説明

規準化された蛍光又は生物発光撮像のためのシステムと方法

【解決手段】本システムと方法は、規準化蛍光エピ照明画像と規準化蛍光透照画像を提供する。規準化は、二次元(平面)の蛍光エピ照明画像と二次元(平面)の蛍光透照画像を改良するのに用いられる。本システムと方法は、更に、規準化生物発光エピ照明画像と規準化生物発光透照画像を提供することができる。或る装置では、本システムと方法は、小さな動物の撮像、手術中の撮像、内視鏡撮像、及び/又は中空器官の撮像を提供することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概括的には医療用画像化に関しており、より具体的には、小動物の撮像、手術中の撮像、内視鏡撮像、及び中空器官の撮像に関係する蛍光エピ照明画像、蛍光透照画像、及び生物発光画像を作成するためのシステムと方法に関する。
【背景技術】
【0002】
蛍光画像は、生きている生物組織内の分子の機能及び遺伝子の発現を撮像するために、生体内で作成することができる。小動物の蛍光撮像は、薬品開発の研究を含む生物学的研究及び蛍光報告技術の調査に用いられてきた。蛍光撮像は、更に、上皮疾患を示している組織、ヒトの胸部、関節、及びヒトの歯の様な、様々なヒトの組織を研究するのに用いられてきた。
【0003】
従来から、蛍光は、いわゆる蛍光顕微鏡を使って、組織学的に薄く切断した生物組織を高解像度で撮像するために用いられてきた。蛍光顕微鏡は、比較的高解像度の画像を提供するのに用いられる。しかしながら、従来型の蛍光顕微鏡に用いられる組織の切断は、0.5ミリメートル級の薄切り厚さ(即ち、組織の深さ)に限定され、従って、従来型の蛍光顕微鏡は、器官全体を通して又はヒトの身体全体を通して撮像するには適していない。
【0004】
組織の中にもっと深く入り込んだ画像を提供するために、従来型のシステムと技法は、近赤外線を放射する光源と蛍光色素を使用してきた。近赤外線光は、吸収が少なく、生物組織に数センチメートル入り込むことができるので、選択されている。近赤外線は、様々な光学撮像システム及び技法に用いられている。
【0005】
蛍光は、励起光を組織に送る励起光源に反応して、組織から放射される。励起光は、組織内の蛍光色素からの蛍光の放射を励起する。
同様に、生物発光撮像は、組織の中を撮像するのに用いられてきた。蛍光と生物発光撮像の違いは、生物発光撮像では、生物発光の光を放射させるのに励起光源を必要としないことである。生物発光撮像における生物発光の光の放射は、形質転換遺伝子から生じる組織内の化学発光反応によって起こる。
【0006】
従来から蛍光撮像に用いられている大部分の肉眼的技法は、蛍光反射撮像(FRI)であり、ここでは、蛍光エピ照明撮像(FEI)とも呼ばれる。
エピ照明光源とエピ照明撮像について、以下に説明する。一般的に、エピ照明光源は、生物組織の表面に向かって送られて、そこから反射する、及び/又は生物組織の中へ伝播して、生物組織の内部構造及び/又は表面から反射する、光を作る。エピ照明画像を形成するために、画像の光は、一般的に、組織のエピ照明光源と同じ側に集められる。
【0007】
FEIシステムは、光を生物組織の上及び/又は中へと送り、組織の中から放射して戻される光も含めて、組織から放射して戻される蛍光を集める。蛍光エピ照明撮像では、エピ照明光源からの励起光(例えば、近赤外線)が、組織を照らすのに用いられる。エピ照明光源を使用して、組織内の蛍光色素を励起し、次には蛍光色素が蛍光を放射する。或る装置では、放射光は可視光である。別の装置では、放射光は近赤外線である。放射光は、視覚的に検分されるか、或いは、普通は組織のエピ照明光源と同じ側に配置されているCCDカメラ又は他の光子検出器を使って捕捉される。生物発光撮像は、蛍光エピ照明撮像と同様ではあるが、生物発光は、エピ照明光源無しに作られる。
【0008】
先に述べた様に、近赤外線を使った従来の蛍光撮像では、解像度が比較的低く、ほんの僅か(2−3mm)組織に進入するに過ぎない。もっと高い解像度は、スペクトル情報を利用して「umixed」される場合に実現される。
【0009】
第2の方法は、小動物を使った研究にはまだ利用されていないが、光学的胸部撮影での使用が認知されており、透照光源を使用して、透照画像を作成する。先に述べたエピ照明光源と同様に、透照光源は、組織の中へと伝播する光を生成する。しかしながら、エピ照明光とは異なり、透照光は、組織を完全に通って伝播する。透照撮像では、画像光は、組織の、透照光源とは概ね反対側に集められる。
【0010】
蛍光エピ照明撮像に関して先に述べたのと同様に、蛍光透照撮像では、透照光源からの励起光(例えば、近赤外線)は、組織を照らすのに用いられる。励起光は、組織の中に伝播し、組織内からの蛍光の放射を励起する。しかしながら、上記蛍光エピ照明装置とは対照的に、蛍光透照撮像では、CCDカメラ又は他の光子検出器が、組織の、透照光源とは概ね反対側に配置されている。或る装置では、放射される光は近赤外線である。蛍光透照撮像(FTI)は、心筋と歯科診察診療の機能的な特徴を視覚化するのに用いられる。
【0011】
或る透照装置では、透照光源と光検出器は、組織を貫通する仮想線上に配置されている。仮想線が組織にほぼ垂直な装置もあるし、そうではない装置もある。
蛍光エピ照明撮像(FEI)、蛍光透照撮像(FTI)、及び生物発光撮像(BI)は、二次元画像を提供する「平面」撮像を形成する。
【0012】
X線断層撮像法を利用する更に高度な光学撮像システムと方法が開発されている。これらのシステムと方法は、組織への異なる投射(即ち、角度)での光子測定値を取得し、その測定値を、X線断層撮像アルゴリズムを使って組み合わせることによって機能する。X線断層撮像は、上記形態の平面撮像より正確な画像を提供する。X線断層撮像の利点には、画像を定量化する能力、二次元又は三次元の画像を提供する能力、三次元撮像に造形深さ測定値を提供する能力、及び、平面撮像に比べて高い感度と解像度、が含まれる。或る適用例では、生体内でX線断層撮像を使用し、酵素制御と薬品への治療反応を測定している。これらの適用例では、X線断層撮像は、平面撮像に優れた撮像性能を提供する。しかしながら、X線断層撮像は、平面撮像より複雑であり、より高度な器具と、多数の光源を要する多数の照明点(投射)と、組織内の光子伝播をモデル化するための高度な理論的方法と、を必要とする。
【発明の開示】
【課題を解決するための手段】
【0013】
規準化されたエピ照明撮像と規準化された透照撮像のためのシステムと方法は、平面蛍光エピ照明撮像、平面蛍光透照撮像、平面生物発光エピ照明撮像、及び平面生物発光透照撮像によって作成される画像の規準化を提供する。規準化は、画像を実質的に改良する。以下に更に説明する様に、それぞれが特定の撮像特徴を有する規準化エピ照明画像と規準化透照画像を組み合わせて使用することにより、更に別の改良を達成することができる。
【0014】
以下に更に詳しく説明する様に、或る特定の装置では、本システムと方法は、外科手術中に、腫瘍又は他の病変部と、その境界を識別するのに用いられる。つまり、本システムと方法は、体内で作動する撮像に用いられる。或る装置では、本システムと方法は、蛍光内視鏡及び/又は腹腔鏡に用いられる。或る装置では、本システムと方法は、口内及び歯科処置に用いられ、口内又は歯科画像を提供する。
【0015】
本発明によれば、或る撮像方法は、励起光源を使って、励起光を含む入射光を生成し、その入射光を組織に向けて送る段階を含んでいる。本方法は、更に、入射光が組織と相互作用した後で、光検出器を使って入射光を受け取る段階を含んでいる。本方法は、更に、光検出器を使って、組織から放射される放射光を受け取る段階を含んでいる。本方法は、更に、入射光に反応して、組織の内因性の画像を作成する段階を含んでいる。本方法は、更に、組織の、規準化されていない放射光の画像を作成する段階を含んでいる。本方法は、更に、規準化されていない放射光の画像と内因性画像を組み合わせて、組織の規準化された放射光画像を作成する段階を含んでいる。
【0016】
本方法によって作成された規準化放射光画像は、規準化蛍光エピ照明画像、規準化蛍光透照画像、規準化生物発光エピ照明画像、及び/又は規準化生物発光透照画像である。
本発明の別の態様によれば、組織を撮像するためのシステムは、励起光を含む入射光を作成できるようになっている励起光源を含んでいる。本システムは、更に、受光器を含んでおり、受光器は、入射光が組織と相互作用した後で、入射光を受け取るようになっており、更に、組織から放射される放射光を受け取るようになっており、更に、入射光に反応して組織の内因性画像を作成するようになっており、更に、組織の、規準化されていない放射光の画像を作成するようになっている。本システムは、更に、非規準化放射光画像と内因性画像を組み合わせて、組織に関係付けられた規準化放射光画像を作成するようになっている規準化プロセッサーを含んでいる。
【0017】
本システムによって作成された規準化放射光画像は、規準化蛍光エピ照明画像、規準化蛍光透照画像、規準化生物発光エピ照明画像、及び/又は規準化生物発光透照画像である。
【発明を実施するための最良の形態】
【0018】
本発明の以上の特徴、並びに本発明自体は、図面の簡単な説明の項に述べる図面についての詳細な説明で、更に良く理解頂けるであろう。
撮像システムと方法について述べる前に、導入概念と専門用語について説明する。ここで用いる「ファントム」という用語は、撮像する試験対象物を述べるのに用いる。「ファントム」は、代表的には、適切に作られた樹脂ブロックの様な、生きている組織と同様の拡散光伝播特性を有する物体である。別の例では、ファントムは、蛍光プロテイン、即ち蛍光マーカー又は蛍光色素、を有する細胞が入った小瓶である。
【0019】
ここで用いる「励起光」という用語は、「励起光源」によって生成され、生物組織に入射する光を述べるのに用いる。励起光は、組織と相互作用して、励起光源によって送られたのと同じ波長(励起波長)で、光検出器(例えば、カメラ)によって受け取られる。励起光は、単色でもよいし、広いスペクトルを包含する、例えば白色光でもよい。励起光を使用して、組織のいわゆる「内因性励起光画像」(もっと簡単に、内因性画像)、即ち、励起光の波長と同じ波長で得られる画像を作成してもよい。励起光を使用して、組織内の蛍光を励起し、励起光の波長と異なる選択された波長で、いわゆる組織の「蛍光画像」を作成してもよい。
【0020】
ここで用いる「入射光」という用語は、励起光源によって作成される光を一般的に述べるのに用いており、入射光は、蛍光を励起するように選択される波長を有する励起光だけでなく、他の波長を有する光も含んでいてもよい。入射光は、励起光だけを含んでいてもよいし、他の波長を含んでいてもよい。入射光の各波長は、同時に生成しても、異なる時間に生成してもよい。入射光は、組織のいわゆる「内因性入射光画像」(もっと簡単に、内因性画像)を作成するのに用いられる。内因性入射光画像は、励起光の波長と同じ波長で得られる画像(即ち、内因性励起光画像)か、励起光の波長とは異なる波長で得られる画像か、又は、励起光の波長を含んでいてもいなくてもよいが、様々な波長で得られる画像の組み合わせで得られる画像、の何れかである。画像の組み合わせについて、以下に詳しく説明する。
【0021】
一般に、内因性画像は、組織の何らかの蛍光、又は組織内の蛍光マーカーによって生成される蛍光を除いて、組織の内側にある天然の構造の画像である。対照的に、蛍光画像は、組織の蛍光だけ、又は組織内の蛍光マーカーによって作られる蛍光の画像である。内因性画像は、内因性励起光画像でも、より一般的には、内因性入射光画像でもよい。
【0022】
ここで用いる「エピ照明光源」という用語は、いわゆる「エピ照明画像」を形成するために、生物組織の表面から反射し、及び/又は生物組織の中へと伝播する或る形態の励起光(ここでは「エピ照明光」とも呼ばれる)を生成する励起光源を述べるのに用いる。エピ照明画像を形成するために、画像光は、組織のエピ照明光源と同じ側に概ね集められる。エピ照明画像は、内因性エピ照明画像(非蛍光)でも、蛍光エピ照明画像(蛍光のみ)でもよい。
【0023】
ここで用いる「透照光源」という用語は、いわゆる「透照画像」を作成するために、組織の中へと伝播する或る形態の励起光(ここでは「透照光」とも呼ばれる)を生成する励起光源を述べるのに用いる。透照画像を形成するために、光は、組織の透照光源とは反対側に概ね集められる。エピ照明画像と同様に、透照画像は、内因性透照画像(非蛍光)でも、蛍光透照画像(蛍光のみ)でもよい。
【0024】
或る装置では、エピ照明光源及び/又は透照光源は、より一般的には、励起光を含む入射光を生成する。
内因性エピ照明画像を作成するために、励起光(エピ照明光)は、撮像する対象物から送り返された(例えば、反射された)後で、カメラに受け取られる。対照的に、内因性透照画像を作成するために、励起光(透照光)は、撮像する対象物を通過した後で、カメラに受け取られる。
【0025】
同様に、蛍光エピ照明画像を作成するために、励起光(エピ照明光)は、組織上又は組織内の蛍光(エピ照明光)を励起し、その蛍光は、撮像する組織から送り戻され、それが励起光とは異なる波長で受け取られる。更に、蛍光透照画像を作成するために、励起光(透照光)は、これも組織内の蛍光を励起し、その蛍光は、撮像する組織を通して送られ、励起光とは異なる波長で受け取られる。
【0026】
ここで用いる「放射光」という用語は、生物組織又はその中で生成される光を述べるのに用いる。ここで用いる「蛍光」という用語は、励起光に反応してマーカー蛍光色素の励起によって生成される或る形態の放射光を述べるのに用いる。ここで用いる「生物発光」という用語は、一般に励起光が無い場合に、組織から放射される別の形態の放射光を述べるのに用いる。ここで用いる「放射光画像」という用語は、蛍光画像又は生物発光画像の何れかを述べるのに用いる。
【0027】
ここで用いる「画像」という用語は、対象物又は場面の様なものの視覚的表示を述べるのに用いる。画像は、コンピューターモニターに表示できる画像データとして示してもよい。画像データは、デジタルカメラ又は別の画像装置によって作成され、コンピューターシステム又は他の処理装置に提供してもよい。しかしながら、ここで用いる「画像」という用語は、画像データのことを述べるのにも用いられるものと理解されたい。
【0028】
本発明の概念を説明するためにここに述べているシステムと方法は、特定の種類の光又は特定の特性を有する光の使用に関する。例えば、近赤外線励起光を使ったシステムと方法に言及しており、これは、約650−1000nmの近赤外線(NIR)波長範囲で特別な利点を提供する。しかしながら、ここに述べるシステムと方法は、例えば約400nm−650nmの可視範囲の光の様な、他の波長を有する励起光にも適用できるものと理解されたい。本システムと方法は、励起光は、励起光源によって、可視範囲の様な或る波長範囲で生成され、蛍光色素によって放射される蛍光は、NIR範囲の様な別の波長範囲内にあるシステムにも適用される。本システムと方法は、励起光源によって生成される励起光と、蛍光色素によって放射される光が、共にNIR範囲内にある場合にも適用される。更に、可視範囲と近赤外線範囲の境界にある波長を有する励起光及び/又は放射光を、例えば550nm−650nm範囲で使用することもできる。生物発光撮像、及び赤方偏移蛍光色素及び蛍光プロテインの撮像に特に有利な波長もある。励起光は、その中の全ての波長で同じ強度を有していてもよいし、例えば、適切なフィルターを使用して、選択された波長を予め定めたように減衰させてもよい。更に、400nmから1000nmの波長範囲を超える励起光を使用してもよい。
【0029】
ここで用いる「蛍光色素」という用語は、全身的又は局所的に生物組織に適用できる或る種類の既知の生物適合性染料又は他の蛍光剤を述べているものと理解されたい。幾つかの蛍光色素は、目標蛍光色素であり、例えば癌の病変を含む、組織内の特定の解剖学的、機能的又は分子的機構に集まる傾向がある。
【0030】
さて図1に示すように、撮像システム10は、複数の矢印14で示されている励起(透照)光を生成するようになっている複数の透照光源12を含んでいる。システム10は、更に、矢印18と、光線の境界線を概略的に示す線18a、18bによって示されている励起(エピ照明)光を生成するようになっているエピ照明光源16を含んでいる。而して、エピ照明光源16は、1つの比較的幅広い光線18、18a、18bを放射する。透照光14とエピ照明光18、18a、18bは、生物組織24に送られる。この具体例では、生物組織がマウス24であると図示されている。
【0031】
或る実施形態では、光学光マスク26が、透照光源12と生物組織24の間に配置されている。従って、光マスク26の様な光マスクを使用する実施形態では、透照光14は、光マスク26を通過し、生物組織24に衝突する。光マスクは、後で、図1Aと関連付けて更に詳細に説明する。
【0032】
システム10は、線22a、22bで示されている光を受け取るようになっているカメラ20(又は他の型式の検出器)を更に含んでおり、この線は、光線の境界を概略的に示している。更に以下に述べる様に、光22a、22bは、透照光源12及び/又はエピ照明光源16と関係付けられている。カメラ20は、画像情報28を作成し、規準化プロセッサー30がその情報を受け取る。規準化プロセッサー30は、規準化された画像情報32を作成し、ディスプレイ34がそれを受け取って表示する。規準化プロセッサー30については後で詳しく説明するが、規準化プロセッサー30によって提供される規準化は、物体24の「規準化」蛍光画像を改良することが明白になるであろう。
【0033】
作動時、カメラ16は、光26a、26bを受け取る。或る実施形態では、透照光源18とエピ照明光源16は、それぞれ励起光18、20を同時に生成し、カメラ16は、透照光源12とエピ照明光源16の両方からの寄与を各励起光源12、16と同じ波長で有している光26a、26bを受け取る。別の実施形態では、透照光源12とエピ照明光源16は、それぞれ励起光18、20を、異なる時間で生成するので、カメラ16は、何時でも、透照光源12とエピ照明光源16の一方から光26a、26bを受け取る。
【0034】
エピ照明光源16によって生成された励起光18、18a、18bに反応してカメラ16が受け取る光26a、26bは、励起光18、18a、18bからの励起光の波長での寄与と、励起光18、18a、18bに反応して異なる波長で物体24内で放射された放射光(蛍光又は生物発光)からの寄与を有している。励起光18、18a、18bからの寄与は、内因性エピ照明画像を形成するのに用いられ、発生した放射蛍光からの寄与は、蛍光エピ照明画像と、規準化蛍光エピ照明画像を形成するのに用いられる。
【0035】
同様に、透照光源12によって生成される励起光14に反応してカメラ16が受け取る光26a、26bは、励起光14からの励起光波長での寄与と、励起光14に反応して異なる波長で物体24内で放射された放射光(蛍光又は生物発光)からの寄与を有している。励起光14からの寄与は、内因性透照画像を形成するのに用いられ、放射光からの寄与は、蛍光透照画像と、規準化蛍光透照画像を形成するのに用いられる。
【0036】
上記議論から、システム10が、規準化蛍光エピ照明画像、規準化蛍光透照画像、又は規準化蛍光エピ照明画像と規準化蛍光透照画像の両方を作成できるものと理解されたい。システム10は、規準化生物発光画像を作成することもできる。
【0037】
先に述べた様に、規準化蛍光エピ照明画像は、エピ照明光源16によって生成される励起光18、18a、18bで組織(例えば、図1のマウス24)を照らすことによって生成される。組織24のエピ照明光源16と同じ側に配置されているカメラ20は、組織24から反射して内因性エピ照明画像を形成する励起(エピ照明)光と、励起(エピ照明)光18、18a、18bに反応して組織24内から放射されて非規準化蛍光エピ照明画像を形成する蛍光、の両方を捕捉するのに用いられる。内因性エピ照明画像と非規準化蛍光エピ照明画像は、規準化プロセッサー30によって組み合わせられて、規準化蛍光エピ照明画像を作成する。
【0038】
先にも述べた様に、規準化蛍光透照画像は、組織(ここではマウス24)を、透照光源12によって生成される励起光14で照らすことによって作成される。組織24の透照光源12と反対側に配置されているカメラ20は、組織24を通過して内因性透照画像を作成する励起(透照)光と、励起(透照)光14に反応して組織24内から放射されて非規準化蛍光透照画像を形成する蛍光、の両方を捕捉するのに用いられる。内因性透照画像と非規準化蛍光透照画像は、規準化プロセッサー30によって組み合わせられて、規準化蛍光透照画像を作成する。
【0039】
規準化生物発光画像を作成するために、システム10は、生物発光光の非規準化画像を集める。この場合、生物発光光は、自発的に放射され、励起光14、18、18a、18bに反応して生成されるものではない。非規準化生物発光画像は、規準化プロセッサー30によって、内因性エピ照明画像か内因性透照画像の何れかと組み合わせられ、規準化生物発光画像が作成される。
【0040】
エピ照明撮像又は透照撮像の何れでも、或る実施形態では内因性画像を形成するために、励起光源は、限定するわけではないが、励起光の波長を含む1つ又は複数の波長(即ち、入射光)を生成し、内因性画像は、その1つ又は複数の波長と関係付けられた内因性画像を組み合わせることによって生成される。或る装置では、その組み合わせは加重平均である。
【0041】
「励起光」という用語を、生物組織内で蛍光を励起することのできる光に関係付けて先に述べたが、励起光は、規準化生物発光画像を作成するために、システム10で用いることもできる。或る装置では、励起光は、生物発光の波長で生成されるので、組織内の生物発光の伝播特性を捕捉するのに用いることができる。例えば、先に述べた様に、規準化生物発光透照撮像では、システム10は、励起(透照)光の画像(内因性画像)と、生物発光光の非規準化画像の両方を集める。
【0042】
先に述べた様に、規準化蛍光透照撮像は、一般的に、複数の透照光源12を、組織24のカメラ20とは概ね別の側に配置することによって提供される。透照光源12は、例えば、所定のパターンで配置されている一列の透照光源12を使用するか、又は、所定のパターンで配置されている、光マスク26の様な光学ガイドシステムを使用することによって、照明パターンを有することができる。
【0043】
複数の透照光源12を使用している蛍光透照撮像では、透照撮像は、複数の透照光源12のでそれぞれで生成される励起光と関係付けられた光信号を重ね合わせることによって実現される。基本的に、各透照光源12は順次点灯され、その結果生じる内因性蛍光画像が順次捕捉される。
【0044】
カメラ20は、光源12、16と関係付けられた励起光が組織24から反射し、及び/又は組織24を通過した光と、組織内の蛍光色素及び/又は内因性組織蛍光分子と関係付けられた放射光の両方を集める。システム10は、更に、例えば、励起光源12、16のスイッチが切られたときに、放射された生物発光光を集めることができる。同じカメラ20を使っている同じシステム10は、規準化蛍光エピ照明画像と規準化蛍光透照画像の両方を作成するのに用いることができる。カメラ20については、図2及び図2Aと関連付けて更に詳細に示す。
【0045】
エピ照明光源16と透照光源12が励起光を生成するようになっていることは先に述べたが、別の装置では、エピ照明光源16及び/又は透照光源12は、励起光の波長及び他の波長を有する入射光を生成するようになっている。
【0046】
表示「(a)」の第1のパネルと表示「(b)」の第2のパネルで構成されている図1Aでは、第1の代表的な光マスク26aがパネル(a)に示されており、第2の代表的な光マスク26bがパネル(b)に示されている。マスク26a、26bは、迷光と、カメラに直接当たると、カメラを飽和状態にするか、それを損傷させる恐れのある励起光を遮断する働きをする。追加吸収材料は、励起光源12、16によって生成される励起光14、18が、カメラ20に直接入るのを選択的に防ぐのに用いられる。他の装置では、選択的ビーム走査パターンを使って、カメラ20が励起光14、18に直接曝されるのを避ける。他の装置では、複数の透照光源12からの光度の適合減衰を使って、カメラ20の飽和を防ぎ、カメラ20が捕捉する画像の動的範囲を改良する。例えば、動的範囲は、組織の縁に近い光の様な、組織によって最小限に減衰される光に対して改良される。
【0047】
次に図1Bに示す別のシステム50は、図1のシステム10と同様であるが、比較的幅が広い励起光を有する単一の透照光源52を含んでおり、励起光は、矢印54と、光線の境界を概略的に示している線54a、54bで示されている。他の装置では、放射光54、54a、54bは、組織64の縁の近く及び外側でCCDの画素が飽和するのを防ぐ空間的減衰パターンを有している。
【0048】
図1Bの別の要素は、図1の要素と同じでも、同様であってもよい。例えば、マスク66は、マスク26と同じでも同様でもよく、エピ照明光源56は、エピ照明光源16と同じでも同様でもよく、カメラ60は、カメラ20と同じでも同様でもよく、規準化プロセッサー70は、規準化プロセッサー30と同じでも同様でもよく、ディスプレイ74は、ディスプレイ34と同じでも同様でもよい。
【0049】
図1のシステム10と図1Bのシステム50の両方で、「非規準化」画像を使って「規準化」画像を作成する方法について、以下に述べる。規準化蛍光エピ照明画像の作成は、少なくとも2つの別個の画像(即ち、2種類の画像データ)を収集し、それらを組み合わせて規準化蛍光エピ照明画像(又は規準化画像データ)を提供することを伴っている。2つの画像は、エピ照明光源(例えば、図1の16)によって生成されるエピ照明励起光(例えば、図1の18、18a、18b)が組織24から概ね反射され(図1)て出来る組織の画像(例えば、図1の24)と、蛍光探針(即ち、蛍光色素)から放射された光の非規準化画像を含んでいる。放射光は、励起光18、18a、18bによって励起される。励起光18、18a、18bの画像は、ここでは内因性エピ照明画像とも呼ばれており、放射光の画像は、ここでは非規準化蛍光エピ照明画像と呼ばれている。
【0050】
或る実施形態では、2つの暗光画像(即ち、例えば迷光とノイズが入っている背景画像)も集められ、上記の2つの画像と組み合わせて、規準化蛍光透照画像を作成するのに用いられる。一方の暗光画像は、上記内因性エピ照明画像を捕捉するのに用いられるのと同じ取得設定条件(利得、照射時間など)を使って作成され、他方の暗光画像は、上記非規準化蛍光エピ照明画像を捕捉するのに用いられるのと同じ取得設定条件を使って作成される。暗光画像の使用についは、以下の式で明白になる。
【0051】
同様に、規準化蛍光透照画像の作成は、少なくとも2つの別個の非規準化画像(即ち、2種類の画像データ)を収集し、その画像を組み合わせて規準化蛍光透照画像(又は規準化画像データ)を提供することを伴っている。2つの非規準化画像は、透照光源(例えば、図1の光源12)によって生成される透照励起光(例えば、図1の励起光14)が組織24を通過することによって作成される組織(例えば、図1の組織24)の画像と、蛍光探針(即ち、蛍光色素)から放射された光の画像を含んでいる。放射光は、励起光14によって励起される。励起光14の画像は、ここでは内因性透照画像と呼ばれ、放射光の画像は、ここでは非規準化蛍光透照画像とも呼ばれる。
【0052】
或る実施形態では、2つの暗光画像も集められ、規準化蛍光透照画像を作成するのに用いられる。一方の暗光画像は、上記内因性透照画像を捕捉するのに用いられるのと同じ取得設定条件(利得、照射時間など)を使って作成され、他方の暗光画像は、上記非規準化蛍光透照画像を捕捉するのに用いられのと同じ取得設定条件を使って作成される。
【0053】
同様に、生物発光では、少なくとも2つ、或る実施形態では4つの画像が集められ、即ち、(エピ照明又は透照)励起光の内因性画像及び暗光画像と、生物発光の放射画像及び暗光画像である。
【0054】
暗画像を使っている実施形態では、暗画像は、各測定時に取得するのではなく、一度取得してメモリに記憶される。先に述べた様に、或る実施形態では、暗電流画像は、特に暗画像のコントラストが非常に低い場合は、使用されない。他の実施形態では、等価減法が用いられる。
【0055】
規準化蛍光エピ照明撮像と規準化蛍光透照撮像では、共に、光源によって提供される励起光と、蛍光探針によって生成される放射光は、波長が異なっていてもよい。生物発光画像を作成するのに受け取られる放射光と、内因性光画像に関係して採用される励起光は、波長が異なっていても同じでもよい。或る特定の実施形態では、放射光は近赤外線光であり、励起光は、近赤外線光ではあるが波長が短い。生物発光撮像の或る特定の実施形態では、放射光は、可視及び近赤外線スペクトル成分を含んでおり、励起光は、同様のスペクトル成分を含んでいる。
【0056】
以下の式は、規準化されノイズが低減された蛍光エピ照明画像と、規準化されノイズが低減された透照蛍光画像を作成する方法で用いられる。その様な方法は、それぞれ図1と図1Bに関連付けて先に述べたシステム10、50と同様のシステムで実行される。或る実施形態では、以下に述べる非規準化画像は、図1のカメラ20又は図1Bのカメラ60によって作成できるものと理解されたい。以下に述べる規準化画像(及びノイズ低減非規準化画像)は、非規準化画像を更に処理し及び/又は組み合わせることによって作成することができるが、図1の規準化プロセッサー30又は図1Bの規準化プロセッサー70によって作成することができる。
【0057】
非規準化ノイズ低減蛍光エピ照明画像Iは、以下の様に表され、
【0058】
【数1】

【0059】
ここに、Ifeは、エピ照明光源(例えば、図1の光源16)を使用する場合に作成される蛍光画像で、Ifnは背景カメラノイズ画像(即ち、暗画像又は定数)である。Ifnは、励起光がない場合には、Ifeと同一の取得及び実験パラメーターによって取得され、或いは、実験測定値に基づいて、等価定数で近似することもできる。以後、画像Iは、非規準化ノイズ低減蛍光エピ照明画像、簡単に非規準化蛍光エピ照明画像と呼ばれ、ノイズは仮定されている。
【0060】
同様に、非規準化ノイズ低減蛍光透照画像Iは、以下の様に表され、
【0061】
【数2】

【0062】
ここに、Nは、後方照明透照光源(例えば、図1の光源12)の数で、(N1)であり、Ift(k)は、k番目の透照光源を照らすことによって得られる蛍光透照画像であり、Ifnは、同一条件で、但し励起光源による照明が無い状態(即ち、暗画像)で得られる対応するノイズ画像(オフセットも含んでいる)である。因子g(k)は、百分率係数で、各光源の相対強度に基づいて計算される中間光源強度と比較して、個別の透照光源強度の変動に合わせて補正するために含まれており、その値は、例えば、同質の内部脂肪を通して測定される。Tfは閾値である。
【0063】
閾値Tfを上回る全ての蛍光画像値が一つに積算され(重ねられ)て、非規準化ノイズ低減蛍光透照画像が生み出される。或る特定の実施形態では、閾値Tfは、Ifn画像に見られる光子係数の標準偏差の10倍に設定されている。閾値Tfの値は、ノイズ、又は、信号対ノイズ比が低い画像信号が、非規準化蛍光透照画像Iに含まれないように選択される。以後、画像Iは、非規準化ノイズ低減蛍光透照画像、又はもっと簡単に、非規準化蛍光透照画像と呼ばれ、ノイズ減算は仮定されている。
【0064】
上記非規準化蛍光エピ照明画像Iと非規準化蛍光透照画像Iは、以下の様にして規準化される。規準化プロセスは、非規準化画像を、対応する内因性画像で(即ち、エピ照明撮像用のエピ照明励起光の画像か、又は透照撮像用の透照励起光の画像で)除する。
【0065】
規準化蛍光エピ照明画像Uは、以下の通り計算でき、
【0066】
【数3】

【0067】
ここに、Ieeは、励起光波長で得られるエピ照明画像(即ち、内因性エピ照明画像で、エピ照明光源によって生成される励起光が組織から反射されて作成される組織の画像)であり、Ienは、光源からの励起無しに得られるカメラノイズとオフセット(又は暗画像)である。
【0068】
規準化画像の性能は、(蛍光エピ照明画像では)閾値Tfと(内因性エピ照明画像では)Teで変わる。或る特定の実施形態では、Uは、Iee−Ien分母値が閾値Teを上回っており、且つIfe−Ifn値が閾値Tfを上回っているのでなければ、ゼロに設定される。閾値の選択は、ノイズの統計値又は実験データに基づく。選択は、静的に、値に、ノイズ画像の所定数のノイズの標準偏差(例えば、ノイズ画像Ienの20個の標準偏差)を選択するか、適合的に選択することによって行われる。定数cとcも、静的に又は適合的に選択されるが、それらの目的は、画像を安定させることである。定数cとcは、ユーザーの嗜好に依って、ゼロ値を有していてもよいし、小さな値で、小さなオフセット値を提供して比を安定させ、より正確な視覚結果を生むようにしてもよい。或る特定の実施形態では、c=0とC=1のデフォルト設定値を使って、ゼロによる除算を回避している。同様に、因子aとbは、蛍光及び励起画像の相対的強度に関する事前情報、例えば、蛍光測定に用いられるフィルターと、励起光測定に用いられるフィルターを比べた場合の相対的減衰を実施する(以下図2を参照)。別の装置では、a=1、b=1である。しかしながら、アプリケーションによっては、aとbは、所定の式によって与えられる他の値(例えば、波長の関数)でもよいし、実験で測定してもよい。
【0069】
同様に、対応する規準化蛍光透照画像Uは、以下の通り計算され、
【0070】
【数4】

【0071】
ここに、Ietは、励起波長で得られる透照画像(即ち、内因性透照画像であり、透照光源によって生成される励起光が組織を通過することによって作成される組織の画像)であり、Ienは、励起光源からの励起無しに得られるカメラのノイズ(暗画像)である。採用されているN個の光源それぞれに対する蛍光及び励起透照画像は、ノイズ画像IfnとIenの減算、及びT及びT閾値の適用の後、積算される(重ねられる)。
【0072】
ノイズIfnとIenは上記式3と式4では減算されているが、同様の規準化技法が、ノイズの一方又は両方が減算されないシステムにも適用できるものと理解されたい。
図1Bと関連付けて説明した、1つの透照光源52だけを有しているシステム50では、1つの透照画像が得られる。この場合、式2と式4には、積算項が無くなる。
【0073】
非規準化蛍光透照画像(1つの透照光源)は、以下の通り表される。
【0074】
【数5】

【0075】
規準化蛍光透照画像(1つの透照光源)は、以下の通り表され、
【0076】
【数6】

【0077】
ここに、IftとIetはこの場合1つの透照画像である。
内因性画像は、幅広い波長、即ち、励起光の波長(例えば、図1の14、18)だけでなく、生成された蛍光の波長も含む波長で得られる画像である。代わりに、2つの「内因性」画像は、1つが励起光の波長、1つが放射(蛍光)光の波長で得られ、その2つの組み合わせ、例えば線形の組み合わせ又は重み付け積が、規準化に用いられる。
【0078】
内因性画像が蛍光波長を含む幅広い波長範囲で得られる、上記の場合の内因性画像の作成では、蛍光画像は、先ず、得られた内因性画像、即ち、励起及び放射スペクトル応答と同様のスペクトル応答を有する励起光を使って作成された画像から減じられ、即ち、Iee=Iee’−Ife及びIet=Iet’−Ifbであり、ここに、先に述べた様に、Ieeは、広大な励起光源の波長範囲で得られたエピ照明画像であり、Ietは、広大な励起光源の波長範囲で得られた透照画像であり、Ifeは、エピ照明光源を使用しているときに作成される蛍光画像であり、Iftは、透照光源を使用しているときに作成される蛍光画像である。この場合、Iee’とIet’は、それぞれ励起波長の波長を有する励起光と、放射(蛍光)光の波長と合致する光スペクトルを有する追加の励起光を使って、エピ照明及び透照から得られる励起及び放射波長に対応する複数の波長に亘る内因性画像である。蛍光スペクトルと合致する励起光は、蛍光伝播特性を捕捉するのに用いられる。この方法は、励起光が可視波長範囲内にあり、蛍光が近赤外線の波長範囲内にある場合は、特に重要になる。以上、包括的に述べているが、Iee’とIet’が得られる範囲と反応を適切に選択することによって、相当な精度を実現することができる。
【0079】
生物発光撮像では、式1、式3、及び式5(それぞれ非規準化エピ照明、規準化エピ照明、及び非規準化蛍光透照画像)は、実質的に変わらないが、Ifxは、蛍光ではなく、生物発光と関係していると解釈される。規準化生物発光撮像では、画像は、生物発光システムの波長と最も良く合う選択された伝播波長範囲で得られる内因性画像によって規準化される。従って、励起光は、生物発光の波長と合うスペクトルを有する光を含んでいてもよい。式3は、規準化生物発光のエピ照明画像を提供する。
【0080】
生物発光撮像では、複数の非規準化蛍光透照画像に用いられる式2は、使用されない。更に、規準化透照生物発光撮像では、複数の透照光源に適合する式4は、代わりに以下の様に表され、
【0081】
【数7】

【0082】
1つの透照光源を使っている規準化生物発光透照撮像の場合の式6は、
【0083】
【数8】

【0084】
となる。
式7の修正(式4と比べて)は、生物発光信号が励起光源に依存していないことを示しており、従って、光源の関数である積算は無くなる。同様に、式7と式8は、生物発光画像を捕捉する幾何学配置を明示的に指していないので、本質的により包括的であることを指摘しておく。しかしながら、両式は、励起光が、生物発光信号を集めるのと同様の組織から伝播すると想定している。式3によって与えられる規準化撮像の或る実施形態は、皮相構造の生物発光に適用され、生物発光画像は、エピ照明モードでの組織減衰に合わせて補正される。
【0085】
先に述べた規準化法は、本質的に包括的であり、図1と図1Bの両方のシステム10、50(更に、図9、9A、及び10に図示しているシステム)に利用できるものと理解されたい。
【0086】
代わりの規準化法は、ここで「光源毎」の規準化法と呼ばれ、エンコードされる時間、周波数、又は波長である各光源を個別に規準化し、その後、規準化された結果を互いに加える。この規準化は、光源が、撮像する組織の側面又は上面に配置されていても、あらゆる光源の幾何学配置で実行することができる。
【0087】
式4と上記説明によれば、光源毎の規準化画像は、
【0088】
【数9】

【0089】
と表すことができる。
閾値TとTは、全ての値kに対して一定であってもよいし、T=T(k)及びT=T(k)であってもよく、それは、個々の光源に適用される各比が、異なる閾値であることを示している。或る実施形態では、Tは、適応閾値であり、Iet(k)強度の関数として測定され、例えばT=0.1*Iet(k)で、Tは定数で、例えばノイズの標準偏差の5倍である。Tより小さい分母値を与える画像の画素は、合算されない。
【0090】
1−9の全ての式で、規準化画像は、最終的な規準化画像を上記計算された規準化画像に対数的又は指数的に関係付けることによって、表示できるように更に処理される。表示用の規準化画像は、上記計算された規準化画像の値の動的範囲に依って選択される。
【0091】
上記式の中の画像の減算は、非規準化放射光画像(蛍光又は生物発光、エピ照明、又は透照)の調整されている画素から、暗画像(ノイズ画像)の画素等級を減じる段階を含んでいる。上記式の画像の除算は、非規準化放射光画像(蛍光又は生物発光、エピ照明、又は透照)の画素等級を、内因性励起光画像(エピ照明又は透照)の調整されている画素の等級で除する段階を含んでいる。
【0092】
以上、エピ照明光源56と透照光源52は、励起光を生成するようになっていることを説明しているが、他の装置では、エピ照明光源56及び/又は透照光源52は、励起光の波長及びその他の波長を有する入射光を生成するようになっている。図9、10、及び11に示している装置の様な他の装置にも同じことが言えるが、それについては、以下により詳しく説明する。
【0093】
図1Cに示すように、図1及び図1Bそれぞれの規準化プロセッサー30、70と同一又は同様の規準化プロセッサー80は、経路82で1つ又は複数の内因性励起光画像を受け取り、経路83で1つ又は複数の非規準化放射光画像を受け取り、様々な型式の規準化光画像の1つ又はそれ以上を作成し、信号経路93−96で利用可能にする。
【0094】
経路82上の内因性励起光画像は、随意の内因性画像組み合わせプロセッサー84によって受け取られる。内因性画像組み合わせプロセッサー84は、図1のシステム10の様な、複数の透照光源を有するシステムのために、内因性透照画像を組み合わせ(例えば、重ね合わせ)、経路84a上のその出力で、単一の内因性画像を作成するようになっている。別の装置では、内因性画像組み合わせプロセッサー84は、複数の波長で作成された内因性画像を組み合わせるようになっている。図1Bのシステム50、又は、励起光源が励起光波長だけで光を生成するシステムの様な、1つの透照光源だけを有しているシステムでは、内因性画像組み合わせプロセッサー84は、不要である。
【0095】
同様に、経路83上の非規準化放射光画像は、随意の放射画像組み合わせプロセッサー85によって受け取られる。放射画像組み合わせプロセッサー85は、図1のシステム10の様な、複数の透照光源を有するシステムのために、放射された透照画像を組み合わせ(例えば、重ね合わせ)、経路85a上のその出力で、単一の非規準化放射光画像を作成するようになっている。図1Bのシステム50の様な、1つの透照光源だけを有しているシステムでは、放射画像組み合わせプロセッサー85は、不要である。
【0096】
内因性画像ノイズ低減プロセッサー86は、経路84a上の単一の内因性画像と、経路82a上の暗画像(背景画像)を受け取るようになっている。内因性画像ノイズ低減プロセッサー86は、更に、単一の内因性画像と暗画像を組み合わせて、ノイズが低減された内因性画像を経路86a上に提供するようになっている。ノイズ低減が実行されない或る実施形態では、内因性画像ノイズ低減プロセッサー86は用いられず、経路86a上のノイズが低減された内因性画像の代わりに、経路84a上の単一の内因性画像が用いられる。
【0097】
同様に、放射画像ノイズ低減プロセッサー87は、経路85a上の単一の非規準化放射光画像と、経路83a上の暗画像(背景画像)を受け取るようになっている。放射画像ノイズ低減プロセッサー87は、更に、経路85a上の単一の非規準化放射光画像と経路83a上の暗画像を組み合わせて、ノイズ低減非規準化放射光画像を経路87a上に提供するようになっている。ノイズ低減が実行されない或る実施形態では、放射画像ノイズ低減プロセッサー87は使用されず、経路87a上のノイズ低減非規準化放射光画像に代わって、経路85a上の非規準化放射光画像が用いられる。
【0098】
経路86a上のノイズ低減内因性画像が、ノイズ低減内因性エピ照明画像であり、経路87a上のノイズ低減非規準化放射光画像が、ノイズ低減非規準化蛍光エピ照明画像である場合、それらの画像は、経路93上の規準化蛍光エピ照明画像を作成するようになっている蛍光エピ照明規準化プロセッサー89に提供される。
【0099】
経路86a上のノイズ低減内因性画像が、ノイズ低減内因性透照画像であり、経路87a上のノイズ低減非規準化放射光画像が、ノイズ低減非規準化蛍光透照画像である場合、それらの画像は、経路94上の規準化蛍光透照画像を作成するようになっている蛍光透照規準化プロセッサー90に提供される。
【0100】
経路86a上のノイズ低減内因性画像が、ノイズ低減内因性透照画像であり、経路87a上のノイズ低減非規準化放射光画像が、ノイズ低減非規準化生物発光画像である場合、それらの画像は、経路95上の規準化生物発光透照画像を作成するようになっている生物発光透照規準化プロセッサー91に提供される。
【0101】
経路86a上のノイズ低減内因性画像が、ノイズ低減内因性エピ照明画像であり、経路87a上のノイズ低減非規準化放射光画像が、ノイズ低減非規準化生物発光エピ照明画像である場合、それらの画像は、経路96上の規準化生物発光エピ照明画像を作成するようになっている生物発光エピ照明規準化プロセッサー92に提供される。
【0102】
規準化プロセッサー80は、経路93−96上に4つの型式の画像を作成するようになっており、各画像は、ノイズ低減を施しても、施さなくてもよい。更に、経路94上に提供される規準化蛍光透照画像と、経路95上に提供される規準化生物発光透照画像は、1つの励起透照光源、又は複数の励起透照光源を使って作成することができる(プロセッサー84、85によって重ねられる)。しかしながら、他の装置では、プロセッサー89−92の内の1つ又はそれ以上が、規準化プロセッサー80に含まれている。
【0103】
次に図2では、カメラ100は、図1のカメラ20及び図1Bのカメラ60と同一又は同様でもよいが、光を受け取り、処理するようになっている。
カメラ100が受け取る光には、エピ照明光源によって生成された励起光から生まれた内因性励起光、及び/又は、エピ照明光源によって生成された励起光に反応して組織が放射した蛍光が含まれていてもよい。カメラ100が受け取る光には、更に、透照光源によって生成された励起光から生まれた励起光、及び/又は、透照光源によって生成された透照光に反応して組織が放射した蛍光が含まれていてもよい。カメラ100が受け取る光には、更に、組織内で自然に生成される生物発光の光が含まれることもある。
【0104】
カメラ100は、内因性画像プロセッサー102を含んでおり、プロセッサー102は、エピ照明光源又は透照光源の何れかから生まれた上記励起光が組織に衝突して相互作用した光を受け取るようになっており、更に、内因性画像(即ち、内因性画像データ)を作成するようになっている。カメラ100は、更に、蛍光画像プロセッサー104を含んでおり、蛍光画像プロセッサー104は、エピ照明光源又は透照光源から生まれた上記蛍光によって組織から放射された光を受け取るようになっており、更に、非規準化蛍光画像(即ち、非規準化蛍光画像データ)を作成するようになっている。内因性画像プロセッサー102と蛍光画像プロセッサー104は、例えば、励起光を通過させるようになっている光学フィルター(励起光フィルター106)と、蛍光を通過させるようになっている他の光学フィルター(蛍光フィルター108)によって、又は、それと組み合わせて提供される。内因性画像プロセッサー104と蛍光画像プロセッサー106は、実質的に同時に、又は順次作動して、内因性画像(即ち、内因性画像データ)と非規準化蛍光画像(即ち、非規準化蛍光画像データ)を提供する。カメラ100が受け取る励起光は、蛍光より強度が強いので、或る実施形態では、励起光フィルター106は、中性フィルターの様な光減衰フィルターを含んでいる。
【0105】
或る実施形態では、偏光子(図示せず)が、偏光モードを優先的に選択するのに更に用いられる。偏光子は、エピ照明光源(例えば、図1Bの56)、透照光源(例えば、図1Bの52)、カメラ100の内因性部分102、及び/又は、カメラ100の蛍光プロセッサー104で用いられる。偏光子は、更に皮相的な撮像(同じ向きの偏光フィルターが、光路の各端に用いられている場合)又は更に深い撮像(直交偏光子が用いられている場合)をやり易くすることができる。更に、偏光子は、放射光を1つの偏光方向に偏光させ、直交偏光子によって放射光を検出することによって、励起光からの放射(蛍光又は生物発光)を良好に分離するのに用いられる。
【0106】
蛍光画像プロセッサー104については先に述べたが、同じプロセッサーを使用して、生物発光から生まれた光を受け取り、生物発光画像を形成することができるものと理解されたい。励起光フィルター106については先に述べたが、他の装置では、励起光フィルター106は、複数の波長を通過させるようになっている入射光フィルターに置き換えられている。
【0107】
次に図2Aでは、別のカメラ150は、図1のカメラ20及び図1Bのカメラ60と同じ又は同様でもよいが、光を受け取り、処理するようになっている。カメラ150は、回転させて、励起光フィルター154又は蛍光フィルター154の何れかを選択するようになっているフィルターホイールアッセンブリ152を含んでいる。画像プロセッサー158は、内因性画像又は非規準化蛍光画像を、それに従って作成するようになっている。
【0108】
図2のカメラ100とは異なり、カメラ150は、画像プロセッサー158だけを有しており、これを使って、内因性画像(即ち、内因性画像データ)と非規準化蛍光画像(即ち、非規準化蛍光画像データ)の両方を順次提供する。カメラ100が受け取る励起光は、蛍光より強度が強いので、或る実施形態では、励起光フィルター154は、中性フィルターの様な光減衰フィルターを含んでいる。励起光フィルター154については先に述べたが、他の装置では、励起光フィルター154は、励起光フィルター154は、複数の波長を通過させるようになっている入射光フィルターに置き換えられている。
【0109】
以下に呈示する一連の画像について述べる前に、画像を作成するのに用いられるファントムについて説明する。第1ファントム(図3、3A、及び4の画像に用いられている)は、比較的空間的に同質であり、2つの拡散性蛍光管が5mm離して配置され、チャンバ内に浸されていた。管は、1.5mmまでの直径で、一端が密閉されているガラスの毛細管であり、変動する吸収及び皮相腫瘍から発せられる蛍光をシミュレートするために、1%の内部脂肪溶液と、25ppmの墨汁と、200nmのCy5.5染料が中に入っていた。チャンバは、更に、同じ内部脂肪溶液とインクで満たされていたが、蛍光色素が含まれていなかった。第1ファントムは、チャンバ内の様々な深さに置かれ、上記規準化法の相対的性能を、ファントムの深さの関数として査定するのに用いられた。
【0110】
第2ファントム(図5−5Cの画像に用いられている)は、第1ファントムと同じ、相対的に同質の背景と2つの管配置を使用したが、2つの直径3mmのプラスチック管を採用した。第2ファントムを使って、2つの規準化法の精度を、変動する光学特性の関数として検査した。これらの実験で、左の管は400nmのCy5.5で満たされていたが、右の管には200nmのCy5.5が入っていた。両方の管と背景の媒体は、同じ1%の内部脂肪溶液と25ppmの墨汁の溶液で満たされていた(図5と図5B)。その後、左の管の吸収率を、背景の吸収濃度の2.5倍に上げた(図5Aと図5C)。第2ファントムを使って、変動する背景の光学特性に関する規準化撮像法の頑強性を検査した。
【0111】
第3ファントムを使って、第1の動物実験(図6及び図6Aに示されている)で、裸のマウスの死後の画像を作成した。この実験は、深部の活動解像において、エピ照明を凌ぐ規準化透照の利点を示した。更に、規準化エピ照明が、如何に偽陽性を低減する結果となるかを示した。第3ファントムは、内部脂肪と400nmのCy5.5染料で満たされた1.8mm直径のガラス管を含んでおり、ガラス管は、動物に食道を通して動物の胴体の中間に達するまで挿入した。その後、動物を撮像チャンバ内に配置し、式1−4で表される全ての画像セットを得た。
【0112】
図6Aと図7Aに示している画像は、陰画像である。しかしながら、陽画像も、同じように上手く作成し、図示することができる。図6、図6A、図7、及び図7Aに呈示している内因性の、非規準化エピ照明蛍光、非規準化透照蛍光、規準化エピ照明蛍光、及び、規準化透照蛍光画像は、全てが、例えば上記式1−4でのように、背景のノイズを取り除くように処理されている。
【0113】
図3では、第1ファントムの規準化蛍光エピ照明画像をパネル(a)−(e)に示しており、ここで上記管は、チャンバ内の異なる深さに配置されていて、図示の様に、チャンバの前方ガラス窓から0、1、3、5、7mm離れている。0mmの深さでは、管は、物理的に前方窓と接触している。信号強度は深さと共に指数関数的に低下するので、パネル(a)−(e)の画像は、最大の縮尺で描かれている。
【0114】
この特定の実験では、蛍光エピ照明撮像の画質は、深さの関数として下がっている。第1ファントムの管は、7mmの深さでは実際に検出できない。しかしながら、規準化蛍光エピ照明撮像は、0mmで、有意の管の解像度をもたらす。2つの管は、(前方窓と接触している場合に)0mmで明確に解像されている。それに対して、以下に示すように、規準化蛍光透照撮像では、0mmでは、管はあまり良く解像されていない。
【0115】
次に図3Aでは、第1ファントムの規準化蛍光透照画像をパネル(a)−(e)に示している。パネル(a)−(e)の画像も、信号強度が深さと共に指数関数的に低下するので、最大縮尺で描かれている。
【0116】
管は、様々な深さの規準化透照画像の全てで検出されているが、解像度は、深さの関数として悪化している。検出された管の画像は、蛍光透照画像では、予測通り深さの関数として広がっていることが分かる。更に、矢印が示す様に、長さ依存性の広がりもある。しかしながら、規準化透照は、規準化エピ照明(図3)の場合よりも深い管を検出する能力があるのは明白であり、表面下活動と深部活動の平面画像を改良するのに重要である。
【0117】
次に図4では、5mmの深さに配置された管について、第1ファントムの透照画像を示している。パネル(a)では、励起光の内因性画像が作成されている。先に述べた様に、励起光は、組織を、ここではチャンバと第1ファントムを通過してきた透照光源からの光に対応している。励起光の領域は、3x2cmまで計測され、その強度は、この領域の外側では指数関数的に低下する。
【0118】
パネル(b)では、非規準化蛍光透照画像が集められている。先に述べた様に、蛍光は、透照光源からの放射光に反応して、蛍光探針によって管内で放射される。パネル(b)の画像は、式2による、非規準化画像It2である。
【0119】
パネル(c)では、規準化蛍光透照画像Ut2が式4に従って示されている。画像Ut2は、管の真の長さを、パネル(b)の画像Iより正確に示している。これは、パネル(a)の励起光が、管を均一にカバーしていないためである。関心対象全領域を均一に照らすのが好都合であるが、図示の通り、規準化は、同質でない励起光を使用している場合でも、管の寸法を正確に示すことができる。しかしながら、パネル(a)の励起光の場が非対称なため、管の画像の両端の解像された「形状」は非対称である(パネル(c))。
【0120】
規準化蛍光透照撮像は、規準化蛍光エピ照明撮像及び非規準化蛍光透照撮像と比べて、照明の場の変動と深さに鈍感であることが分かる。しかしながら、図3のパネル(a)を図3Aのパネル(a)と比べて見ると、拡散媒体の表面近くの物体では、規準化蛍光エピ照明撮像は、規準化蛍光透照撮像よりも解像度の高い画像を提供しているのが分かる。この利点は、表面より下方1mmの蛍光探針深さでさえ低減されている。
【0121】
以下に記載する別の実験結果は、規準化蛍光透照画像と規準化蛍光エピ照明画像の両方を示している。
図5−5cでは、画像は、先に述べた第2ファントムの蛍光エピ照明及び蛍光透照撮像によって得られた。先に述べた様に、第2ファントムは、1%の内部脂肪溶液と、25ppmの墨汁に浸された2つの管を含んでいる。図5と図5Bでは、管には、25ppmの墨汁が中に入っており、即ち、背景濃度と同じだった。図5Aと図5Cでは、左の管には60ppmの墨汁が中に入っており、即ち、背景インク濃度の2.5倍までであった。
【0122】
先ず図5と図5Aでは、パネルは、それぞれ内因性(励起)光画像(パネル(a))、非規準化蛍光エピ照明画像(パネル(b))、及び規準化蛍光エピ照明画像(パネル(c))を示している。非規準化蛍光エピ照明画像(パネル(b))を規準化蛍光エピ照明画像(パネル(c))と比較することによって、左の管の追加吸収の効果が分かる。2.5倍の濃度(図5A)では、非規準化蛍光画像(パネル(b))は、右の管に対して僅か1.26:1の強度比を示しているが、実際の比率は、1倍の濃度で示されているように2:1である(図5のパネルb)。しかしながら、規準化蛍光画像(パネル(c))は、1.4:1の改良比を示している。
【0123】
次に図5Bと図5Cでは、画像は、図5及び図5Aと同じファントムのもので、図示の通り、左の管には上記の1倍又は2.5倍の濃度の墨汁が入っている。パネルは、それぞれ透照内因性画像(パネル(a))、非規準化蛍光透照画像(パネル(b))、及び規準化蛍光透照画像(パネル(c))を示している。
【0124】
ここで、非規準化蛍光透照画像(パネル(b))は、1.11:1の比率を示しており、図5と図5Aのエピ照明非規準化蛍光画像(パネル(b))に劣っている。しかしながら、規準化蛍光透照画像(パネル(c))は、1.58:1の比率を示しており、図5と図5Aの規準化蛍光エピ照明画像(パネル(c))より良い。従って、殆どの腫瘍及び他の疾病や医療状況を撮像する場合の様に、背景の光学特性が異質である場合、規準化蛍光透照撮像は、蛍光活動を、ここでは皮相体積の蛍光活動を正確に測定することが示されている。
【0125】
次に図6で、パネル(a)−(c)は、死後、蛍光管が埋め込まれた裸のマウスの、エピ照明内因性画像、非規準化蛍光エピ照明画像、及び規準化蛍光エピ照明画像をそれぞれ示している。パネル(a)は、点線外形(パネル(b)と(c)でも同様)で示されている観察面での管の大体の位置も示して(黒い矢印を参照)おり、この位置は、挿入距離を測定し、実験後の外科処置で取り除くことによって確かめられる。パネル(c)の規準化蛍光エピ照明画像は、埋め込まれた管を示していない。実際に、パネル(c)の規準化画像は、パネル(b)の非規準化画像ほどのコントラストが無い。
【0126】
パネル(b)の白い矢印は、蛍光を示しているが、非規準化蛍光画像では蛍光信号が無い。この蛍光の領域は、パネル(c)に白い矢印で示しているように、パネル(c)の規準化画像では低減されている。この低減は、規準化法が偽陽性を低減することを示している。
【0127】
皮膚の自動蛍光及び直接流出信号(例えば、光源からカメラへの経路に沿った、直接の光の受け入れ)は、標準的な非規準化蛍光エピ照明画像に現れ、規準化は、より均一で、人工物が少ないエピ照明画像を提供する。従って近赤外線では、自動蛍光は非常に少ないので、蛍光内には信号画像が非常に少ないか、又は全く無いと予測される。このことは、コントラストが少ない規準化画像(パネル(c))で示されている。
【0128】
規準化蛍光エピ照明画像のもう1つの利点は、蛍光の存在を良く識別できることである。これは、カメラに直接流出するか又は背景の自動蛍光を選択的に更に励起させることもある励起光の変動及び反射を考慮するので、手術中の撮像、腹腔鏡撮像、内視鏡、及び小動物撮像にとって重要な特徴である。従って、規準化蛍光エピ照明撮像は、その負の予測力に用いられると、撮像の精度と性能を改良することができる。
【0129】
次に図6Aでは、パネル(a)−(c)は、それぞれ、図6の動物の内因性画像、非規準化蛍光透照画像、及び規準化蛍光透照画像を示している。(矢印の)管は、検出され、規準化蛍光透照画像では、規準化蛍光エピ照明画像(図6のパネル(c))の場合より鮮明に解像されている。管の寸法は、パネル(c)では過大になっているが、観察面の二次元の場所は、上手く解像されている。透照撮像は、マウスで行われ、適合する流体有無に関わらず同様の結果だった。
【0130】
図6と図6Aの画像は、規準化透照撮像と、同様の規準化エピ照明撮像は、適合する流体が無くても作動することを示している。しかしながら、組織の境界、及び組織の境界の外側で光を選択的に減衰し、使用している光検出器に対し測定値の動的範囲と光学適合させるため、適切に注意を払わなければならない。
【0131】
次に図7では、パネル(a)−(c)は、カリパス測定で判断して、長軸x短軸寸法が4mmx3mmの楕円形の表面腫瘍がある動物の内因性エピ照明画像、非規準化蛍光エピ照明画像、及び規準化蛍光エピ照明画像を示している。腫瘍は、左乳房の脂肪褥(画像では右側)内のErb2の陽性の自然発生腫瘍である。動物には、カテプシンに敏感な蛍光探針が注入された。腫瘍は、画像上に矢印で示されている。この腫瘍は、非常に脈管が多く、吸収性が高く、従って、パネル(a)に示している内因性エピ照明画像では、周囲の組織より暗く見えた。パネル(b)に示している、対応する非規準化蛍光エピ照明画像は、腫瘍を識別していない。パネル(c)に示している規準化蛍光エピ照明画像は、より平坦に見える画像(即ち、動物全体が同じ強度)を提供しており、腫瘍が識別できる。しかしながら、検出能力は、動物体内での、即ち腫瘍の外側での、腫瘍の外側の蛍光色素から生じる他の蛍光活動によって低減されている。
【0132】
次に図7Aでは、パネル(a)−(c)は、それぞれ、図7の動物の内因性透照画像、非規準化蛍光透照画像、及び規準化蛍光透照画像を示している。パネル(c)の規準化画像は、腫瘍(矢印)に付帯するマークの付いた蛍光の増加を示している。腫瘍は、パネル(b)の非規準化蛍光透照画像では見えない。
【0133】
図7と図7Aの動物には、蛍光探針が注入されたので、腫瘍から離れた組織内に残存する背景蛍光信号があると予測される。この高い背景画像信号は、パネル(c)で明白である(図6Aと図6Bのパネル(c)と比べた場合)。しかしながら、規準化蛍光透照法によって得られる検出の改良は、やはり歴然としている。
【0134】
上記システムと方法は、生物発光撮像にも適用され、その場合、非規準化生物発光画像は内因性エピ照明画像によって規準化され、規準化生物発光エピ照明画像が作り出される。腫瘍から離れている組織の放射は、生物発光の方が蛍光(自動蛍光)の場合よりも問題が少ないが、それにも関わらず、規準化は、動物の表面に亘る減衰の異質性については正しく、これは血液の濃度の異質性に起因し、特に、放射される生物発光のスペクトル特性と合致するスペクトル特性を有する光源が使用されている場合はそうである。同様に、生物発光画像は、内因性透照画像によって規準化され、これは、特に、生物発光が、動物の更に深い病変部から放射されている場合は、内因性エピ照明画像で基準化する場合よりも良い結果を実現することができる。
【0135】
次に図8では、画像は、Erb2の陽性の自然腫瘍を有する別のマウスを示しており、これはカテプシンに敏感な活性化可能な蛍光探針の投与後に撮像されたものである。これらの画像は、蛍光病変部の場所(矢印)の識別を改良することができる規準化エピ照明撮像によって得られた改良された画像を示している。規準化エピ照明撮像は、外科手術、内視鏡、及び腹腔鏡に用いたときに、病変部の識別に有用なことが分かる。ここでは、ノイズ除去の前(パネル(c))と後(パネル(d))の両方の規準化画像を示している。
【0136】
次に図8Aでは、画像は、左右の乳房の脂肪褥に移植された2つのHT1080腫瘍を有するマウスを示しており、カテプシンに敏感な活性化可能な蛍光探針の投与後に撮像されたものである。これらの画像は、腫瘍の境界の識別を改良することができる規準化エピ照明撮像によって得られた改良された画像を示している。規準化エピ照明撮像は、外科手術、内視鏡、及び腹腔鏡に用いたとき、境界の識別に有用なことが分かる。ノイズ除去の前(パネル(c))と後(パネル(d))の両方の画像を示している。
【0137】
図8と図8Aは、病変部とその境界を識別するのに用いられる手術中の撮像、内視鏡、又は腹腔鏡の様な医療処置に用いられる技法に関係する画像である。
図8に戻るが、パネル(a)−(d)は、それぞれ、エピ照明内因性画像、非規準化エピ照明蛍光画像、ノイズ閾値をゼロとした規準化蛍光エピ照明画像、及び、式3で表されているノイズ閾値操作によって処理された規準化蛍光エピ照明画像を示している。画像は、矢印で示している様に表面腫瘍を煩っている動物を示しており、腫瘍は、内因性エピ照明画像(パネル(a))に暗く現れている。腫瘍は、光を吸収するので、非規準化蛍光エピ照明画像(パネル(b))では暗く現れる。腫瘍の上部で観察される或る種の活動は、動物に、図7と同じ活性化可能な蛍光探針が注入されていても、腫瘍の存在によって局所化されることはない。腫瘍の境界におけるその様な活動は、通常は、或る種の非規準化画像に存在しており、それは、組織の異質な吸収から生じる局所的な励起の場の変動によるものである。逆に、パネル(c)と(d)の規準化蛍光エピ照明画像は、腫瘍の場所と大きさを正しく識別する。パネル(d)の画像は、ノイズの閾値を当てはめて、コントラストを最大にすることによって、一層良くなっている。更に小さな病変部も、大きな腫瘍の左側に現れており、これは、両規準化蛍光画像で良く見えるようになっている。しかしながら、特に、パネル(d)の画像は、規準化蛍光画像が、全ての背景蛍光活動を如何に上手く示すことができるのか、を示している。
【0138】
図8Aに戻るが、画像は、図8に示しているのと同じ構成である。マウスは、矢印で示されている移植された2つのHT1080の腫瘍を有している。光は、その直ぐ上を形成している低吸収性の皮膚の折り目に「漏れ込む」ので、右の腫瘍の境界は、上手く差別化されない。従って、腫瘍は、細長く見える。この特徴は、特に例えば脳外科手術の様に、手術中の不必要な組織の損傷が最小になるように、正確な腫瘍のへりを識別しなければならない外科処置では欠点である。対照的に、パネル(c)とパネル(d)の規準化画像は、腫瘍のへりを良く区別しており、実際の腫瘍の切除及び侵襲性検査で相関付けられた。
【0139】
次に図9では、手術中の処置(即ち、手術中の撮像)用のシステム200は、カメラ202を含んでおり、カメラは、2つのレンズ及び/又はフィルター204a、204bを含んでいてもよい。フィルター204a、204b付きのカメラ202は、図2のカメラ100(フィルター106、108を含む)と同じか、又は同様である。システム200は、更に、エピ照明光源206を含んでいてもよく、この光源は、或る特定の実施形態ではリング照明装置の形態をしている。カメラは、非規準化画像を規準化プロセッサー208に提供し、規準化プロセッサーは、規準化画像をモニター210に提供する。
【0140】
システム200は、図1のシステム10と同様であるが、システム200は、手術中に容易に使用できるシステムを提供するために、寸法を小さくすることもできる。
使用時に、身体部分又は器官212は、図示の様に、例えば、外科的切開を受けることもある。蛍光色素は、手術前又は手術中に患者に注入することができ、病変部位216に集まる傾向があって、病変部が蛍光に反応するようにする。先に述べた様に、カメラ202は、内因性エピ照明画像と非規準化蛍光エピ照明画像を作成することができる。規準化プロセッサー208は、規準化エピ照明蛍光画像を作成し、規準化画像を手術中のモニター210へ送り、外科医はそれを見ることができる。
【0141】
或る特定の実施形態では、手術中のモニター210は、手術室に近接しているので、外科医は、モニターで疾病を示す蛍光を見ることができる。
更に図9に示している様に、照明装置/腹腔鏡/内視鏡218(以後、探針218と呼ぶ)が、様々な方法で用いられる。或る装置では、探針218は透照光源を提供し、カメラ202が、病変部220の内因性透照画像及び/又は非規準化蛍光透照画像を捕捉することができるように、この透照光源が用いられる。この探針は、外科手術中にエピ照明システム200を補完するために用いることもできるし、エピ照明光源を使用すること無く透照撮像だけを提供することもできる。
【0142】
別の装置では、探針218は、エピ照明光源を提供しており、その場合、システム200は、内因性エピ照明画像及び非規準化蛍光エピ照明画像の両方を作成し、更に、探針218によって提供されるエピ照明光源に反応して病変部220の規準化蛍光エピ照明画像を作成するために、探針218の遠位端に連結される。その様な装置は、図11及び図11Aと関連付けた以下の議論から良く理解頂けるであろう。
【0143】
或る装置では、探針218は、手術中、選択された構造又は器官を撮像するため、手動で操作される。式4で表されている技法の様なリアルタイムの規準化技法は、高速画像処理デジタルプロセッサーを使って実行され、探針218を操作する際に異なる照明方向を作り出すとき、変動する照明の場のパターンそのものとは関係なく、正確な撮像を提供することができる。
【0144】
探針218は、腫瘍の悪性度を示す蛍光色素の有無を調査又は確認するため、例えば、リンパ節の側又はその後ろ側に配置することができる。探針218は、機能又は疾病を示す蛍光活動を識別するため、器官の後ろに配置することができる。この蛍光は、蛍光色素の局所的又は全身的投与によって提供される。
【0145】
或る実施形態では、先に述べた様に、探針218は、内視鏡又は腹腔鏡なので、蛍光活動を探針218で捕捉することができる。これらの装置は、例えば、腹腔鏡、侵襲性最小の外科手術、内視鏡、及び結腸鏡で用いることができる。
【0146】
次に図9Aに示す別の実施形態では、図9のシステム200は、ゴーグル230又は透明スクリーン(図示せず)の様な、小型の検出及び視覚化システム内に全体的又は部分的に作られている。これらの実施形態は、適切なフィルターを使用することによって、解剖学的コントラストを、肉眼で自然に、蛍光活動と組み合わせて見えるように調整することができる。例えば、或る装置では、身体/器官212が自然に見え、病変に付帯する蛍光の存在を示すために色のコントラストが加えられる。
【0147】
更に別の実施形態では、システム200は、手持ちのスキャナーの様な携帯可能なシステムである。
次に図10では、システム250は、歯254の、カメラ256とは反対側に配置されている透照光源252を含んでいる。カメラ256は、2つのフィルター258a、258bを有しており、図2のカメラ100と同じか、又は同様である。カメラ256は、歯254の、内因性透照画像と、非規準化蛍光透照画像を作成し、その中で構造化する。或る装置では、カメラは、そうではなく、図9の探針と同じか又は同様の内視鏡である。規準化プロセッサー(図示せず)とモニター(図示せず)は、規準化画像を作成するため、カメラ256に連結することができる。
【0148】
この実施形態では、透照光源252とカメラ256は、口内に導入され、図示の様に歯254の周りに配置される。或る装置では、カメラ256は、更に、図9のエピ照明光源206と同じか又は同様のエピ照明光源(図示せず)を含んでいる。
【0149】
システム250は、歯の蛍光コントラストの規準化蛍光透照画像及び/又は規準化蛍光エピ照明画像を作成することができる。或る実施形態では、システム250は、励起光源252によって励起される生来の組織の自動蛍光を使用する。しかしながら、別の実施形態では、外的に又は局所的に投与される、分子的又は機能的に特異な外部蛍光色素が、歯254に塗布される。
【0150】
システム250は、更に、歯肉炎又は口腔癌の様な他の口腔疾病を調査するのに用いることができる。システム250は、X線システムの様な他の非侵襲性撮像システムと組み合わせて用いると、更なる診察能力が提供される。
【0151】
次に図11では、膣鏡処置に用いられるシステム270は、面272aを有する膣鏡探針272(或いは、簡単に探針272)を含んでいる。探針272の面272aについて、図11Aに関連付けて以下に更に詳しく述べる。探針272は、患者の結腸274に挿入され、膣鏡276から膣鏡連結器278へと連結されている。膣鏡276は、中に、少なくとも1つの光ファイバー(図示せず)を含んでいる。
【0152】
膣鏡連結器276は、光連結器280に光学的に連結されており、光連結器は、少なくとも1つの励起光源(図示せず)からの光を受け取り、その光を膣鏡276へ送るようになっている。ここで、2つの照明光が図示されており、矢印282、284で示されている。或る実施形態では、照明チャネル1の282は、エピ照明励起光を励起光波長で提供し、これは本発明の規準化システム及び方法と関連している。或る実施形態では、照明チャネル2の284は、更に、エピ照明励起光を、同じ励起光波長で提供する。しかしながら、或る実施形態では、照明チャネル2の284は、光を、可視光線波長の様な別の波長で提供することができ、これは、以下の議論から明らかになるように、可視光線を膣鏡で直接見る様な、他の光学機能と関連している。
【0153】
別の実施形態では、エピ照明チャネル2は、他の励起エピ照明光を、別の励起光波長で提供する。これらの実施形態では、第1照明チャネル1の282は、或る蛍光色素を結腸274内で励起するのに用いられ、第2照明チャネルの284は、他の蛍光色素を結腸274内で励起するのに用いられる。この装置では、2つの異なる規準化蛍光画像を作成することができる。
【0154】
膣鏡連結器276は、更に、光スプリッター288に光学的に連結されており、スプリッターは、受け取った光の第1部分288をカメラ/モニター290に送るようになっている。カメラ/モニター280は、例えば、処置中に膣鏡で可視光線を直接見るのに用いられる。受け取った光の第2部分291は、光フィルター292を通過し、光フィルターは光連結器294に連結されており、光連結器294は第2の受け取った光291をカメラ298へ送る。カメラ298は、図2のカメラ100又は図2Aのカメラ150と同じか又は同様でもよい。上記議論から、受け取った光の第1及び第2部分288、291は、それぞれ、励起光波長の励起エピ照明光、蛍光波長の蛍光、別の励起光波長のエピ照明光、別の蛍光波長の蛍光、及び可視光線を、何れかの組み合わせて含んでいるものと理解されたい。
【0155】
カメラ298は、図1のカメラ100と殆ど同様に示されており、内因性画像プロセッサー300と蛍光画像プロセッサー302を有している。この装置では、フィルター292は、図2の励起光フィルター106及び蛍光フィルター108と同じか又は同様でもよい。
【0156】
カメラは、内因性励起エピ照明画像304と非規準化蛍光エピ照明画像304を、規準化プロセッサー306に提供する。規準化プロセッサー306は、図1、図1B、及び図1Cそれぞれの規準化プロセッサー30、70、80と同じか又は同様でもよい。規準化プロセッサー306は、規準化蛍光エピ照明画像308を作成し、モニター310へ送るようになっている。
【0157】
システム270は、手術中に用いて規準化蛍光エピ照明画像を提供することのできるシステムの1つの例に過ぎない。規準化蛍光透照画像を提供するのに、図9に関連して先に述べた様な、他の同様のシステムを使用することもできる。
【0158】
システム270と同様のシステムは、限定するわけではないが、腹腔鏡処置(この場合は探針272が腹腔鏡探針)、内視鏡処置(この場合は探針272が内視鏡探針)、結腸鏡処置(この場合は探針272が結腸鏡探針)、膣鏡処置(この場合は探針272が膣鏡探針)、食道処置(この場合は探針272が食道探針)、肺処置(この場合は探針272が肺探針)、口腔処置(この場合は探針272が口腔探針)、及び歯科処置(この場合は探針272が歯科探針)を含む様々な手術処置に用いられる。システム270と同様のシステムは、患者のあらゆる内部体腔を撮像するのに用いられる。
【0159】
次に図11Aに示すように、探針272(図11)の面272aは、照明光282を発する第1照明口350と、照明光282を発する第2照明口352を含んでいる。面272aは、更に、カメラレンズ354を有する口を含んでおり、カメラレンズは、受け取った光の部分288、291(図11)をカメラ298(図1)に提供する。面272aは、更に、灌注口356を含んでおり、ここを通して流体を結腸274へ送り込む(図1)か、又は結腸274から回収する。面3の272aは、更に、チャネル358を含んでおり、ここを通して器具を結腸274に挿入する。
【0160】
参照番号358と関連付けて用いられる「光学生検」という用語は、伝統的な侵襲性生検(即ち、組織の切除と組織学的検査)によって得られるのと同様の組織情報を非侵襲的に入手するのに使用される、光学的方法を示すのに用いられる。例えば、光学生検は、細胞核の寸法と密度を局所的に査定する分光学的技法、生体内共焦顕微鏡技法、又は、ここで述べている様な規準化蛍光方法であってもよい。侵襲性生検と同様に、光学生検は、比較的小さい病変部を特徴付けるのに用いられる。生検は、大きな視界と関係付けられている、いわゆる「スクリーニング」と対照的に、高度に特異性のある比較的小さい領域を特徴付けるのに用いられる。
【0161】
面272aの全ての口とチャネルは、光ファイバー、又は図1の膣鏡276を通るチャネルと関係付けられているものと理解されたい。
規準化エピ照明及び規準化蛍光透照撮像が様々な用途で改良された画像を提供することは、図5−8Aに提供されている画像例から理解頂けよう。規準化エピ照明撮像は、表面が重み付けされる傾向がある。つまり、表面の造形を、良く見ることができるので、エピ照明撮像では、本技法は、外科及び内視鏡の用途に適している。しかしながら、エピ照明撮像の感度及び撮像解像度は、表面の下にある物体に対しては下がるので、その場合は、規準化蛍光透照撮像が好ましい。規準化蛍光透照撮像は、規準化蛍光エピ照明撮像よりも深くまで、拡散的な体積の有用な画像を提供できることが多い。これは、規準化蛍光透照撮像が、規準化蛍光エピ照明撮像とは異なる特性を有するためである。具体的には、規準化蛍光透照撮像では、励起光が拡散的体積を通過する際に励起光が減衰して、直接流出信号が減るために、比較的少量の励起光しか回収されない。同様に、規準化蛍光透照撮像では、あらゆる表面自動蛍光が、規準化蛍光エピ照明撮像と比べて大幅に減衰された光によって励起される。これらの差異は、透照及び大幅に少なくなった背景信号において、より均一な量のサンプリングを作り出す。
【0162】
上記規準化は、組織内の光学特性の変動の影響と、励起照明の場の強さの変動を補正することによって、撮像性能を改良することができる。規準化は、生体内の調査に良く適しており、ユーザーが補正された画像をリアルタイムで観察できるように、リアルタイムの補正として実行することができる。
【0163】
一般に、非規準化透照画像は、従来の断層撮影画像用の生データとして使えるものと理解されたい。規準化蛍光透照画像は、改良された断層撮像に用いられる場合は、画像体積が改良され(即ち、深くなっている)、表面の蛍光が最小になり、透照光源の光学特性の変動に対する感度が下がる。非規準化画像の代わりに規準化画像を使用している断層撮影は、正確な光子伝播モデルとその結果としての反転を使用するので、改良された蛍光活動の三次元定量化マップを作り出し、回収される光子の深度依存性感度を補正することができる。従って、断層撮影は、エピ照明又は透照平面撮像よりも統合された方法である。しかしながら、断層撮影は、実行するのがより複雑で、比較的複雑な断層撮影処理を用いている。断層撮影は、演算時間も長く掛かるので、特にリアルタイム撮像に用いる場合は、エピ照明及び透照平面法と比べて、断層撮影があまり好まれない傾向になっている。
【0164】
規準化蛍光エピ照明と規準化蛍光透照の画像と方法を組み合わせて使用する場合は、撮像能力が大幅に改良されるものと理解されたい。例えば図1と図1Bに示している様に、組み合わせ型の規準化エピ照明/規準化透照システムを使用すると、エピ照明撮像の、表面活動に対する感度はそのまま維持されるが、透照撮像の体積サンプリング(即ち、深さによる解像度)能力が加わる。
【0165】
エピ照明と透照両方のシステム及び方法では、規準化は、限定するわけではないが、一様でない照明の場の変動と背景の光学特性の変動に対する感度の低下を含む或る種の利点を提供することができる。ハードウェアの要件は、組み合わせ型のエピ照明及び透照システムでは、僅かに増えるだけである。
【0166】
ここに引用した全ての参考文献の全体を、参考文献としてここに援用する。
以上、本発明の好適な実施形態について述べてきたが、当業者には自明のように、それらの概念を組み込んでいる他の実施形態も使用することができる。従って、これらの実施形態は、開示されている実施形態に限定されるのではなく、特許請求の範囲に述べる精神及び範囲によってのみ限定されるものと理解されたい。
【図面の簡単な説明】
【0167】
【図1】図1は、規準化蛍光エピ照明撮像と規準化蛍光透照撮像に用いられる、規準化プロセッサーを有するシステムの図である。
【図1A】図1Aは、図1の光源と連結して用いられる2つの光マスクを示している図である。
【図1B】図1Bは、規準化蛍光エピ照明撮像と規準化蛍光透照撮像に用いられる、他の規準化プロセッサーを有する他のシステムの図である。
【図1C】図1Cは、図1と図1Bの規準化プロセッサーの更に詳細を示しているブロック図である。
【図2】図2は、図1と図1Bの規準化蛍光エピ照明撮像と規準化蛍光透照撮像のシステムで用いられる光検出器の更に詳細を示している図である。
【0168】
図2Aは、図1と図1Bの規準化蛍光エピ照明撮像と規準化蛍光透照撮像のシステムで用いられる他の光検出器の更に詳細を示している図である。
【図3】図3は、規準化蛍光エピ照明撮像に用いたとき、図1と図1Bのシステムによって作成される、一連のファントムの画像である。
【0169】
図3Aは、規準化蛍光透照撮像に用いたとき、図1と図1Bのシステムによって提供される、図3でも見られる、一連のファントムの画像である。
【図4】図3と図3Aでも見られる、一連のファントムの画像であり、励起光波長での内因性透照画像、蛍光透照画像、及び規準化蛍光透照画像を示している。
【図5】図5は、一連のファントムの画像であり、励起光波長での内因性エピ照明画像、蛍光エピ照明画像、及び規準化蛍光エピ照明画像を示している。
【0170】
図5Aは、他の一連の他のファントムの画像であり、励起光波長での内因性エピ照明画像、蛍光エピ照明画像、及び規準化蛍光エピ照明の画像を示している。
図5Bは、図5でも見られる、一連のファントムの画像であり、励起光波長での内因性透照画像、蛍光透照画像、及び正規化蛍光透照画像を示している。
【0171】
図5Cは、図5Aでも見られる、他の一連のファントムの画像であり、励起光波長での内因性透照画像、蛍光透照画像、及び規準化蛍光透照画像を示している。
【図6】図6は、一連のマウスの画像であり、励起光波長での内因性エピ照明画像、蛍光エピ照明画像、及び規準化蛍光エピ照明画像を示している。
【0172】
図6Aは、図6の一連のマウスの画像であり、励起光波長での内因性透照画像、蛍光透照画像、及び規準化蛍光透照画像を示している。
【図7】図7は、一連の別のマウスの画像であり、励起光波長での内因性エピ照明画像、蛍光エピ照明画像、及び正規化蛍光エピ照明画像を示している。
【0173】
図7Aは、一連の図7のマウスの画像であり、励起光波長での内因性透照画像、蛍光透照画像、及び規準化蛍光透照画像を示している。
【図8】図8は、一連の画像であり、励起光波長での内因性エピ照明光画像、蛍光エピ照明画像、規準化蛍光エピ照明画像、及び、腫瘍の検出を示す、ノイズ閾値を適用した後の規準化蛍光エピ照明画像を示している。
【0174】
図8Aは、一連の画像であり、励起光波長での内因性エピ照明画像、蛍光エピ照明画像、規準化蛍光エピ照明画像、及び、腫瘍の検出を示す、ノイズ閾値を適用した後の規準化蛍光エピ照明画像を示している。
【図9】図9は、手術中の撮像に用いられるシステムの図であり、携帯カメラ/照明器の組み合わせ、規準化プロセッサー、及びモニターを含んでおり、或る実施形態では、可撓性探針(照明器/腹腔鏡/内視鏡)を含んでいる。
【0175】
図9Aは、手術中の撮像に用いられる別のシステムの図であり、外科医が装着するゴーグルを含んでいる。
【図10】歯科撮像に用いられるシステムの図である。
【図11】図11は、膣鏡探針を有する膣鏡に用いられるシステムの図である。
【0176】
図11Aは、図11の膣鏡探針の面の更に詳細を示す図である。

【特許請求の範囲】
【請求項1】
撮像の方法において、
励起光源によって、励起光を含む入射光を作成する段階と、
前記入射光を組織に向けて送る段階と、
前記入射光が組織と相互作用した後で、前記入射光を光検出器で受け取る段階と、
前記組織から放射される放射光を前記光検出器で受け取る段階と、
前記入射光に反応して、前記組織の内因性画像を作成する段階と、
前記組織の非規準化放射光画像を作成する段階と、
前記非規準化放射光画像と、前記内因性画像を組み合わせて、前記組織の規準化放射光画像を作成する段階と、から成る方法。
【請求項2】
手術処置中に探針を患者に挿入する段階を更に含んでおり、前記入射光を作成する前記段階は、前記探針から前記入射光を送る段階を含んでおり、前記入射光を受け取る前記段階は、前記探針で前記入射光を受け取る段階を含んでおり、前記放射光を受け取る前記段階は、前記探針で前記放射光を受け取る段階を含んでいる、請求項1に記載の方法。
【請求項3】
前記手術処置は、患者の内部体腔を撮像する段階を含んでいる、請求項2に記載の方法。
【請求項4】
前記方法は、腹腔鏡撮像法、内視鏡撮像法、結腸鏡撮像法、膣鏡撮像法、食道撮像法、肺撮像法、口腔撮像法、歯科撮像法の内の選択された方法を含んでいる、請求項1に記載の方法。
【請求項5】
前記励起光源は、前記組織の、前記光検出器と概ね同じ側に配置されているエピ照明光源を備えており、
前記放射光は、前記組織に関係付けられた蛍光を備えており、
前記内因性画像は、内因性エピ照明画像を備えており、
前記非規準化放射光画像は、非規準化蛍光エピ照明画像を備えており、
前記規準化放射光画像は、規準化蛍光エピ照明画像を備えている、請求項1に記載の方法。
【請求項6】
蛍光は、蛍光マーカーと、前記励起光に反応する内生組織蛍光分子の内の少なくとも1つによって生成され、前記蛍光マーカーは前記組織に投与される、請求項5に記載の方法。
【請求項7】
前記入射光は、実質的に1つの波長である、請求項6に記載の方法。
【請求項8】
前記励起光源は、前記組織の、前記光検出器と概ね反対側に配置されている透照光源を備えており、
前記放射光は、前記組織に関係付けられた蛍光を備えており、
前記内因性画像は、内因性透照画像を備えており、
前記非規準化放射光画像は、非規準化蛍光透照画像を備えており、
前記規準化放射光画像は、規準化蛍光透照画像を備えている、請求項1に記載の方法。
【請求項9】
前記蛍光は、蛍光マーカーと、前記励起光に反応する内生組織蛍光分子の内の少なくとも1つによって生成され、前記蛍光マーカーは前記組織に投与される、請求項8に記載の方法。
【請求項10】
前記入射光は、実質的に1つの波長である、請求項9に記載の方法。
【請求項11】
前記透照光源は、複数の個別透照光源を備えており、前記方法は、
複数の内因性画像を組み合わせて、前記内因性画像を作成する段階であって、前記複数の内因性画像のそれぞれは、前記複数の透照光源の内のそれぞれと関係付けられている、段階と、
複数の非規準化放射光画像を組み合わせて、前記非規準化放射光画像を作成する段階であって、前記複数の非規準化放射光画像のそれぞれは、前記複数の透照光源のそれぞれと関係付けられている、段階と、を更に含んでいる、請求項8に記載の方法。
【請求項12】
前記励起光源は、前記組織の、前記光検出器と概ね同じ側に配置されているエピ照明光源を備えており、
前記放射光は、前記組織に関係付けられた生物発光の光を備えており、
前記内因性画像は、内因性エピ照明画像を備えており、
前記非規準化放射光画像は、非規準化生物発光画像を備えており、
前記規準化放射光画像は、規準化生物発光エピ照明画像を備えている、請求項1に記載の方法。
【請求項13】
前記励起光源は、前記組織の、前記光検出器と概ね反対側に配置されている透照光源を備えており、
前記放射光は、前記組織に関係付けられた生物発光の光を備えており、
前記内因性画像は、内因性透照画像を備えており、
前記非規準化放射光画像は、非規準化生物発光画像を備えており、
前記規準化放射光画像は、規準化生物発光エピ照明画像を備えている、請求項1に記載の方法。
【請求項14】
前記透照光源は、複数の個別透照光源を備えており、前記方法は、
複数の内因性画像を組み合わせて、前記内因性画像を作成する段階であって、前記複数の内因性画像のそれぞれは、前記複数の透照光源のそれぞれと関係付けられている、段階を更に含んでいる、請求項13に記載の方法。
【請求項15】
前記組み合わせる段階は、前記非規準化放射光画像を、前記内因性画像で除する段階を含んでいる、請求項1に記載の方法。
【請求項16】
前記除する段階は、前記非規準化放射光画像の画素の画素等級を、前記内因性画像の調整された画素の画素等級で除する段階を含んでいる、請求項15に記載の方法。
【請求項17】
前記入射光は、400から1000ナノメーターの範囲内の波長を有しており、前記放射光も、400から1000ナノメーターの範囲内の波長を有しており、前記放射光の波長は、前記励起光の波長より短い、請求項1に記載の方法。
【請求項18】
前記受光器は、荷電結合素子カメラを備えている、請求項1に記載の方法。
【請求項19】
前記組織の第1背景画像を、前記内因性画像と概ね同じ波長で作成する段階と、
前記組織の第2背景画像を、前記非規準化放射光画像と概ね同じ波長で作成する段階と、
前記内因性画像と前記第1背景画像を組み合わせて、ノイズ低減内因性画像を提供する段階と、
前記非規準化放射光画像と前記第2背景画像を組み合わせて、ノイズ低減非規準化放射光画像を提供する段階と、
前記ノイズ低減非規準化放射光画像と前記ノイズ低減内因性画像を組み合わせて、ノイズ低減規準化放射光画像を提供する段階と、を更に含んでいる、請求項1に記載の方法。
【請求項20】
前記入射光は、1つ又は複数の波長を含んでおり、前記内因性画像は、前記1つ又は複数の波長に関係付けられている内因性画像を組み合わせることによって作成される、請求項1に記載の方法。
【請求項21】
組織を撮像するためのシステムにおいて、
励起光を含む入射光を生成するようになっている励起光源と、
前記入射光が前記組織と相互作用した後で、前記入射光を受け取るようになっており、更に、前記組織から放射される放射光を受け取るようになっており、更に、前記入射光に反応して前記組織の内因性画像を作成するようになっており、更に、前記組織の非規準化放射光画像を作成するようになっている受光器と、
前記非規準化放射光画像と前記内因性画像を組み合わせて、前記組織に関係付けられている規準化放射光画像を作成するようになっている規準化プロセッサーと、を備えているシステム。
【請求項22】
探針と、
前記探針と前記励起光源の間、及び、前記探針と前記受光器の間に連結されている少なくとも1つの光ファイバーであって、前記少なくとも1つの光ファイバーは、前記入射光を前記探針に運び、前記入射光が前記組織と相互作用した後で、前記入射光を前記探針で受け取り、前記放射光を前記探針で受け取るようになっている光ファイバーと、を更に備えている、請求項21に記載のシステム。
【請求項23】
前記探針は、患者の内部体腔を撮像するようになっている、請求項22に記載の方法。
【請求項24】
前記探針は、腹腔鏡探針、内視鏡探針、結腸鏡探針、膣鏡探針、食道探針、肺探針、口腔探針、及び歯科探針の中から選択された探針を備えている、請求項22に記載のシステム。
【請求項25】
前記励起光源は、前記組織の、前記光検出器と概ね同じ側に配置されているエピ照明光源を備えており、
前記放射光は、前記組織に関係付けられている蛍光を備えており、
前記内因性画像は、内因性エピ照明画像を備えており、
前記非規準化放射光画像は、非規準化蛍光エピ照明画像を備えており、
前記規準化プロセッサーは、前記規準化放射光画像を規準化蛍光エピ照明画像として作成するようになっている蛍光エピ照明規準化プロセッサーを備えている、請求項21に記載のシステム。
【請求項26】
蛍光は、蛍光マーカーと、前記励起光に反応して内生組織蛍光分子の内の少なくとも1つによって生成され、前記蛍光マーカーは前記組織に投与される、請求項25に記載のシステム。
【請求項27】
前記入射光は、実質的に1つの波長である、請求項26に記載のシステム。
【請求項28】
前記励起光源は、前記組織の、前記光検出器と概ね反対側に配置されている透照光源を備えており、
前記放射光は、前記組織に関係付けられている蛍光を備えており、
前記内因性画像は、内因性透照画像を備えており、
前記非規準化放射光画像は、非規準化蛍光透照画像を備えており、
前記規準化プロセッサーは、前記規準化放射光画像を規準化蛍光透照画像として作成するようになっている蛍光透照規準化プロセッサーを備えている、請求項21に記載のシステム。
【請求項29】
蛍光は、蛍光マーカーと、前記励起光に反応して内生組織蛍光分子の内の少なくとも1つによって生成され、前記蛍光マーカーは前記組織に投与される、請求項28に記載のシステム。
【請求項30】
前記入射光は、実質的に1つの波長である、請求項29に記載のシステム。
【請求項31】
前記透照光源は、複数の個別透照光源を備えており、前記規準化プロセッサーは、
複数の内因性画像を組み合わせて、前記内因性画像を作成するようになっている内因性画像組み合わせプロセッサーであって、前記複数の内因性画像のそれぞれは、前記複数の透照光源のそれぞれと関係付けられている内因性画像組み合わせプロセッサーと、
複数の非規準化放射光画像を組み合わせて、前記非規準化放射光画像を作成するようになっている放射画像組み合わせプロセッサーであって、前記複数の非規準化放射光画像のそれぞれは、前記複数の透照光源のそれぞれと関係付けられている、放射画像組み合わせプロセッサーと、を備えている、請求項28に記載のシステム。
【請求項32】
前記励起光源は、前記組織の、前記光検出器と概ね同じ側に配置されているエピ照明光源を備えており、
前記放射光は、前記組織と関係付けられている生物発光の光を備えており、
前記内因性画像は、内因性エピ照明画像を備えており、
前記非規準化放射光画像は、非規準化生物発光画像を備えており、
前記規準化プロセッサーは、前記規準化放射光画像を規準化生物発光エピ照明画像として作成するようになっている生物発光エピ照明規準化プロセッサーを備えている、請求項21に記載のシステム。
【請求項33】
前記励起光源は、前記組織の、前記光検出器と概ね反対側に配置されている透照光源を備えており、
前記放射光は、前記組織に関係付けられている生物発光の光を備えており、
前記内因性画像は、内因性透照画像を備えており、
前記非規準化放射光画像は、非規準化生物発光画像を備えており、
前記規準化プロセッサーは、前記規準化放射光画像を規準化生物発光透照画像として作成するようになっている生物発光透照規準化プロセッサーを備えている、請求項21に記載のシステム。
【請求項34】
前記透照光源は、複数の個別透照光源を備えており、前記規準化プロセッサーは、複数の内因性画像を組み合わせて、前記内因性画像を作成するようになっている内因性励起画像組み合わせプロセッサーを備えており、前記複数の内因性画像のそれぞれは、前記複数の透照光源のそれぞれと関係付けられている、請求項33に記載のシステム。
【請求項35】
前記規準化プロセッサーは、前記非規準化放射光画像を前記内因性画像で除することによって、前記非規準化放射光画像と前記内因性画像を組み合わせるようになっている、請求項21に記載のシステム。
【請求項36】
前記規準化プロセッサーは、前記非規準化放射光画像の画素の画素等級を前記内因性画像の調整された画素の画素等級で除することによって、前記非規準化放射光画像と前記内因性画像を組み合わせるようになっている、請求項35に記載の方法。
【請求項37】
前記入射光は、400から1000ナノメーターの範囲内の波長を有しており、前記放射光も、400から1000ナノメーターの範囲内の波長を有しており、前記放射光の波長は、前記励起光の波長より短い、請求項21に記載のシステム。
【請求項38】
前記受光器は、荷電結合素子カメラを備えている、請求項21に記載のシステム。
【請求項39】
前記光検出器に連結されており、第1波長を有する前記励起光を通過させるようになっている第1光学フィルターと、
前記光検出器に連結されており、前記第1波長とは異なる第2波長を有する前記放射光を通過させるようになっている第2光学フィルターと、を更に含んでいる、請求項21に記載のシステム。
【請求項40】
前記光検出器に連結されており、前記励起光と前記放射光を通過させるようになっている光学フィルターを更に含んでいる、請求項21に記載のシステム。
【請求項41】
前記光検出器は、更に、前記組織の第1背景画像を、前記内因性画像と概ね同じ波長で作成するようになっており、前記組織の第2背景画像を、前記非規準化放射光画像と概ね同じ波長で作成するようになっており、前記規準化プロセッサーは、
前記内因性画像と前記第1背景画像を組み合わせて、ノイズ低減内因性画像を提供するようになっている内因性画像ノイズ低減プロセッサーと、
前記非規準化放射光画像と前記第2背景画像を組み合わせて、ノイズ低減非規準化放射光画像を提供するようになっている放射画像ノイズ低減プロセッサーと、を備えており、
前記規準化プロセッサーは、更に、前記ノイズ低減非規準化放射光画像と前記ノイズ低減内因性画像を組み合わせて、ノイズ低減規準化放射光画像を提供するようになっている、請求項21に記載のシステム。
【請求項42】
前記入射光は、1つ又は複数の波長を含んでおり、前記内因性画像は、前記1つ又は複数の波長と関係付けられている内因性画像を組み合わせることによって作成される、請求項21に記載のシステム。

【図1】
image rotate

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2008−522761(P2008−522761A)
【公表日】平成20年7月3日(2008.7.3)
【国際特許分類】
【出願番号】特願2007−545669(P2007−545669)
【出願日】平成17年12月8日(2005.12.8)
【国際出願番号】PCT/US2005/044651
【国際公開番号】WO2006/063246
【国際公開日】平成18年6月15日(2006.6.15)
【出願人】(503046334)ザ・ゼネラル・ホスピタル・コーポレーション (8)
【Fターム(参考)】