器からの電流リーク現象が抑制される。また、陽極酸化皮膜に封孔処理を施すことにより、陽極酸化皮膜の作製後における物性値の経時変化が抑制される。また、封孔処理後に導電性基体の洗浄を行うことにより、封孔処理により導電性基体表面に付着した金属塩等が除去され、この導電性基体を用いて作製した感光体を備えた画像形成装置により画像を形成した場合に地汚れの発生が抑制される。
【0092】
−下引層−
次に、下引層について説明する。下引層を構成する材料としては、ポリビニルブチラールなどのアセタール樹脂;ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物のほかに、ジルコニウム、チタニウム、アルミニウム、マンガン、シリコン原子などを含有する有機金属化合物などが挙げられる。
これらの化合物は単独にあるいは複数の化合物の混合物あるいは重縮合物として用いる。これらの中でも、ジルコニウムもしくはシリコンを含有する有機金属化合物は、残留電位が低く環境による電位変化が少なく、また繰り返し使用による電位の変化が少ないため望ましく使用される。また、有機金属化合物は、これを単独又は2種以上を混合して用いてもよいし、さらに上述の結着樹脂と混合して用いてもよい。
【0093】
有機シラン化合物(シリコン原子を含有する有機金属化合物)としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシランなどが挙げられる。これらの中でも、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシシラン)、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシランなどのシランカップリング剤が望ましく使用される。
【0094】
その他、下引層としては、例えば、特開2008−076520号公報中段落0113から段落0136までに記載された下引層等、公知の下引層が用いられる。
【0095】
−感光層:電荷輸送層−
次に、感光層について、電荷輸送層と電荷発生層とに分けてこの順に以下に説明する。
電荷輸送層に用いられる電荷輸送材料としては、下記に示すものが例示される。即ち2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾールなどのオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリンなどのピラゾリン誘導体、トリフェニルアミン、トリ(p−メチル)フェニルアミン、N,N−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン、ジベンジルアニリン、9,9−ジメチル−N,N−ジ(p−トリル)フルオレノン−2−アミンなどの芳香族第3級アミノ化合物、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1−ビフェニル]−4,4’−ジアミンなどの芳香族第3級ジアミノ化合物、3−(4’−ジメチルアミノフェニル)−5,6−ジ−(4’−メトキシフェニル)−1,2,4−トリアジンなどの1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン、4−ジフェニルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン、[p−(ジエチルアミノ)フェニル](1−ナフチル)フェニルヒドラゾン、1−ピレンジフェニルヒドラゾン、9−エチル−3−[(2メチル−1−インドリニルイミノ)メチル]カルバゾール、4−(2−メチル−1−インドリニルイミノメチル)トリフェニルアミン、9−メチル−3−カルバゾールジフェニルヒドラゾン、1,1−ジ−(4,4’−メトキシフェニル)アクリルアルデヒドジフェニルヒドラゾン、β,β−ビス(メトキシフェニル)ビニルジフェニルヒドラゾンなどのヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリンなどのキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)−ベンゾフランなどのベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N−ジフェニルアニリンなどのα−スチルベン誘導体、エナミン誘導体、N−エチルカルバゾールなどのカルバゾール誘導体、ポリ−N−ビニルカルバゾール及びその誘導体などの正孔輸送物質が用いられる。あるいは、上記化合物を含む基を主鎖又は側鎖に有する重合体などが挙げられる。これらの電荷輸送材料は、単独又は2種以上を組み合せて使用する。
【0096】
電荷輸送層に用いられる結着樹脂としては特に限定はないが、結着樹脂は、特に電荷輸送材料と相溶性を有し適当な強度を有するものであることが望ましい。
【0097】
この結着樹脂の例として、ビスフェノールAやビスフェノールZ,ビスフェノールC,ビスフェノールTPなどを含む各種のポリカーボネート樹脂やその共重合体、ポリアリレート樹脂やその共重合体、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アクリル共重合体樹脂、アチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリビニルブチラール樹脂、ポリフェニレンエーテル樹脂などが挙げられる。これらの樹脂は単独あるいは2種以上の混合物として使用する。
【0098】
電荷輸送層に用いられる結着樹脂の分子量は、感光層の層厚や溶剤などの成膜条件によって選択されるが、通常は粘度平均分子量で3000以上30万以下の範囲内が望ましく、2万以上20万以下の範囲内がより望ましい。
【0099】
電荷輸送層は、上記電荷輸送材料及び結着樹脂を適当な溶媒に溶解させた溶液を塗布し乾燥することによって形成される。電荷輸送層形成用塗布液の形成に使用される溶媒としては、例えばベンゼン、トルエン、クロルベンゼン等の芳香族炭化水素系、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類、テトラヒドロフラン、ジオキサン、エチレングリコール、ジエチルエーテル等の環状あるいは直鎖状エーテル、あるいはこれらの混合溶剤などが用いられる。電荷輸送材料と上記結着樹脂との配合比は10:1乃至1:5の範囲内が望ましい。また電荷輸送層の層厚は一般に5μm以上50μm以下の範囲内であることが望ましく、10μm以上40μm以下の範囲であることがより望ましい。
【0100】
電荷輸送層及び/又は後述する電荷発生層は、画像形成装置中で発生するオゾンや酸化性ガス、あるいは光、熱による感光体の劣化を抑制する目的で、酸化防止剤、光安定剤、熱安定剤などの添加剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン又はそれらの誘導体、有機硫黄化合物、有機燐化合物などが挙げられる。
【0101】
電荷輸送層は、例えば、上記に示した電荷輸送材料及び結着樹脂を適当な溶媒に溶解させた溶液を塗布し、乾燥させることによって形成する。電荷輸送層形成用塗布液の調整に用いられる溶媒としては、例えばベンゼン、トルエン、クロルベンゼン等の芳香族炭化水素系、アセトン、2ーブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類、テトラヒドロフラン、ジオキサン、エチレングリコール、ジエチルエーテル等の環状或るいは直鎖状エーテル等、あるいはこれらの混合溶媒を用いる。
また電荷輸送層形成用塗布液には、塗布形成される塗膜の平滑性向上のためのレベリング剤としてシリコーンオイルを添加してもよい。
【0102】
電荷輸送材料と結着樹脂との配合比は、質量比で10:1乃至1:5であることが望ましい。また電荷輸送層の層厚は一般には5μm以上50μm以下の範囲内とすることが望ましく、10μm以上30μm以下の範囲内がより望ましい。
【0103】
電荷輸送層形成用塗布液の塗布は、感光体の形状や用途に応じて、浸漬塗布法、リング塗布法、スプレー塗布法、ビード塗布法、ブレード塗布法、ローラー塗布法、ナイフ塗布法、カーテン塗布法などの塗布法を用いて行う。乾燥は、室温(例えば、20℃以上30℃以下)での指触乾燥の後に加熱乾燥することが望ましい。加熱乾燥は、30℃以上200℃以下の温度域で5分以上2時間の範囲の時間で行うことが望ましい。
【0104】
その他、電荷輸送層としては、例えば、特開2008−076520号公報中段落0137から段落0150までに記載された電荷輸送層等、公知の電荷輸送層を用いる。
【0105】
−感光層:電荷発生層−
電荷発生層は、電荷発生材料を真空蒸着法により蒸着させて形成するか、有機溶剤及び結着樹脂を含む溶液を塗布することにより形成される。
【0106】
電荷発生材料としては、非晶質セレン、結晶性セレン、セレン−テルル合金、セレン−ヒ素合金、その他のセレン化合物;セレン合金、酸化亜鉛、酸化チタン等の無機系光導電体;又はこれらを色素増感したもの、無金属フタロシアニン,チタニルフタロシアニン,銅フタロシアニン,錫フタロシアニン,ガリウムフタロシアニンなどの各種フタロシアニン化合物;スクエアリウム系、アントアントロン系、ペリレン系、アゾ系、アントラキノン系、ピレン系、ピリリウム塩、チアピリリウム塩等の各種有機顔料;又は染料が用いられる。
また、これらの有機顔料は一般に数種の結晶型を有しており、特にフタロシアニン化合物ではα型、β型などをはじめとしてさまざまな結晶型が知られているが、目的にあった感度その他の特性が得られる顔料であるならば、これらのいずれの結晶型で用いてもよい。
【0107】
なお、上述した電荷発生材料の中でも、フタロシアニン化合物が望ましい。この場合、感光層に光が照射されると、感光層に含まれるフタロシアニン化合物がフォトンを吸収してキャリアを発生させる。このとき、フタロシアニン化合物は、高い量子効率を有するため、吸収したフォトンを効率よく吸収してキャリアを発生させる。
【0108】
更にフタロシアニン化合物の中でも、下記(1)から(3)までに示すフタロシアニンがより望ましい。すなわち、
(1)電荷発生材料としてCukα線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)において、少なくとも7.6°,10.0°,25.2°,28.0°の位置に回折ピークを有する結晶型のヒドロキシガリウムフタロシアニン。
(2)電荷発生材料としてCukα線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)において、少なくとも7.3°,16.5°,25.4°,28.1°の位置に回折ピークを有する結晶型のクロルガリウムフタロシアニン。
(3)電荷発生材料としてCukα線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)において、少なくとも9.5°,24.2°,27.3°の位置に回折ピークを有する結晶型のチタニルフタロシアニン。
【0109】
これらのフタロシアニン化合物は、特に、光感度が高いだけでなく、その光感度の安定性も高いため、これらフタロシアニン化合物を含む感光層を有する感光体は、高速な画像形成及び繰り返し再現性が要求されるカラー画像形成装置の感光体として好適である。
【0110】
なお、結晶の形状や測定方法によりこれらのピーク強度や位置が微妙にこれらの値から外れることも有るが、X線回折パターンが基本的に一致しているものであれば同じ結晶型であると判断される。
【0111】
電荷発生層に用いられる結着樹脂としては、以下のものが例示される。
即ち、ビスフェノールAタイプあるいはビスフェノールZタイプなどのポリカーボネート樹脂及びその共重合体、ポリアリレート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾールなどである。
【0112】
これらの結着樹脂は、単独であるいは2種以上混合して用いる。電荷発生材料と結着樹脂との配合比(電荷発生材料:結着樹脂)は、質量比で、10:1乃至1:10の範囲が望ましい。また電荷発生層の厚みは、一般には0.01μm以上5μm以下の範囲内であることが望ましく0.05μm以上2.0μm以下の範囲内であることがより望ましい。
【0113】
また電荷発生層は、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として少なくとも1種の電子受容性物質を含有してもよい。電荷発生層に用いられる電子受容性物質としては、例えば無水琥珀酸、無水マレイン酸、ジブロム無水マレイン酸、無水フタル酸、テトラブロム無水フタル酸、テトラシアノエチレン、テトラシアノキノジメタン、o−ジニトロベンゼン、m−ジニトロベンゼン、クロラニル、ジニトロアントラキノン、トリニトロフルオレノン、ピークリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、フタル酸などが挙げられる。これらのうち、フルオレノン系、キノン系や、Cl,CN,NO等の電子吸引性置換基を有するベンゼン誘導体が特によい。
【0114】
電荷発生材料を樹脂中に分散させる方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、ダイノーミル、サンドミル、コロイドミルなどの方法が用いられる。
電荷発生層を形成する為の塗布液の溶媒として公知の有機溶剤、例えば、トルエン、クロロベンゼン等の芳香族炭化水素系溶剤、メタノール、エタノール、n−プロパノール、iso−プロパノール、n―ブタノール等の脂肪族アルコール系溶剤、アセトン、シクロヘキサノン、2−ブタノン等のケトン系溶剤、塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素溶剤、テトラヒドロフラン、ジオキサン、エチレングリコール、ジエチルエーテル等の環状あるいは直鎖状エーテル系溶剤、酢酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶剤等が挙げられる。
【0115】
また、これらの溶媒は単独あるいは2種以上混合して用いる。2種類以上の溶媒を混合して用いる場合には、例えば、混合溶媒として結着樹脂を溶かす溶媒を使用する。但し、感光層が、導電性基体側から、電荷輸送層と電荷発生層とをこの順に形成した層構成を有する場合に、浸漬塗布のように下層を溶解しやすい塗布方法を利用して電荷発生層を形成する際には、電荷輸送層等の下層を溶解しない溶媒を用いることが望ましい。また、比較的下層の侵食性の少ないスプレー塗布法やリング塗布法を利用して電荷発生層を形成する場合には溶媒の選択範囲が広がる。
【0116】
(帯電装置)
帯電装置20としては、非接触方式、接触方式のいずれも採用されるが、非接触方式がよい。そして、帯電装置20には、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層を有するが、非接触方式の場合、具体的には、例えば、被放電面に当該被覆層を有することがよい。また、接触帯電方式、例えば帯電ロールの場合、当該ロール表面に当該被覆層を有することがよい。
【0117】
帯電装置20としては、例えば、電子写真感光体10に対向して配置された放電電極部材と、放電電極部材に対向して配置された対向電極部材と、放電電極部材及び対向電極部材の少なくとも一方の表面を被覆し、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層と、を備えた構成が挙げられる。
【0118】
ここで、被覆層は、具体的には、炭素原子を含み(必要に応じて、炭素原子と共に、他の原子、あるいは他の複数原子を含み)、炭素原子によるsp構造及びsp構造が混在した被覆層(sp結合している炭素原子及びsp結合をしている炭素原子が混在した)、つまりアモルファスカーボン層である。
炭素原子は、混成軌道の違いにより結合する原子の数が異なり、その結晶構造によりSP2結合している炭素原子からなるグラファイトから、sp結合している炭素原子からなる高硬度のダイヤモンドに分類される。そして、被覆層は、上述のように、sp構造(sp結合)とsp構造(sp結合)とが混在した炭素原子を含むアモルファスカーボン層である。
【0119】
アモルファスカーボン層の中でも、テトラヘデラルアモルファスカーボン層(以下、Ta−C層)がよく、当該Ta−C層は、炭素原子によるsp構造とsp構造との総和に対するsp構造の比率が(つまりsp結合及びspしている炭素原子の総和に対するsp結合している炭素原子の比率)が40%以上であるアモルファスカーボン層である。この比率は、望ましくは40%以上85%以下であり、下限が50%以上であることが望ましく、70%以上であることがより望ましく、80%以上であることが更に望ましい。
なお、上記炭素原子によるsp構造の比率(sp結合している炭素原子の比率)は、透過電子顕微鏡(TEM)に接続した電子線エネルギー損失スペクトルでエネルギー損失関数によるピークを波形分離し、その各ピークの面積比から算出される。
【0120】
また、Ta−C層は、水素原子の含有量は10atm%以下であることが望ましく、7atm%以下であることがより望ましく、5atm%以下であることが特に望ましい。
なお、水素原子の含有量は、Ta−C層表面から深さ1nmまでを水素前方散乱法(HFS)により測定することで算出される。
【0121】
アモルファスカーボン層(Ta−C層)の上記炭素原子によるsp構造の比率(sp結合している炭素原子の比率)や、水素原子の含有量は、例えば、成膜をFCVA装置によって行う場合であれば、印加電圧のバイアスや波形を変えてイオン粒子のエネルギーレベルを調整することにより行われる
【0122】
アモルファスカーボン層(Ta−C層)の成膜方法は、例えば、化学気相成長法(CVD法)、物理気相成長法(PVD法)、フィルター・カソード・バキューム・アーク法(FCVA法)等が挙げられる。これらの中でも、炭素原子のエネルギー状態のばらつきを良好に抑制し、sp結合している炭素原子の比率を高められる観点から、FCVA法がよい。FCVA法ではフィルタリングしたばらつきのないイオンを照射が行われ、sp結合している炭素原子の比率が高く膜厚の薄い層の形成が実現される。またFCVA法によれば、形成面の形状に忠実に成膜される。
ここで、FCVA法自体は従来公知、例えば帯電装置ではないが、磁気ディスクに耐磨耗膜を形成する特開2001−195717号公報や、現像ロール表面に耐磨耗膜を形成する特開2005−173141号公報等に記載の方法が採用される。
このFCVA法によれば、アモルファスカーボン層(Ta−C層)の成膜は、炭素原子、必要応じて、他の原子、あるいは他の複数原子をプラズマ化し、イオン化された原子を形成面に付着させて形成される。
【0123】
以下、帯電装置20の一例を図面を参照しつつ説明する。なお、以後の説明の理解を容易にするために、図9、図10及び図11において、前後方向をX軸方向、左右方向をY軸方向、上下方向をZ軸方向とし、矢印X,−X,Y,−Y,Z,−Zで示す方向又は示す側をそれぞれ、前方、後方、右方、左方、上方、下方、又は、前側、後側、右側、左側、上側、下側とする。
【0124】
帯電装置20は、図9、図10及び図11に示すように、例えば、前後方向に延び、電子写真感光体10側が開放された筒状の包囲電極部材(対向電極の一例)としてシールド電極301を有する。シールド電極301は、上壁302と、上壁302の左右両側から下方に延びる左側壁303及び右側壁304を有する。そして、シールド電極301は、その内面(放電電極部材311と対向する面:被放電面)に、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層の一例としてのTa−C層(不図示)が形成されている。Ta−C層は、例えば、膜厚0.05[μm]に形成されている。
【0125】
上壁302の左側には、前後方向に延びる給気口302aが形成されている。上壁302の前端部には、ばね用爪部302bが形成され、後端部には、端部材用抜け止め孔302cが形成されている。図10Bにおいて、左側壁303の後端部には、対向電極端子303aが形成されており、画像形成装置101電源回路(不図示)から対向電極電圧が印加される。なお、図9では、装着用保護部材の一例としての後側カバー305が取り外された状態の帯電装置20が図示されている。
【0126】
シールド電極301の前端部には、前側端部材306が固定支持されている。前側端部材306の後端部右側には、右方に突出する前側回転軸支持部306aが形成されている。前側端部材306の前側には、左右外側に突出する一対のばね装着部306bが形成されている。なお、図9では、右側のばね装着部306bのみ図示している。ばね装着部306bには、網状電極支持用ばね307が装着されている。網状電極支持用ばね307は、上部に爪引っ掛け部307aを有し、上壁302と前側端部材306との間の空間に爪引っ掛け部307aを進入させて、ばね用爪部302bに引っ掛けられる。また網状電極支持用ばね307は、下部に電極用爪部307bが形成されている。
【0127】
シールド電極301の後端部には、後側端部材308が固定支持されている。後側端部材308は、左右両側壁303,304に形成された図示しない前側移動規制溝に装着される図示しない突起部と、端部材用抜け止め孔302cに引っ掛かる爪部材308aとにより、シールド電極301の後端部に固定支持されている。後側端部材308の右側には、前側回転軸支持部306aに対応して、右方に突出する後側回転軸支持部308bが形成されている。
【0128】
後側端部材308の後端部には、放電電極端子用保護部308c及び対向電極端子303aを保護する対向電極端子用保護部308dとが、後方に突出して形成されている。後側端部材308の下部には、下方に突出する網状電極一端支持部308eが形成されている。さらに、後側端部材308には、シールド電極301の内部に突出する一対の放電清掃押付け解除部308fが形成されている。
【0129】
前後一対の端部材306,308の間には、シールド電極301内で、前後方向に延びる放電電極部材311が張力を付与した状態で支持されている。
【0130】
放電電極部材311の材料としては、例えば、タングステンやモリブデン、タンタル、金メッキ等が挙げられる。放電電極部材311は、放電電極端子用保護部308c内部に収容される図示しない電極端子が後端部に設けられており、図示しない画像形成装置の電源回路から電源が供給される。
【0131】
帯電装置20は、図9、図10及び図11に示すように、端部材306,308の間には、シールド電極301の下側の開口位置、すなわち、電子写真感光体10の対向領域である帯電領域に網状電極部材312が支持されている。網状電極部材312は、中央の網部312aと、網部312aを囲む枠部312bと、枠部312bの前側に形成された前側被支持部312cと、枠部312bの後側に形成された後側被支持部312dとを有する。前側被支持部312cの前端には、網状電極支持用ばね307の電極用爪部307bに対応して形成された左右一対の爪引っ掛け孔312c1が形成されており、爪引っ掛け孔312c1は通電部の機能も有している。
【0132】
後側被支持部312dには、網状電極一端支持部308eに装着される装着孔312d1が形成されている。したがって、網状電極部材312は、網状電極一端支持部308eに装着孔312d1が固定され且つ網状電極支持用ばね307に装着されるため、網状電極支持用ばね307により、張力を付与した状態で支持される。
【0133】
また、網状電極部材312は、導電性の網状電極支持用ばね307を介してシールド電極301に電気的に接続されており、網状電極部材312とシールド電極301とにより、対向電極部材(301+312)が構成されている。
【0134】
網状電極部材312は、ステンレスにより構成されており、その放電電極部材311に対向する面(被放電面)には、炭素原子を含んで構成され、炭素原子によるsp構造を持つ被覆層の一例としてのTa−C層(不図示)が形成されている。Ta−C層は、例えば、膜厚0.05[μm]に形成されている。ここで、網状電極部材312は、網部312a、枠部312bの内面に、すなわち、放電電極部材311に対向する面(被放電面)に、Ta−C層が形成されている。
【0135】
Ta−Cは、膜厚により異なるが体積抵抗率が10[Ω・cm]以上1010[Ω・cm]以下の半導電性であり、導電体に比べて電気抵抗が少し高いため、網状電極部材312の全面ではなく、放電生成物による問題が顕著となる一部の面にのみ形成されている。すなわち、網状電極部材312に電源が供給される通電部の一例としての爪引っ掛け部12c1の部分の電気抵抗が高まることを抑えるため、前側被支持部312cには、Ta−C層は形成されていない。
【0136】
なお、本実施形態では、放電電極部材311に対向する面にのみTa−C層が形成されているが、放電生成物の付着や再放出をさらに抑制するために、網状電極部材312の両面に形成してもよい。この場合に、放電電極部材311に対向する面に成膜されたTa−C層の厚みを、電子写真感光体10に対向する面に成膜されたTa−C層の厚みに対して厚くしてもよい。
【0137】
すなわち、放電電極部材311に対向する面では、放電生成物の量が多く、いわゆる、放電によるスパッタリングが起こりやすく、一定以上の膜厚にする必要があるが、対向していない裏面では、放電生成物の量やスパッタリングによる負荷が少ないため、膜厚を薄くてもよく、製造上の成膜時間や原材料の削減でき、費用が低減される。すなわち、表面と裏面とでTa−C層を、異なる膜厚としてもよい。
【0138】
また、本実施形態では、網状電極部材312、放電電極部材311及びシールド電極301の内面にTa−C層が形成されているが、帯電装置20としては、網状電極部材312、放電電極部材311及びシールド電極301の内面のうち、少なくとも1箇所にTa−C層が形成されていればよい。
【0139】
次に、放電電極部材311と対向電極部材(301+312)を清掃する構成について説明する。
図9,図10において、シールド電極301の外側の右部では、前後一対の回転軸支持部306a、308bの間に、前後方向に延びる回転軸316が回転可能に支持されている。回転軸316の後部は、後側回転軸支持部308bを貫通して後方に延びており、後端部には、図示しないギアが装着され、図示しないモータから回転が伝達される。回転軸316の外周には、螺旋状のねじ山316aが形成されている。
【0140】
シールド電極301及び網状電極部材312の内側には、電極清掃部材317が収容されている。電極清掃部材317は、清掃部材本体318と、清掃部材本体318に固定支持された網状電極清掃体319と、清掃部材本体318に移動可能に支持された放電電極清掃体321とを有する。清掃部材本体318は、上部に給気口302aを介して上方に配置されて上壁302を挟み込む形状の上壁挟み部318aと、右側壁304と網状電極部材312の枠部312bとの間の隙間を通じて下方に延び、右側壁304を回り込んで回転軸316まで延びる移動伝達部318bとを有する。移動伝達部318bの先端には、回転軸316のねじ山316aに嵌められるネジ嵌め部318cが形成されている。なお、図10において、清掃部材本体318には、上壁302との間に、摩擦抵抗を減らすための接触突起318dが形成されている。
【0141】
網状電極清掃体319は、網状電極部材312の枠部312bを挟む枠部挟み部319aと、網状電極部材312の内面に接触する網状電極清掃部319bとを有する。網状電極清掃部319bは、多数の清掃用の毛が植毛されており、いわゆる清掃ブラシにより構成されている。網状電極清掃部319bの下方には、下方に突出する位置規制部319cが形成されている。
【0142】
位置規制部319cの下側に配置された放電電極清掃体321は、放電電極清掃体本体321aと、放電電極清掃体本体321aに支持され且つ放電電極部材311に接触して清掃する放電電極清掃部321bとを有する。放電電極清掃部321bは、布状の材料により構成されている。放電電極清掃体本体321aは、図示しないばねにより、放電電極清掃部321bが放電電極部材311に押付けられる方向に付勢されており、放電電極清掃体本体321aが位置規制部319cにより位置が規制され、放電電極清掃部321bが放電電極部材311に所定の力で押し当てられている。
【0143】
したがって、回転軸316を正回転又は逆回転させることにより、移動伝達部318bが前方又は後方に移動し、電極清掃部材317は上壁挟み部318aや枠部挟み部319aにより案内、すなわち、ガイドされて前後方向に移動する。電極清掃部材317の移動に伴って、網状電極清掃部319b及び放電電極清掃部321bにより、網状電極部材312及び放電電極部材311が清掃される。なお、本実施形態では、5000枚印刷毎、すなわち、5kPV毎に、モータが駆動して、電極清掃部材317による清掃が自動的に実行されるように構成されている。
【0144】
また、シールド電極301の内周面に接触して清掃する清掃部(図示省略)が設けられている。
【0145】
なお、本実施形態では、電極清掃部材317が、図9に示す待機位置に移動した状態では、後側端部材308の放電清掃押付け解除部308fが、放電電極清掃体本体321aと位置規制部319cとの間に進入して、放電電極清掃部321bが放電電極部材311から離隔した状態に保持されると共に、電極清掃部材317が前方に移動することで、放電電極押付け解除部308fが放電電極清掃体本体321aと位置規制部319cとの間から離脱するように構成されている。このため、放電電極部材311,網状電極部材312の清掃動作が終了し、画像形成動作が行われる場合には、待機位置に移動することで放電電極部材311は所定の位置にセットされ、安定した放電が可能となると共に、清掃動作時には放電電極押付け解除部308fが離脱して放電電極清掃部321bが放電電極部材311に押し当てられて清掃される。
【0146】
なお、帯電装置20としては、網状電極部材312、放電電極部材311及びシールド電極301の内周面を清掃する構成は必須ではなく、この構成を有していない構成であってもよい。
【0147】
(露光装置)
露光装置30としては、例えば、電子写真感光体10表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体10の分光感度領域にあるものがよい。半導体レーザーの波長としては、例えば、780nm前後に発振波長を有する近赤外がよい。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下に発振波長を有するレーザーも利用してもよい。また、露光装置30としては、例えばカラー画像形成のためにはマルチビーム出力するタイプの面発光型のレーザー光源も有効である。
【0148】
(現像装置)
現像装置40は、例えば、現像領域で電子写真感光体10に対向して配置されており、例えば、トナー及びキャリアからなる2成分現像剤を収容する現像容器41(現像装置本体)を有している。現像容器41は、現像容器本体41Aとその上端を塞ぐ現像容器カバー41Bとを有している。
【0149】
現像容器本体41Aは、例えば、その内側に、現像ロール42を収容する現像ロール室42Aを有しており、現像ロール室42Aに隣接して、第1攪拌室43Aと第1攪拌室43Aに隣接する第2攪拌室44Aとを有している。また、現像ロール室42A内には、例えば、現像容器カバー41Bが現像容器本体41Aに装着された時に現像ロール42表面の現像剤の層厚を規制するための層厚規制部材45が設けられている。
【0150】
第1攪拌室43Aと第2攪拌室44Aとの間は例えば仕切り壁41Cにより仕切られており、図示しないが、第1攪拌室43A及び第2攪拌室44Aは仕切り壁41Cの長手方向(現像装置長手方向)両端部に開口部が設けられて通じており、第1攪拌室43A及び第2攪拌室44Aによって循環攪拌室(43A+44A)を構成している。
【0151】
そして、現像ロール室42Aには、電子写真感光体10と対向するように現像ロール42が配置されている。現像ロール42は、図示しないが磁性を有する磁性ロール(固定磁石)の外側にスリーブを設けたものである。第1攪拌室43Aの現像剤は磁性ロールの磁力によって現像ロール42の表面上に吸着されて、現像領域に搬送される。また、現像ロール42はそのロール軸が現像容器本体41Aに回転自由に支持されている。ここで、現像ロール42と電子写真感光体10とは、同方向に回転し、対向部において、現像ロール42の表面上に吸着された現像剤は、電子写真感光体10の進行方向とは逆方向から現像領域に搬送するようにしている。
【0152】
また、現像ロール42のスリーブには、不図示のバイアス電源が接続され、現像バイアスが印加されるようになっている(本実施形態では、現像領域に交番電界が印加されるように、直流成分(AC)に交流成分(DC)を重畳したバイアスを印加)。
【0153】
第1攪拌室43A及び第2攪拌室44Aには現像剤を攪拌しながら搬送する第1攪拌部材43(攪拌・搬送部材)及び第2攪拌部材44(攪拌・搬送部材)が配置されている。第1攪拌部材43は、現像ロール42の軸方向に伸びる第1回転軸と、回転軸の外周に螺旋状に固定された攪拌搬送羽根(突起部)とで構成されている。また、第2攪拌部材44も、同様に、第2回転軸及び攪拌搬送羽根(突起部)とで構成されている。なお、攪拌部材は現像容器本体41Aに回転自由に支持されている。そして、第1攪拌部材43及び第2攪拌部材44は、その回転によって、第1攪拌室43A及び第2攪拌室44Aの中の現像剤は互いに逆方向に搬送されるように配設されている。
【0154】
ここで、現像装置40に使用される現像剤について説明する。
現像剤は、トナーとキャリアを含む二成分系現像剤が採用される。
【0155】
まず、トナーについて説明する。
トナーは、例えば、結着樹脂、着色剤、及び必要に応じて離型剤等の他の添加剤を含むトナー粒子と、必要に応じて外添剤と、を含んで構成される。
【0156】
トナー粒子は、平均形状係数(形状係数=(ML/A)×(π/4)×100で表される形状係数の個数平均、ここでMLは粒子の最大長を表し、Aは粒子の投影面積を表す)が100以上150以下であることが望ましく、105以上145以下であることがより望ましく、110以上140以下であることがさらに望ましい。さらに、トナーとしては、体積平均粒子径が3μm以上12μm以下であることが望ましく、3.5μm以上10μm以下であることがより望ましく、4μm以上9μm以下であることがさらに望ましい。
【0157】
トナー粒子は、特に製造方法により限定されるものではないが、例えば、結着樹脂、着色剤及び離型剤、必要に応じて帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤及び離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等により製造されるトナー粒子が使用される。
【0158】
また上記方法で得られたトナー粒子をコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法が使用される。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。
【0159】
そして、トナーは、上記トナー粒子及び上記外添剤をヘンシェルミキサー又はVブレンダー等で混合することによって製造される。また、トナー粒子を湿式にて製造する場合は、湿式にて外添してもよい。
【0160】
一方、キャリアとしては、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉又はそれ等の表面に樹脂を被覆したものが使用される。また、キャリアとトナーとの混合割合は、特に制限はなく、周知の範囲で設定される。
【0161】
(転写装置)
一次転写装置51、及び二次転写装置52としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
【0162】
中間転写体50としては、導電剤を含んだポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外に円筒状のものが用いられる。
【0163】
(クリーニング装置)
クリーニング装置70は、筐体71と、筐体71から突出するように配設されるクリーニングブレード72を含んで構成されている。クリーニングブレード72は、電子写真感光体10の回転軸に沿った方向に延びた板状のものであって、電子写真感光体10の回転方向(矢印a)の上流側に、先端部が圧力を掛けつつ接触されるように設けられている。
【0164】
クリーニングブレード72は、電子写真感光体10が矢印a方向に回転することによって、一次転写装置51により記録紙Pに転写されずに電子写真感光体10上に残った未転写残留トナーを除去する。
【0165】
ここで、クリーニングブレード72の材質としては公知の材質が挙げられ、例えばウレタンゴム、シリコンゴム、フッソゴム、クロロプレンゴム、ブタジエンゴム等が挙げられる。その中でも、特にポリウレタンゴムがよい。
【0166】
(送風機)
送風機75としては、例えば、ファン、その他羽根車等が挙げられる。
送風機75による画像形成装置内への外気の引き込みは、すなわち帯電装置20への外気の送風は、例えば、画像形成装置101における画像形成動作時、非動作時(待機時)のいずれで行ってもよい。特に、送風機75による帯電装置への送風は、画像形成装置101内温度(帯電装置の周囲の温度)が、付着する放電生成物の昇華温度(例えば(例えば、無水酢酸の場合32℃)以上のときに行うことがよい。具体的には、例えば、送風機75による帯電装置への送風は、放電生成物の昇華温度の基準に、送風機75の駆動・停止を制御して行うことがよい。
【0167】
送風機75により、空気流入口76aから画像形成装置内に引き込まれた外気は、帯電装置20の給気口302aを介して、給気口302aを介して、帯電器CCkの内部を通過し、網状電極部材312を通って帯電装置20の下方から排出されることにより、帯電装置20の被覆層(Ta−C層)が形成された表面に沿って外気が流通する。これにより、帯電装置20(その被覆層)が冷却される。
【0168】
そして、帯電装置20の下方から排出された外気は、不図示のダクト等を通じて、空気排出口76bからフィルターで清浄化されて外気に放出される。
なお、送風手段としては、空気流入口76aから外気を取り込む送風機75、すなわち、取り込みファンに限られず、例えば、空気排出口76bの周囲に配置して空気排出口76bから排出する排出ファンであってもよい。
【0169】
また、送風機75は、例えば、風速1m/secで外気を吸入して、帯電装置20へ吹き付けることがよい。なお、風量計を設けて、風量を測定し、風量計が測定した風量に基づき、送風機75を制御してもよい。
【0170】
なお、待機時に、送風機75により帯電装置20の被覆層の表面に沿って送風している際に、電子写真感光体10を回転させる構成であってもよい。電子写真感光体10を回転させることにより、空気の流れが生じ、気化した放電生成物が電子写真感光体に付着するのが抑制される。なお、送風機75の送風量に応じて、電子写真感光体10の回転速度を制御される。
【0171】
次に、本実施形態に係る画像形成装置101の動作について説明する。まず、電子写真感光体10が矢印aで示される方向に沿って回転すると同時に、帯電装置20により負に帯電する。
【0172】
帯電装置20によって表面が負に帯電した電子写真感光体10は、露光装置30により露光され、表面に潜像が形成される。
【0173】
電子写真感光体10における潜像の形成された部分が現像装置40に近づくと、現像装置40(現像ロール42)により、潜像にトナーが付着し、トナー像が形成される。
【0174】
トナー像が形成された電子写真感光体10が矢印aに方向にさらに回転すると、トナー像は中間転写体50の外側の面に転写する。
【0175】
トナー像が中間転写体50に転写されたら、記録紙供給装置53により、二次転写装置52に記録紙Pが供給され、中間転写体50に転写されたトナー像が二次転写装置52により、記録紙P上に転写される。これにより、記録紙Pにトナー像が形成される。
【0176】
画像が形成された記録紙Pは、定着装置80でトナー像が定着される。
【0177】
なお、本実施形態に係る画像形成装置101は、例えば、図8に示すように、筐体11内に、電子写真感光体10、帯電装置20、露光装置30、現像装置40、及びクリーニング装置70を一体に収容させたプロセスカートリッジ101Aを備えた形態であってもよい。このプロセスカートリッジ101Aは、複数の部材を一体的に収容し、画像形成装置101に脱着させるものである。なお、プロセスカートリッジ101Aの筐体11にも、送風機75により帯電装置20への送風する外気が流入・排出する空気流入口11a及び空気排出口11bが設けられている。
プロセスカートリッジ101Aの構成は、これに限られず、例えば、少なくとも、電子写真感光体10と帯電装置20を備えてえればよく、その他、例えば、露光装置30、現像装置40、一次転写装置51、及びクリーニング装置70から選択される少なくとも一つを備えていてもよい。
【0178】
また、本実施形態に係る画像形成装置101は、上記構成に限られず、例えば、電子写真感光体10の周囲であって、一次転写装置51よりも電子写真感光体10の回転方向下流側でクリーニング装置70よりも電子写真感光体の回転方向上流側に、残留したトナーの極性を揃え、クリーニングブラシで除去しやすくするための第1除電装置を設けた形態であってもよいし、クリーニング装置70よりも電子写真感光体の回転方向下流側で帯電装置20よりも電子写真感光体の回転方向上流側に、電子写真感光体10の表面を除電する第2除電装置を設けた形態であってもよい。
【0179】
また、本実施形態に係る画像形成装置101は、上記構成に限れず、周知の構成、例えば、電子写真感光体10に形成したトナー像を直接、記録紙Pに転写する方式を採用してもよいし、タンデム方式の画像形成装置を採用してもよい。
【実施例】
【0180】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例
に制限されるものではない。
【0181】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において「部」は質量部を意味する。
【0182】
[電子写真感光体1]
まず、以下に説明する手順により、アルミニウム(Al)基体上に、下引層と電荷発生層と電荷輸送層とをこの順に積層形成した有機感光体を作製した。
【0183】
<下引層の形成>
ジルコニウム化合物(商品名:マツモト製薬社製オルガノチックスZC540)20質量部、シラン化合物(商品名:日本ユニカー社製A1100)2.5質量部、ポリビニルブチラール樹脂(商品名:積水化学社製エスレックBM−S)10質量部及びブタノール45質量部を攪拌混合して得た溶液を、外径84mmのAl製基体表面に塗布し、150℃10分間加熱乾燥することにより、層厚1.0μmの下引層を形成した。
【0184】
<電荷発生層の形成>
次に、電荷発生材料としてクロロガリウムフタロシアニン1質量部を、ポリビニルブチラール(商品名:積水化学社製エスレックBM−S)1質量部及び酢酸n−ブチル100質量部と混合して得られた混合物をガラスビーズとともにペイントシェーカーで1時間分散し、電荷発生層形成用分散液を得た。
この分散液を浸漬法により下引層の上に塗布した後、100℃で10分間乾燥させ、層厚0.15μmの電荷発生層を形成した。
【0185】
<電荷輸送層の形成>
次に、下記構造式(1)で表される化合物を2質量部、及び、繰り返し単位が下記構造式(2)で表される高分子化合物(粘度平均分子量:39000)3質量部をクロロベンゼン20質量部に溶解させて電荷輸送層形成用塗布液を得た。
【0186】
【化1】



【0187】
【化2】



【0188】
この塗布液を、浸漬法により電荷発生層上に塗布し、110℃で40分間加熱して層厚20μmの電荷輸送層を形成し、Al基体上に、下引層と電荷発生層と電荷輸送層とをこの順に積層形成した有機感光体(以下、「ノンコート感光体(1)」と称す場合がある)を得た。
【0189】
<保護層の形成>
(第2の層の形成)
ノンコート感光体(1)表面への第2の層の形成は、図5に示す構成を有する成膜装置を用いて行った。
まず、ノンコート感光体(1)を、成膜装置の成膜室210内の基材支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。
次に、He希釈20%酸素ガス(20sccm)、Heガス(100sccm)、及びHガス(500sccm)を、ガス導入管220から直径50mmの平版電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図6中不図示)により、13.56MHzのラジオ波を出力100Wにセットしチューナでマッチングを取り平版電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(3sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は40Paであった。
【0190】
この状態で、ノンコート感光体(1)を100rpmの速度で回転させながら120分間成膜し、ノンコート感光体(1)の電荷輸送層表面に層厚3.5μmの第2の層を形成した。
【0191】
(第1の層の形成)
次に、高周波放電を停止し、He希釈20%酸素ガスの流量を1sccmに変更した後、再び高周波放電を開始した。
この状態で、第2の層を形成したノンコート感光体(1)を100rpmの速度で回転させながら30分間成膜し、第2の層上に、層厚0.3μmの第1の層を形成した。
【0192】
以上により、ノンコート感光体(1)の電荷輸送層上に、保護層として、第2の層及び第1の層をこの順に有する電子写真感光体(保護層付き電子写真感光体)を得た。
なお、保護層(第2の層及び第1の層)の成膜に際しては、ノンコート感光体(1)の加熱処理は行わなかった。また、成膜時の温度をモニターするために、成膜前に予めノンコート感光体の表面に貼り付けておいた温度測定用ステッカー(Wahl社製、テンプ・プレート P/N101)の色を、第1の層の成膜後に確認したところ、45℃であった。
また、第1の層の層厚及び第2の層の層厚は、以下の分析用試料膜を用いて、触針段差測定によって求めた。
分析用試料膜を形成する基板としては、5mm×10mmにカットされた厚さ400μmのSiウェハーを用いた。
Siウェハー表面の一部にポリイミド製粘着テープを貼り付け、該粘着テープを貼り付けた側の面に、第1の層の成膜と同条件にて、第1の層の分析用試料膜を形成した。
次に、粘着テープを剥がし、Siウェハー表面に、非着膜部(粘着テープを貼り付けた箇所)と、着膜部(粘着テープを貼り付けていない箇所)と、を設けた。
次に、非着膜部と着膜部との段差を、触針段差測定器(東京精密社製サーフコム550A)により測定し、第1の層の層厚を求めた。
第2の層の層厚も、第1の層の層厚と同様の方法によって求めた。
【0193】
(第1の層の分析・評価)
厚さ300μmのSi基板上に、第1の層の成膜と同条件にて分析用の試料膜を形成した。
形成された第1の層(試料膜)について、膜の組成をラザフォード・バック・スキャタリング(RBS)とハイドロジェン・フォワードスキャタリング(HFS)とを用いて測定した。
原子数比〔O/Ga〕及び水素含有量(GaとOとHとの総原子数に対するHの原子数の比率;原子%)は表1に示すとおりであった。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第1の層は非晶質であることがわかった。
更に、第1の層(試料膜)の表面はステンレス鋼で擦っても傷がつかなかった。
【0194】
次に、厚さ0.5mmの石英基板上に、第1の層の成膜と同条件にて試料膜を形成し、目視で着色を確認したところ、第1の層は薄い茶色に着色していた。
また、石英基板上に成膜した第1の層について、780nmにおける透過率を、紫外−可視自記分光光度計(日立社製)により測定したところ、95%であった。
【0195】
(第2の層の分析・評価)
第1の層の分析・評価と同様の手法により、第2の層の分析・評価を行った。
原子数比〔O/Ga〕及び水素含有量(GaとOとHとの総原子数に対するHの原子数の比率;原子%)は表1に示すとおりであった。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
また、紫外−可視吸収測定を行った結果、第2の層のバンドギャップは4.4eVであった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層は透明であり、780nmにおける透過率は、95%であった。
【0196】
≪評価≫
上記で作製した、保護層付き電子写真感光体について以下の評価を行った。
評価結果を表1に示す。
【0197】
<残留電位>
まず、上述の保護層形成前の電子写真感光体(ノンコート感光体)と、保護層付き電子写真感光体と、に対して、露光用の光(光源:半導体レーザー、波長780nm、出力5mW)を用い、感光体の表面を走査しながら40rpmで回転させながら、スコロトロン帯電器により−700Vに負帯電させた状態で照射した後の、表面の残留電位を測定した。
その結果、ノンコート感光体の残留電位が−10Vであるの対し、保護層付き感光体の残留電位は−70V以下であった。
【0198】
<保護層形成による感度の低下>
まず、保護層付き電子写真感光体に対して、上述の方法によりスコロトロン帯電器により−700Vに負帯電させた。
次に、負帯電した保護層付き電子写真感光体に対し、露光用の光(光源:半導体レーザー、波長780nm、出力5mW)を照射して除電を行い、単位光量当りの電位減衰率(V・m/mJ)を求め、保護層付き電子写真感光体の感度A(V・m/mJ)とした。
【0199】
保護層付き電子写真感光体の感度の測定と同様にして、保護層形成前の電子写真感光体(ノンコート感光体)の感度B(V・m/mJ)を測定した。
下記式1により保護層形成による感度の低下率を求めた。
【0200】
保護層形成による感度の低下率(%)=((感度B−感度A)/感度B)×100
・・・式1
【0201】
次に、露光用の光の波長を400nmから800nmまで100nm間隔で変化させ、各波長について、保護層形成による感度の低下率(%)を求めた。
以上で得られた、各波長における感度の低下率(%)から、下記評価基準に従って、保護層形成による感度の低下を評価した。
【0202】
−評価基準−
A:波長領域全域にわたり、保護層形成による感度の低下率は10%未満であり、保護層形成による感度の低下が抑制されていた。
B:波長領域全域にわたり、保護層形成による感度の低下率が、10%以上30%未満であるが、保護層形成による感度の低下が、実用上の許容範囲内であった。
C:波長800nmにおける感度の低下率が30%以上35%以下であり、保護層形成による感度の低下が実用上の許容範囲内であった。
D:波長800nmにおける感度の低下率が35%を超えており、保護層形成による感度の低下が実用上の許容範囲を超えていた。
【0203】
<繰り返し画質評価>
保護層付き電子写真感光体を、富士ゼロックス社製DocuCentre Color 500に取り付けて、高温高湿環境(28℃、80%RH)下で、連続2万枚のプリントテストを行い、以下の評価を行った。
なお、画質評価を行うためのリファレンスとして、ノンコート感光体についてもDocuCentre Color 500に取り付けて、同様の画像を形成した。
【0204】
(白筋)
画像上の白筋欠陥を2万枚プリント終了後の画像について評価した。評価基準は以下の通りである。
【0205】
−評価基準−
A:白筋状の画像欠陥は全く見られない。
B:感光体の傷に起因すると考えられる白筋状の画像欠陥がわずかに見られるものの、実用上許容範囲内である。
C:感光体の傷に起因すると考えられる白筋状の画像欠陥が見られる多数見られ、実用上の許容範囲を超えていた。
【0206】
(画像濃度)
1000枚プリント後に、エリアカバレッジ100%のベタ画像を100枚連続で印画し、得られた画像について、下記評価基準に従って画像濃度を評価した。
【0207】
−評価基準−
A:100枚を超えて印画後も画像濃度低下が全くみられない。
B:90枚を超えて100枚以下において、印画後に画像濃度低下がわずかに見られるものの、実用上許容範囲内である。
C:70枚を超えて90枚以下において、印画後に画像濃度低下がわずかに見られるものの、実用上許容範囲内である。
D:70枚以下において、一見して画像濃度低下が起こっており、実用上許容範囲を超えていた。
【0208】
(画像ボケ)
画像ボケは、2万枚プリント後に、水溶性である放電生成物を除去するため感光体表面の一部分のみを水拭きした。
その後、ハーフトーン画像(画像密度30%)をプリントし、ハーフトーン画像中に感光体表面の水拭きした箇所と水拭きしていない箇所とに対応するような濃度差の有無を目視で確認し、下記評価基準に従って評価した。
【0209】
−評価基準−
A:濃度差の有無が全くみられない。
B:濃度差の有無がわずかに見られるものの、実用上許容範囲内である。
C:一見して濃度差が確認でき、実用上の許容範囲を超えていた。
【0210】
(傷)
2万枚プリントテスト後の感光体表面を目視により観察し、表面の傷の有無を調べた。
評価基準は以下のとおりである。
【0211】
−評価基準−
A:表面の傷が全くみられない。
B:表面の傷がわずかに見られるものの、実用上許容範囲内である。
C:一見して表面の傷が確認でき、実用上の許容範囲を超えていた。
【0212】
<繰り返し使用時の残留電位(RP)の増加>
まず、上記画質評価における2万枚のプリントテスト前に、保護層付き電子写真感光体について、波長780nmにおける残留電位を測定した。
次に、上記画質評価における2万枚のプリントテスト後に、保護層付き電子写真感光体について、波長780nmにおける残留電位を測定した。
これらの結果に基づき、繰り返し使用時の残留電位の増加(増加率(%))を、下記評価基準に従って評価した。
なお、下記表1中では、残留電位を「RP」と表記する。
【0213】
−評価基準−
A:2万枚のプリントテストによる残留電位の増加が10%未満であり、繰り返し使用時の残留電位の低下が抑制されていた。
B:2万枚のプリントテストによる残留電位の増加が10%以上30%未満であり、繰り返し使用時の残留電位の増加が、実用上の許容範囲内であった。
C:2万枚のプリントテストによる残留電位の増加が30%以上であり、繰り返し使用時の残留電位の増加が、実用上の許容範囲を超えていた。
【0214】
[電子写真感光体2]
電子写真感光体1の作製中、第2の層の形成において、He希釈20%酸素ガスの流量を10sccmに変更した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層は薄く黄色に着色しており、780nmにおける透過率は85%であった。
【0215】
[電子写真感光体3]
電子写真感光体1の作製中、第2の層の形成において、He希釈20%酸素ガス(20sccm)、Heガス(100sccm)、及びHガス(500sccm)を、He希釈20%酸素ガス(7sccm)及びHeガス(200sccm)に変更し、さらに、成膜時間を180分間に変更した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層は薄く茶色に着色しており、780nmにおける透過率は70%であった。
【0216】
[電子写真感光体4]
電子写真感光体3の作製中、第2の層の形成において、成膜時間を60分間に変更した以外は電子写真感光体3と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体3と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層はうすく黄色に着色しており、780nmにおける透過率は80%であった。
【0217】
[電子写真感光体5]
電子写真感光体1の作製中、第2の層の形成において、He希釈20%酸素ガスの流量を40sccmに、トリメチルガリウムガス(3sccm)をトリメチルガリウムガス(2.4sccm)及びジエチル亜鉛(0.6sccm)に、それぞれ変更した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層は透明であり、780nmにおける透過率は95%であった。
【0218】
[電子写真感光体6]
電子写真感光体5の作製中、第2の層の形成において、トリメチルガリウムガス(2.4sccm)及びジエチル亜鉛(0.6sccm)を、トリメチルガリウムガス(2.1sccm)及びジエチル亜鉛(0.9sccm)に変更した以外は電子写真感光体5と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体5と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、RHEED(反射高速電子線回折)測定により得られた回折像にはまったく点や線が見られず、第2の層は非晶質であることがわかった。
更に、第2の層の表面はステンレス鋼で擦っても傷がつかなかった。
石英基板上に形成された第2の層は透明であり、780nmにおける透過率は95%であった。
【0219】
[電子写真感光体7]
電子写真感光体5の作製において、ノンコート感光体(1)の代わりに、以下のようにして作製したノンコート感光体(2)を用いた以外は電子写真感光体5と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体5と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
得られた保護層付きの電子写真感光体は、粘着テープによっても保護層が剥離せず、接着性は良好であった。表面性も、保護層形成前であるノンコート感光体(2)の表面よりも平滑で、かつ、すべりが良かった。
【0220】
−ノンコート感光体(2)の作製−
Al基体上に、3μmのn型のSiの電荷注入阻止層と、20μmのi型アモルファスシリコン光導電層と、0.5μmのp型のSiの電荷注入阻止表面層と、をこの順にプラズマCVDにより形成し、負帯電型のアモルファスシリコン感光体であるノンコート感光体(2)を作製した。
【0221】
[電子写真感光体8]
電子写真感光体1の作製中、第2の層の形成後であって第1の層形成前に、中間層を形成した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
ここで、中間層の成膜条件は、He希釈20%酸素ガスの流量を8sccmに変更し、成膜時間を層厚0.1μmとなるように変更した以外は第2の層と同様の条件である。
【0222】
[電子写真感光体9]
電子写真感光体1の作製中、ノンコート感光体(1)表面への第2の層の形成前に、ノンコート感光体(1)表面へ第3の層を形成した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
なお、中間層の成膜条件は、He希釈20%酸素ガスの流量を8sccmに変更し、成膜時間を層厚0.05μmとなるように変更した以外は第2の層と同様の条件である。
【0223】
〔比較電子写真感光体1〕
電子写真感光体1の作製中、第2の層の形成において、He希釈20%酸素ガスの流量を1sccmに、成膜時間を240分間に、それぞれ変更した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、石英基板上に成膜した第2の層(分析用の試料膜)は、茶色く着色しており、780nmにおける透過率は40%であった。
【0224】
〔比較電子写真感光体2〕
電子写真感光体1の作製中、第1の層の形成において、He希釈20%酸素ガスの流量を2sccmに変更し、かつ、第2の層の形成において、He希釈20%酸素ガスの流量を1sccmに成膜時間を180分間に、それぞれ変更した以外は電子写真感光体1と同様にして保護層付きの電子写真感光体を作製し、電子写真感光体1と同様の分析及び評価を行った。
分析及び評価の結果を下記表1に示す。
また、石英基板上に成膜した第2の層(分析用の試料膜)は、茶色く着色しており、780nmにおける透過率は50%であった。
【0225】
【表1】

【0226】
表1に示すように、保護層の構成を、最表面を含む第1の領域と第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域とを有する構成とした電子写真感光体1乃至電子写真感光体9では、保護層形成による感度の低下が抑制されており、感度低下に伴う画像濃度低下も抑制されていた。
また、電子写真感光体1乃至電子写真感光体9では、残留電位も低減されていた。
一方、比較電子写真感光体1及び比較電子写真感光体2では、感度が著しく低下しており、画像濃度が低かった。
また、比電子写真感光体1及び比較電子写真感光体2は、成長速度(成膜速度)も遅く、生産性も低いことがわかった。
【0227】
[実施例1乃至実施例9]
表2に従って、上記作製した電子写真感光体を、富士ゼロックス社製DocuCentre Color 500改造機(下記非接触型の帯電装置に改造)に、装着し、以下の評価を行った。結果を表2に示す。
【0228】
(非接触型の帯電装置の構成)
非接触型の帯電装置は、シールド電極(ステンレス製の筒状の包囲電極部材:対向電極の一例)と、シールド電極内に配置される放電電極部材(タングステンからなる、直径0.04mm、長さ400mmのワイヤー)と、シールド電極の開口位置に配設される網状電極部材(ステンレス製の対向電極部材)と、を主要部とし(図9乃至図11参照)、シールド電極と網状電極における放電電極部材との対向面(被放電面)に、FCVA装置(島津製作所製)を用い、成膜温度40℃、成膜速度1.5nm/sの成膜条件で、膜厚が5.0μmのTa−C層(炭素原子によるsp構造の比率80%、水素含有量4atm%)を形成した構成である。
【0229】
(評価)
−画像評価−
プロセススピード75mm/secで、用紙(富士ゼロックス(株)P紙A4サイズ)に対して、シアン色のスクリーン200クラスタードット画像(全面ハーフトーン:画像濃度20%)を300000枚出力した後、動作を停止して、10時間待機した後、同様に画像を形成したときの、帯電装置位置における画像の白抜け(パーキングデリーション)の発生の有無を確認して評価した。画像の白抜けは、白抜け発生部と未発生部との色差をX Rite社分光濃度計938により測定して評価した。評価基準は以下の通りである。なお、画像形成装置の設置環境は、20℃RH10%とした。
−評価基準−
AAA:色差0.1未満
AA:色差0.1以上0.5未満
A:色差0.5以上1.0未満
B:色差1.0以上2.0未満
C:色差2.0以上
【0230】
[実施例10乃至実施例18]
実施例1乃至実施例9において、富士ゼロックス社製DocuCentre Color 500改造機として、空気流入口及び空気排出口を設けると共に、非接触型の帯電装置に外気を送風するように送風機を取り付けた改造機(図7参照)を適用した以外は、実施例1と同様の評価を行った。結果を表2に示す。
なお、送風機による帯電装置への送風は、温度センサにより装置内温度が32℃以上(無水酢酸の昇華温度)のときに送風機を駆動して、風速1m/secで外気を装置内に吸入し、帯電装置(そのTa−C層)に外気を送風して帯電装置を冷却し、装置内温度が32℃未満となったとき駆動を停止するように制御して行った。これは、画像形成時、待機時のいずれにおいても実施した。
【0231】
[比較例1乃至比較例11]
表2に従って、上記作製した電子写真感光体を、富士ゼロックス社製DocuCentre Color 500(Ta−C層なしの非接触型の帯電装置を装着)に、装着し、実施例1と同様の評価を行った。結果を表2に示す。
【0232】
【表2】

【0233】
上記結果から、本実施例は、比較例に比べ、画像の抜けが抑制されることがわかる。
また、本実施例10〜18は、本実施例1〜8に比べ、画像の抜けが抑制されることがわかる。
【符号の説明】
【0234】
1 基体、2 感光層、2A 電荷発生層、2B 電荷輸送層、3 保護層、4 下引層、210 成膜室、211 排気口、212 基材回転部、213 基材支持部材、214 基材、215、220 ガス導入管、216 シャワーノズル、217 プラズマ拡散部、218 高周波電力供給部、219 平板電極、221 高周波放電管部、222 高周波コイル、223 石英管、3A 第1の領域、3B 第2の領域、3C 第3の領域、3D 第1の層、3E 第2の層、3F 中間層、10 電子写真感光体、20 帯電装置、30 露光装置、40 現像装置、41 現像容器、41A 現像容器本体、41B 現像容器カバー、41C 壁、42 現像ロール、42A 現像ロール室、43 攪拌部材、43A 攪拌室、44 攪拌部材、44A 攪拌室、45 層厚規制部材、50 中間転写体、50A 支持ローラ、50B 支持ローラ、50C 背面ローラ、50D 駆動ローラ、51 一次転写装置、52 二次転写装置、53 記録紙供給装置、53A 搬送ローラ、53B 誘導スロープ、54 中間転写体クリーニング装置、70 クリーニング装置、71 筐体、72 クリーニングブレード、80 定着装置、81 定着ローラ、82 搬送コンベア、101 画像形成装置、101A プロセスカートリッジ、

【特許請求の範囲】
【請求項1】
基体と、感光層と、酸素及びガリウムを含有し、外周面側に存在する第1の領域、及び前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、前記炭素原子によるsp構造を持つ被覆層を有する帯電手段と、
前記帯電手段により帯電された前記電子写真感光体の表面を露光して静電潜像を形成する潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体に形成された前記静電潜像を現像してトナー像を形成する現像手段と、
前記電子写真感光体に形成された前記トナー像を記録媒体に転写する転写手段と、
を備えた画像形成装置。
【請求項2】
前記帯電手段を冷却する冷却手段を備える請求項1に記載の画像形成装置。
【請求項3】
前記冷却手段が、前記画像形成装置の外部から外気を前記帯電手段に送風する送風手段である請求項2に記載の画像形成装置。
【請求項4】
基体と、感光層と、酸素及びガリウムを含有し、外周面側に存在する第1の領域、及び前記第1の領域よりも前記基体に近い側に存在し、前記第1の領域に比べて原子数比〔酸素/ガリウム〕が大きい第2の領域を有する保護層と、をこの順に有する電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段であって、炭素原子を含んで構成され、前記炭素原子によるsp構造を持つ被覆層を有する帯電手段と、
を備えたプロセスカートリッジ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−64877(P2011−64877A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−214423(P2009−214423)
【出願日】平成21年9月16日(2009.9.16)
【出願人】(000005496)富士ゼロックス株式会社 (21,908)
【Fターム(参考)】