説明

磁気シールド用の多層構造

磁気シールドが提供される。本シールドを使用して、浮遊磁場からマイクロ電子デバイスを保護することができる。本シールドは少なくとも2つの層を含む。第1の層は、DC磁場を遮断するのに使用することができる磁気材料を含む。第2の層は、AC磁場を遮断するのに使用することができる導電性材料を含む。第1及び第2の層が含む材料のタイプに応じて、第1及び第2の層の間に第3の層を挿入することができる。第3の層は、別個の渦電流領域が第1及び第2の層内に確実に形成されるようにするのに用いることができる非導電性材料を含むことができる。

【発明の詳細な説明】
【発明の詳細な説明】
【0001】
(政府権利)
アメリカ合衆国政府は、防衛脅威緩和機関(DTRA)交付の契約書No.DTRA01−00−C−0002に従って本発明に一定の権利を獲得している。
【技術分野】
【0002】
本発明は、磁気シールドに関し、より具体的には、マイクロ電子デバイスを磁場効果から保護するシールドに関する。
【背景技術】
【0003】
様々な厳しい環境又は過酷な環境により、マイクロ電子デバイスの正常な動作が妨げられる場合がある。例えば、大きな電磁場又は電離放射線がこうした環境を作り出す可能性がある。通常、マイクロ電子デバイスは、特定の環境において適切に作動するように設計又は配備することができる。こうした設計は、電気絶縁性のような保護手段をデバイスの基板内に組み込むことを含むことができる。付加的な又は代替の設計では、潜在的に有害な電場又は磁場を遮断する保護シールドを使用する。
【発明の開示】
【発明が解決しようとする課題】
【0004】
詳細には、マイクロ電子デバイスを外部浮遊磁場から保護するのに使用される1つのタイプのシールドは、磁気シールドである。一般に、デバイスは保護用に2つのシールドを使用し、1つがデバイスの下に位置付けられ、他のものがデバイスの上に位置付けられることになる。これらのシールドは一般に、磁力を吸収し且つこの磁力を半導体デバイスから離れるように方向を変える高透磁率材料を含む。しかしながら、現在の磁気シールドは、直流(DC)磁場及び交流(AC)磁場の両方の遮断という点で効果的ではない。
【課題を解決するための手段】
【0005】
磁気シールドが提供される。磁気シールドは、AC磁場及びDC磁場からマイクロ電子デバイスを保護することができる。マイクロ電子デバイスは、上部磁気シールドと下部磁気シールドとの間に配置することができる。上部及び下部シールドは各々、DC磁場を減衰させる第1の層とAC磁場を減衰させる第2の層とを含む。上部及び下部シールドは、デバイスの周りの様々な位置に配置することができる。更に、より多い又はより少ないシールドを使用してもよい。このようなシールドは、所望の磁場減衰をもたらすように調整することができる。
【0006】
1つの実施例において、第1の層は磁気伝導性材料を含み、第2の層は非磁気伝導性材料を含む。非導電性材料を含む第3の層はまた、第1の層と第2の層との間に配置することができる。磁気伝導性材料は、例えば、NiFe又はNiMoFeとすることができる。非磁気伝導性材料は、Al、Cu、又はAlCuとすることができる。非導電性材料は、エポキシ樹脂、誘電体層又はフェライトなどの様々な非導電性材料を含むことができる。
【0007】
シールドは、様々な厚さを有する層を含むことができる。例えば、第1の層は、約20ミルよりも大きい厚さを有し、AC磁場を減衰させるように調整することができる。同様に、第2の層は、約20ミルよりも大きい厚さを有することができる。別の実施例においては、第2の層は、導電層及び非導電層の階層を含むことができる。別の実施例においては、第2の層は、非磁気伝導性材料ではなく、磁気伝導性材料とすることができる。
【0008】
これら並びに他の態様及び利点は、添付図面を適宜参照しながら以下の詳細な説明を読むことにより当業者には明らかになるであろう。更に、この要約は単なる実施例に過ぎず、請求項に記載される本発明の技術的範囲を限定するものではない点を理解されたい。
【発明を実施するための最良の形態】
【0009】
a)磁気シールド
図1は、上部シールド12及び下部シールド14を含む磁気シールド10を示している。上部シールド12は、マイクロ電子デバイス16の上に位置付けられ、下部シールド14は、デバイス16の下に位置付けられる。デバイス16は、リッド20を含むパッケージ18内に位置付けることができる。パッケージ18及びリッド20は、セラミックなどの様々な材料から構成することができる。リッド20をパッケージ18に取り付けるために、フランジ22、24を設けることができる。フランジ22、24は、例えばコバールから構成することができる。エポキシ樹脂26、28を用いて、下部シールド14をパッケージ18に取り付け、上部シールド12をリッド20に取り付けることができる。エポキシ樹脂は、導電性材料又は非導電性材料を含むことができる。
【0010】
一般的に言えば、シールド10は、外部浮遊磁場からデバイス16を保護する。デバイス16は、あらゆるタイプのマイクロ電子デバイスとすることができる。例えば、デバイス16は、磁気抵抗メモリビットを含むメモリセルを備えたMRAMなどの磁気メモリとすることができる。或いは、デバイス16は、例えば、プロセッサ又は電子メモリとすることができる。
【0011】
様々な磁場環境からデバイス10を保護するために、シールド10を調整することができる。詳細には、このような環境は、周波数がほとんどない又は全くない直流(DC)磁場(例えば、約60Hz未満の周波数を有する比較的に静止した磁場)、或いは、高い周波数を有することができる交流(AC)磁場(例えば、60Hzよりも大きい周波数を有する時間的に変化する磁場)の両方を含む可能性がある。DC磁場は、例えば、電気モータにより発生させることができる。他方、AC磁場は、携帯電話のようなRFベースのデバイスが発生することができる。また、AC磁場は、高高度及び宇宙環境で存在することができる。有利には、シールド10は、DC及びAC磁場環境の両方に適応するよう調整することができる。
【0012】
シールド12、14は、様々な材料から構成することができる。しかしながら、各シールドは、少なくとも2つの層を含む。シールド12、14の第1の層は、DC磁場を減衰させ、シールド12、14の第2の層はAC磁場を減衰させる。
【0013】
以下の説明は、少なくともこれら2つの減衰層を構成するのに使用することができる様々な構成及び材料に関する。これらの層の各々は、磁気伝導性(MC)、非磁気伝導性(NMC)、又は非導電性(NC)とすることができる。
【0014】
MC層は、例えば、ニッケル−鉄合金(NiFe1−x)、又はニッケル−モリブデン−鉄(NiMoFe1−x−y)を含む高透磁率材料とすることができる。銅(Cu)又はコバルト(Co)などの他の材料をMC層に加えることができる。一方、NMC層は、例えば、アルミニウム、銅又はアルミニウム銅合金とすることができる。
【0015】
他方、NC層は、導電層(すなわち、NMC又はMC)を互いに分離するのに使用することができる。NC層は、エポキシ樹脂、誘電体層又はフェライト材料などの様々な絶縁材料を含むことができる。NC層用に使用される材料のタイプは、シールドの製作方法によって決定付けることができる。例えば、エポキシ樹脂はまた、絶縁体として作用しながら、MC層104をNMC層108に接合するのにも使用することができる。しかしながら、MC層104又はNMC層が堆積される場合(例えば、スパッタ堆積プロセスにより)、NC層は、これらの堆積ステップの間に成長又は堆積させることができる。NC層は、例えば、二酸化ケイ素層、或いは、MC層から成長した又はMC層の上部に堆積された別のタイプの酸化物とすることができる。
【0016】
代替の実施例において、フェライト材料をNC層用に使用することができる。フェライト材料は磁気非導電(MNC)層を含む。こうしたフェライト材料は、MnZn−フェライト又はNiZn−フェライトを含むことができる。
【0017】
一般に、図2〜図9は、上部シールド12及び下部シールド14用に使用することができる様々なシールドを示している。しかしながら、記載のシールドは、デバイス16に近接する様々な場所に位置付けることができ、デバイス16の上又は下への配置だけに限定されない点を理解されたい。更に、幾つかの実施例において、デバイスをシールドする際により多くの又はより少ないシールドを使用することも実施可能とすることができる。
【0018】
b)実施例1
図2は、磁気シールド100と、シールド100の減衰シミュレーションを実証するグラフ102とを示している。シールド100は、MC層104、NC層106及びNMC層108を含み、いずれも約20ミルの厚さである。NC層106は、MC層104とNMC層108との間に配置される。MC層104をNMC層108から分離するのがNC層106であり、NC層106は、様々な非導電性材料(例えば、エポキシ樹脂、誘電体層、又はフェライト材料)を含むことができる。
【0019】
グラフ102は、1Hzから1012Hzの周波数範囲にわたって、印加磁場に対するシールド100の3つの応答120、122及び124の正規化された減衰をプロットしている。応答120は、MC層104の透磁率(μ)に起因するものである。印加磁場の周波数が100Hzを上回ると、MC層104の透磁率が減少する。最終的には、MC層104の透磁率はゼロになり、透磁率に対する減衰特性も同様にゼロになる。
【0020】
MC層104の透磁率は周波数の増大に伴って減少するが、シールド100は、連続的に印加磁場を減衰させる。約100Hzから10Hzの減衰は、MC層104の透磁率と渦電流減衰と呼ばれる現象との組み合わせとして発生する。応答122は、これらのタイプの減衰の両方の組み合わせを示している。
【0021】
一般に、渦電流減衰は、導電性材料において起こり、導体を横断する交流磁場又は移動磁場によって生成され、又はその逆も同様である。相対運動により導体内に電子又は電流の循環流が引き起こされる。これらの循環する電流の渦は、外部磁場の変化と反対の磁場を有する電磁石をもたらす。磁場が強くなる程、又は導体の電気伝導性が大きくなる程、発生する電流がより大きくなり、その相対する力が大きくなる。
【0022】
渦電流減衰は導電性の関数であるので、導体の材料選択は、印加磁場の減衰の一因である。更に、渦電流の電流密度はまた、印加磁場の減衰において重要な役割を果たす。渦電流の密度は、印加磁場の周波数を含む様々な要因の関数である。周波数が高くなる程、導体表面における渦電流は高密度になる。従って、グラフ102において、印加磁場がより高い周波数に向かって移動すると、渦電流密度は、MC層104(及びNMC層108)の表面でより高密度に分布することになる。
【0023】
渦電流の密度を定量化するのに使用される式は、次式で与えられる。
【数1】


ここで、δは表皮厚さと呼ばれ、μは透磁率、ρは導体の抵抗率、及びωは印加磁場の角周波数である。上式は、周波数と表皮厚さとの間の関係、すなわち、磁場の周波数が増大すると表皮厚さが減少する関係を示している。表皮厚さを電流密度に関係付ける式は、次式で与えられる。
【数2】


ここで、Jは電流密度、Jは定数、dは導体内への深さ、及びδは表皮厚さである。
【0024】
一般的に言えば、層104、108のような導電層を絶縁体と分離することにより、渦電流減衰の有効性が高くなる。これは、第1に、渦電流が導体の表面に近接して分布することに起因するものである。上式が示すように、電流密度は、導体内への深さに伴って指数関数的に減少する。導電層を有利に分離することにより、シールド内に2つの指数関数的渦電流分布を生じる2つの表面が生成される。結果として、単一のシールド内により多くの量の渦電流が含まれる(単一の導電層のみを有するシールドと比べて)。その上、導電層を更に付加し、渦電流減衰の有効性を増大させることもできる(図7〜図8を参照)。
【0025】
グラフ102が示すように、渦電流減衰は、周波数の増大に伴ってより優勢になる。渦電流が層104、108の表面により近づくと、導体内の渦電流はより大きくなり、印加磁場に反対に作用する磁場がより大きくなる。
【0026】
応答122では、約100Hzから10Hzの周波数範囲においては0.8を上回る減衰を示しているが、組み合わせ減衰効果(すなわち、渦電流減衰と組み合わせた透磁率)は、約5x10Hzで減衰最小値126(約0.2)に到達する。最小値126において、MC層104の透磁率はほぼゼロであり、MC層104内の渦電流密度は、印加磁場の有意な渦電流減衰を生じるには十分ではない。
【0027】
減衰の損失を補償するために、シールド100はNMC層108を含む。NMC層108は低抵抗である(すなわち低ρ値)ので、NMC層108は、MC層104よりも高密度で、従ってより大きな渦電流を有することになる。従って、NMC層108は、応答122によりもたらされる最小値126を補償する渦電流減衰の指標を提供する。結果として、シールド100の減衰最小値は、最小値126からより高い減衰最小値128に移動する。最小値128は、最小値126の減衰値よりも大きい、約0.6の減衰値を有する。
【0028】
シールド100内に層104、108を両方含めることによって、広い周波数範囲の磁場をシールド100により効果的に遮断することができる。一方、MC層104は、DC磁場及び低周波数のAC磁場をシールドする。他方、NMC層108は、より高い周波数のAC磁場を減衰させる。以下に説明するように、MC層104及びNMC層108は、曲線120〜124の各々の減衰範囲を調整又は拡大するために、様々な厚さに調整することができる。更に、層104、108の順番は限定とみなすべきでない。例えば、MC層104は、NMC層108の上に位置付けてもよい。加えて、シールドに更に層を付加して、所望の減衰を得ることができる。
【0029】
c)実施例2
図3は、シールド200と、シールド200の減衰シミュレーションを実証する磁気グラフ202とを示している。シールド200は、MC層204、NC層206及びNMC層208を含む。NC層206は、MC層204とNMC層208との間に配置される。
【0030】
グラフ202は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対するシールド200の4つの応答220、222、224及び226の正規化された減衰をプロットしている。応答220は、約20ミルの厚さを有するMC層204の透磁率に起因する減衰である。MC層204の透磁率が周波数の増大に伴って減少すると、MC層204の渦電流減衰は最小値228に近づく。
【0031】
減衰最小値228をシフト及び増大させるために、シールド200はNMC層208を含む。グラフ202において、応答224、226は、NMC層208の2つの異なる厚さ、及び結果として生じる各厚さの渦電流減衰を反映している。一般的に言えば、NMC層208が厚くなる程、渦電流減衰は大きくなる。例えば、NMC層208の厚さ(X)が約40ミルである場合、応答224は、約0.8である渦電流減衰の最小値230をもたらすことになる。別の実施例として、NMC層208の厚さ(X)が約60ミルである場合、応答226は、約0.9である渦電流減衰の最小値232をもたらすことになる。MC層204及びNMC層208の両方の様々な他の厚さも実施可能である。
【0032】
d)実施例3
図4は、磁気シールド300と、シールド300の減衰シミュレーションを実証するグラフ302とを示している。シールド300は、MNC層304(例えば、フェライト)及びNMC層306を含む。図2、図3の実施例とは異なり、MNC層304は非導電性であり、従って、MNC層304は、組み合わせた減衰効果(すなわち、透磁率及び渦電流減衰)をもたらさない。
【0033】
グラフ302は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対するシールド300の2つの応答320及び322の正規化された減衰をプロットしている。応答320は、MC層204の透磁率(μ)に起因するものである。約10Hzの周波数において、応答320の減衰が低下し始める。応答320の減衰の低下を補償するために、シールド300は、この実施例においては約60ミルであるNMC層306を含む。
【0034】
応答322は、NMC層306の減衰を示している。印加磁場の周波数が増大すると、渦電流減衰はより効果的になる。グラフ302は、約0.6である減衰最小値324を示している。層304、306の厚さが増大又は減少させると、同様に最小値324を増大又は減少させることができる。
【0035】
e)実施例4
図5は、磁気シールド400と、シールド400の減衰シミュレーションを実証するグラフ402とを示している。シールド400は、MC層404、MNC層406及びNMC層408を含む。MNC層406は、MC層404とNMC層408との間に配置されている。
【0036】
グラフ402は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対するシールド400の4つの応答420、422、424及び426の正規化された減衰をプロットしている。シールド400及びグラフ402は、図3のシールド200及びグラフ202に類似している。但し、NC層206はMNC層406で置き換えられている。フェライト材料(非磁性非導電性材料の代わりに)を使用することによって、シールド400の減衰は、低周波数範囲においてシールド200よりも効果的とすることができる。
【0037】
f)実施例5
図6は、磁気シールド500と、シールド500の減衰シミュレーションを実証するグラフ502とを示している。シールド500は、MC層504、NC層506及びMC層508を含む。MNC層506は、MC層504とMC層508との間に配置されている。例えば、MC層504は、高透磁率材料を含むことができ、MNC層506は、フェライト材料を含むことができ、MC層508は、導電性材料を含むことができる。MC層504、508は各々、約10ミルの厚さである。
【0038】
グラフ502は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対するシールド500の3つの応答520、522及び524の正規化された減衰をプロットしている。応答520は、MC層504、508の透磁率に起因する減衰を示している。応答522は、MC層504、508によってもたらされるシールド500の渦電流減衰を示している。応答522は、減衰最小値526(約0.75)を含む。他方、応答524は、MC層104(図2を参照)のような約20ミルの厚さである単一のMC層に起因する渦電流減衰を示し、減衰最小値528(約0.2)を有する。
【0039】
グラフ502は、別個のMC層が、単一でより厚いMC層よりも良好な渦電流減衰をもたらすことを示している。具体的には、2つの10ミル厚のMC層504、508は、単一のより厚い20ミルMC層よりも良好な減衰をもたらす。MC層が絶縁体によって分離されていない場合には、個々のMC層は単一のMC層を形成し、1つの有効な表面のみを生成し、従って、シールド内に含むことができる渦電流の量が低減されることになる点に留意するのが重要である。
【0040】
g)実施例6
図7は、別個のMC層を有する磁気シールド600と、シールド600の減衰シミュレーションを実証するグラフ602とを示している。シールド600は、MC層604〜606及びNC層607、608を含む。MNC層604〜606は、NC層607、608の間に配置されている。
【0041】
グラフ602は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対する2つの応答620及び622の正規化された減衰をプロットしている。グラフ602は、また、図6の応答522(すなわち、シールド500のMC層504、508の渦電流減衰)を示している。応答620は、MC層604〜606の透磁率に起因する減衰を示している。応答622は、MC層604〜606によってもたらされるシールド600の渦電流減衰を示している。応答622は、減衰最小値624(約0.9)を含む。グラフ602は、シールド内の導電層の数を増やすことによって、渦電流減衰の有効性が更に高くなることを示している。MC層604〜606の合計厚さは、MC層104(図2)及びMC層504、508(図5)の合計厚さと同じ厚さの約20ミルである点に留意されたい。
【0042】
h)実施例7
図8は、別個のMC層を有する磁気シールド700と、シールド600の減衰シミュレーションを実証するグラフ702とを示している。シールド700は、各々がNC層によって分離されているMC層の階層704を含む。
【0043】
グラフ702は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対する2つの応答720及び722の正規化された減衰をプロットしている。グラフ702はまた、図6の応答622(すなわち、シールド600のMC層604〜606の渦電流減衰)を示している。応答720は、階層704内のMC層の透磁率に起因する減衰を示している。応答722は、階層704内のMC層によってもたらされるシールド700の渦電流減衰を示している。応答622は、減衰最小値724(約0.98)を含む。階層704内のMC層の合計厚さは約20ミルである。
【0044】
h)実施例8
図9は、磁気シールド800と、シールド800の減衰シミュレーションを示すグラフ802とを示している。シールド800は、MC層804、MNC層806(例えば、フェライト)及びNMC層808を含む。MNC層806は、MC層804とMC層808との間に配置されている。
【0045】
グラフ802は、1Hzから1012Hzまでの周波数範囲にわたって、印加磁場に対するシールド800の3つの応答820、822及び824の正規化された減衰をプロットしている。応答820は、MC層804、808の透磁率に起因する減衰を示している。シールド800及びグラフ802は、シールド200、500に類似しているが、但し、NC層がMNC層806と置き換えられている。上述のように、MNC層806は、低周波数範囲において減衰を増大させることができる。応答822は、MNC層806の減衰を示している。
【0046】
高周波数範囲における減衰を増大させるために、シールド800内に複数のMC層を含める。応答824は、MC層804、808によってもたらされるシールド800の渦電流減衰を示している。
【0047】
i)結論
上記で様々な実施例を説明してきた。より全体的には、当業者であれば、請求項の範囲によって定義される本発明の真の技術的範囲及び技術思想から逸脱することなく、これらの実施例に変更及び修正を加えることができる点は理解されたい。従って、例えば、磁気シールドは、層の厚さにも、シールドが含む層の順番にも限定されるものではない。更に、記載の層の様々な構成が実施可能である。図示していないが、磁気シールドは、シールド内の渦電流密度を増大させるために複数のNMC層を含むことができる。加えて、磁気シールドを作るために様々な方法を使用することができる。例えば、MC、NMC及びNC層は、エポキシ樹脂と共に接合される積層フィルムとすることができる。或いは、こうした層を基板上に堆積又は成長させることができる。
【0048】
従って、本発明の説明は、単なる例証と解釈されるべきであり、本発明を実施する最良のモードを当業者に教示する目的のものである。その詳細事項は、本発明の技術的思想から逸脱することなく実質的に変更することができ、添付の請求項の範囲の範囲内にある全ての修正の独占的な使用が保証される。
【図面の簡単な説明】
【0049】
【図1】実施例による、磁気シールドで囲まれたマイクロ電子デバイスの概略図である。
【図2】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの概略図である。
【図3】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図4】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図5】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図6】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図7】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図8】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。
【図9】実施例による、磁気シールド及び周波数範囲にわたる磁場減衰の対応するプロットの別の概略図である。

【特許請求の範囲】
【請求項1】
磁気伝導性材料を含む第1の層と、
非磁気伝導性材料を含む第2の層と、
非導電性材料を含み、前記第1の層と前記第2の層との間に配置される第3の層と、
を含む磁気シールド。
【請求項2】
前記磁気伝導性材料は、NiFe及びNiMoFeからなるグループから選択された高透磁率材料である、
請求項1に記載の磁気シールド。
【請求項3】
前記第1の層が、約20ミルよりも大きい厚さを有する、
請求項2に記載の磁気シールド。
【請求項4】
前記第2の層が、交流磁場を減衰させるように調整された厚さを有する、
請求項1に記載の磁気シールド。
【請求項5】
前記第2の層が、導電層の階層を含み、前記導電層が、前記導電層の階層の各々の間に配置された非導電層によって互いに分離されている、
請求項1に記載の磁気シールド。
【請求項6】
前記非磁気伝導性材料が、Al、Cu及びAlCuからなるグループから選択された導体を含む、
請求項1に記載の磁気シールド。
【請求項7】
前記第2の層が、約20ミルよりも大きい厚さを有する、
請求項6に記載の磁気シールド。
【請求項8】
前記非導電磁気材料が、エポキシ樹脂及び誘電体層からなるグループから選択された絶縁体である、
請求項1に記載の磁気シールド。
【請求項9】
前記非導電性材料がフェライト材料を含む、
請求項1に記載の磁気シールド。
【請求項10】
第1の磁気伝導性材料を含む第1の層と、
第2の磁気伝導性材料を含む第2の層と、
非導電性材料を含み、前記第1の層と前記第2の層との間に配置される第3の層と、
を含む磁気シールド。
【請求項11】
前記第1の層が第1の厚さを有し、前記第2の層が第2の厚さを有し、前記第1の厚さ及び前記第2の厚さが交流磁場を減衰させるように調整される、
請求項10に記載の磁気シールド。
【請求項12】
前記第1の磁気伝導性材料及び前記第2の磁気伝導性材料が、NiFe及びNiMoFeからなるグループから選択された高透磁率材料である、
請求項10に記載の磁気シールド。
【請求項13】
前記第1の層が約10ミルよりも大きい第1の厚さを有し、前記第2の層が約10ミルよりも大きい第2の厚さを有する、
請求項12に記載の磁気シールド。
【請求項14】
前記非導電磁気材料が、エポキシ樹脂及び誘電体層からなるグループから選択された絶縁体である、
請求項10に記載の磁気シールド。
【請求項15】
前記非導電性材料がフェライト材料を含む、
請求項1に記載の磁気シールド。
【請求項16】
マイクロ電子デバイスと、
磁気メモリの上に位置付けられ、直流磁場を減衰させるための第1の層と交流磁場を減衰させるための第2の層とを含む第1の磁気シールドと、
磁気メモリの下に位置付けられ、直流磁場を減衰させるための第3の層と交流磁場を減衰させるための第4の層とを含む第2の磁気シールドと、
を備えたシールドされたマイクロ電子デバイス。
【請求項17】
前記第1の層及び前記第3の層が各々磁気伝導性材料を含み、前記第2の層及び前記第3の層が各々導電性材料を含み、前記第1の層及び前記第3の層が交流磁場を減衰させるための調整された厚さを有する、
請求項16に記載のメモリ。
【請求項18】
前記第1の層及び前記第3の層が各々磁気伝導性材料を含む、
請求項17に記載のメモリ。
【請求項19】
前記第1の層と前記第2の層との間に配置された第4の層と、
前記第3の層と前記第4の層との間に配置された第5の層と、
を更に備え、
前記第4の層及び前記第5の層が各々非導電性材料を含む、
請求項18に記載のメモリ。
【請求項20】
前記非導電性材料がエポキシ樹脂、誘電体層及びフェライトからなるグループから選択された絶縁体である、
請求項19に記載のメモリ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2009−540543(P2009−540543A)
【公表日】平成21年11月19日(2009.11.19)
【国際特許分類】
【出願番号】特願2009−513343(P2009−513343)
【出願日】平成19年3月1日(2007.3.1)
【国際出願番号】PCT/US2007/063010
【国際公開番号】WO2008/021583
【国際公開日】平成20年2月21日(2008.2.21)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】