説明

赤外線センサ

【課題】赤外線領域の電磁波を高い感度で検知することができる赤外線センサを提供する。
【解決手段】検知対象の波長に対応した長さで、半導体基板12上に形成された一対のアンテナパターン14,16を有する。下金属層30、絶縁層32及び上金属層34の3層から成り、一対のアンテナパターン14,16の間に設けられ、アンテナパターン14,16により検出された電磁波を整流するMIMダイオード18を備える。MIMダイオード18は、下金属層30、絶縁層32、及び上金属層34が厚み向に積層して設けられ、下金属層30及び上金属層34が一対のアンテナパターン14,16の互いに対向する端部にそれぞれ接続している。アンテナパターン14,16及びMIMダイオード18は、半導体基板12上に設けられた集光レンズ20により覆われている。レンズ20は、アンテナパターン14,16を被覆して半導体基板12上に一体に設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電磁誘起方式の赤外線センサに関する。
【背景技術】
【0002】
赤外線センサとして、従来から様々な形式のものが実用化されているが、それぞれに以下のような短所があった。例えば、サーモパイル等の熱起電力効果を利用したものは、応答速度が遅い。セラミック等の焦電効果を利用したものは、応答速度が遅く、赤外線の強度が一定の場合に感応できず、機械的な振動の影響も受けやすい。ボロメータ等の光導電効果を利用したものは、出力特性の継時変化が大きく、動作用の電源を設けなければならない。フォトダイオード等の量子トンネル効果を利用したものは、比較的高価な上、感度が得られる波長帯域が狭く、長波長タイプは冷却による温度調節が必要である。
【0003】
近年、上記の問題点に鑑みて、特許文献1に示すように、半導体基板上に形成された検出素子であって、電磁波を受けるアンテナと、微小面積のシリコン・金属界面を持ちアンテナと直結された検波用高周波ショットキーバリアダイオードとを備えたアンテナ結合電界検出型の光検出素子が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9−162424号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の光検出素子は、検波用のショットキーバリアダイオードが微小面積のシリコン・金属界面によるものなので、赤外線領域での動作速度が高速とは言えず、特に波長が数十μm以下の帯域において十分な感度を得ることが難しいものである。従って、特許文献1の光検出素子は、検知出力が極めて小さく、実際に検出可能な赤外線は、特許文献1にあるようにCOレーザのようなエネルギー密度の高い赤外線に限られるという問題がある。
【0006】
さらに、特許文献1の光検出素子の製造には、半導体の形成プロセスが必要であり、高価な半導体を含み、製造に関してもイオンドープ等の処理による複雑さと、汚染が問題となる。また、特許文献1の光検出素子は、ショットキーバリアダイオードを利用したものであるので、バイアス電圧が必要であり、チップ内にバイアス回路を組み合わせる場合にはさらに構造や製造が複雑化する。しかも、バイアス負荷を必要とするという事は、ノイズを導いてしまうことになり、測定精度を低下させるものである。
【0007】
この発明は、上記背景技術に鑑みて成されたもので、赤外線領域の電磁波を高い感度で検知することができる赤外線センサを提供することを目的とする。
【課題を解決するための手段】
【0008】
この発明は、検知対象の電磁波である赤外線の波長に対応した長さで半導体基板上に形成された一対のアンテナパターンと、下金属層、絶縁層及び上金属層の3層から成り前記一対のアンテナパターンの間に設けられ、このアンテナパターンにより検出された電磁波を整流するMIMダイオードとを備え、前記MIMダイオードは、前記3層が厚み向に積層して設けられ、前記下金属層及び前記上金属層が前記一対のアンテナパターンの互いに対向する端部にそれぞれ接続されている赤外線センサである。前記MIMダイオードの下金属層と上金属層は、例えばAl-Al、Al-Pt、Al-Ti、Al-Ni、Ni-Ptといった対で構成され、一定電圧以上で導通するダイオード特性を有するものであり、ダイオードの電流−電圧曲線は、非線形性を有する。
【0009】
特に、前記MIMダイオードの下金属層は、前記アンテナパターンと連続して形成されたAlであり、前記下金属層の表面を酸化して、前記絶縁層が形成されていると良い。
【0010】
さらに、前記アンテナパターン及びMIMダイオードは、前記半導体基板上に設けられた集光レンズにより覆われているものである。前記集光レンズは光学用の樹脂から成り、前記アンテナパターンを被覆して前記半導体基板上に一体に設けられている。
【0011】
また、前記MIMダイオードに接続した前記アンテナパターンの端部から前記MIMダイオード近傍で延びた引出線が、前記半導体基板に設けられたビアを介して前記半導体基板裏面に引き出されているものである。
【発明の効果】
【0012】
この発明の赤外線センサは、アンテナパターンが検知した赤外線を、同一又は異種の金属層間に絶縁層を挟んだMIMダイオードで整流するので、ショットキーバリアダイオード等に比べ応答速度が速く、赤外線領域、特に波長が数十μm以下の帯域でも良好な感度を得ることができる。また、アンテナパターンの形状を調整すれば、測定対象の赤外線の波長に応じて検知可能波長を容易に変更することができる。
【0013】
また、この赤外線センサは、半導体基板上に、アンテナパターンと、2つの金属層及び絶縁層から成るMIMダイオード等を縦方向に積み重ねたシンプルな構造なので、製造が容易でありコストもかからず、EBL等を用いてナノ・オーダーの精密加工を行うのにも適している。
【図面の簡単な説明】
【0014】
【図1】この発明の赤外線センサの一実施形態を示す平面図である。
【図2】この実施形態の赤外線センサを示す正面図(a)、MIMダイオード部分の拡大図である。
【発明を実施するための形態】
【0015】
以下、この発明の赤外線センサの一実施形態について、図1、図2に基づいて説明する。この実施形態の赤外線センサ10は、波長が数十μm以下の赤外線を検知するものである。赤外線センサ10は、ベースとなるSi等の半導体基板12と、半導体基板12上に形成され赤外線を検知するアンテナパターンである第1及び第2アンテナパターン14,16とを備えている。さらに、第1及び第2アンテナパターン14,16が検出した電磁波による出力を整流するMetal-Insulator-Metalダイオード(以下、MIMダイオードと称す。)18と、第1及び第2アンテナパターン14,16全体を覆うように設けられたレンズ20とを備えている。
【0016】
半導体基板12は、例えば厚さ約600μmのP型シリコンである半導体層22を有し、その表面と裏面に、厚さ約1.5μmの酸化シリコン層である上酸化膜層24及び下酸化膜層26が形成されている。さらに、上酸化膜層24の表面には、入射する赤外線が反射するのを防ぐため、図示しない反射防止コーティングが施されている。また、下酸化膜層26の表面には、半導体基板12を通過してきた赤外線を反射させるミラーコーティング層28が薄く設けられており、第1及び第2アンテナパターン14,16が受ける赤外線の強度を強める。
【0017】
第1及び第2アンテナパターン14,16は、半導体基板12表面に形成され、直線状に左右対称に配置され、いわゆるダイポールアンテナの構成になっている。第1及び第2アンテナパターン14,16の長さは、半導体基板12の材料や測定対象の赤外線の波長に基づいて調整される。上酸化膜層24が酸化シリコンの半導体基板12を使用し、例えば波長λ=10μm付近の赤外線を検知する場合は、第1及び第2アンテナパターン14,16の全長は約λ/2とするので、1及び第2アンテナパターン14,16を約3〜5μm、幅を数十nmに設定する。特に、半導体基板12がシリコンの場合は、アンテナ長さを3μmに設定すると良い。
【0018】
MIMダイオード18は、下金属層30、絶縁層32、上金属層34が厚み方向に積み重なった構造を有している。そして、第1アンテナパターン14の出力端部分である第1接合部36の上面に下金属層30が形成され、上金属層34が第2アンテナパターン14の出力端部分である第2接合部38の裏面側に面接合されている。
【0019】
下金属層30と上金属層34は、ダイオード特性を有した非線形の電流−電圧特性を得るため、所定の材料で形成されている。下金属層30と上金属層34の対としては、例えば、Al-Al、Al-Pt、Al-Ti、Al-Ni、Ni-Ptといった対がある。これにより、MIMダイオード18に電流バイアスがない無負荷の状態で整流動作が可能になる。さらに、外部のバイアス用の回路や電源を省略することができ、MIMダイオード18からのノイズ発生を低減できる等の効果が得られる。
【0020】
絶縁層32によって分離された2つの金属層30,34は、同じ材料から成る場合は、ダイオード特性は対称性を示し、正負の一定電圧以上で抵抗が急激に減少し導通する。また、異なる金属材料で作られた場合、そのダイオード特性は非対称であり、Al-Pt、Al-Ti、Al-Niの対では、Alを下金属層30とし、下金属層30の表面を酸化して絶縁層32を形成する。Ni-Ptの対の場合は、Niを下金属層30とし、その表面を酸化して絶縁層32を形成する。これらの場合のダイオード特性は非対称であり、正負の一定電圧以上で抵抗が急激に減少し導通する。また、Alを下金属層30として構成することにより、中間の絶縁層32である酸化膜形成の処理がし易いという利点がある。
【0021】
第1アンテナパターン14、第1接合部36、及び下金属層30は、同一の金属で形成されており、第2アンテナパターン16、第2接合部38、及び上金属層34も同一の金属で形成されている。従って、下金属層30は第1接合部36で兼用しても良く、上金属層34も第2接合部38で兼用しても良い。
【0022】
絶縁層32の厚みは、電流−電圧特性の非線形性を高めることを考慮して、0.5nm〜5nm、好ましくは1nm〜2nmに設定する。また、絶縁層32の大きさは、MIMダイオード18の高速応答性と検出波長を考慮して設定する。MIMダイオード18の動作は、フォトダイオードと同様に、量子トンネル効果を利用したもので、応答速度は、絶縁層32が有する絶縁抵抗及び接合容量に依存する。ここでは、周波数が数THz以上(波長が数十μm以下)の赤外線を検出可能にするため、絶縁層32の厚みが1nm〜2nmであること、及び絶縁層32固有の誘電率などを考慮して、接合容量を一定以下に抑えるべく、絶縁層32の大きさを約100nm×100nm以下、より好ましくは50nm×50nm〜20×20nmに設定する。
【0023】
第1及び第2アンテナパターン14,16の第1及び第2接合部36,38付近には、MIMダイオード18の整流出力を取り出すための第1及び第2出力引出線40,42が延設されている。また、半導体基板12の中央部には、第1及び第2出力引出線40,42に各々接続して半導体基板12を貫通した一対のビア44,46が形成されている。一対のビア44,46は、絶縁層を介して半導体基板12を貫通し、裏面側で図示しない裏面引出線に接続して、外部の回路に接続可能に設けられている。
【0024】
また、信号処理の為の集積回路と赤外線センサ部を半導体基板12に一体に形成した場合は、絶縁層を介して半導体基板12に貫通した一対のビア44,46は、基板内に形成された集積回路へ接続するように設けられる。
【0025】
レンズ20は、測定対象の赤外線を第1及び第2アンテナパターン14,16に集光して感度を高めるものであり、ここでは、第1及び第2アンテナパターン14,16を光学レンズ用の樹脂を用いて凸レンズ状に形成し、第1及び第2アンテナパターン14,16及びMIMダイオード18を被覆して、半導体基板12の上面に一体に設けられている。
【0026】
上述した赤外線センサ10は、例えば、次のような方法で製造することができる。まず、P型シリコン基板である半導体層22を高温環境下で熱酸化させることによって上下の酸化膜層24,26を形成し、さらに上酸化膜層24に反射防止コーティングを施し、下酸化膜26をミラーコーティング層28で覆って、半導体基板12を作製する。
【0027】
次に、半導体基板12のミラーコーティング層28の表面に絶縁層を介して図示しない裏面引出線を形成する。例えば、ミラーコーティング層28の絶縁層表面にAu等の導電体を蒸着し、レジスト層を形成し、マスクアイナーを用いて露光してパターニングを行い、現像液中に浸漬して現像し、エッチングを行い、最後に不要なレジスト層を除去して形成する。また、これ以外のプロセスとして、マスクの上から導電体を蒸着することにより直接パターンを形成するリフトオフのプロセスを用いてもよい。さらにこの前又は後に、裏面引出線に接続される一対のビア44,46を半導体基板12に形成する。
【0028】
次に、半導体基板12の上酸化膜層24表面に、第1及び第2アンテナパターン14,16、第1及び第2出力引出線40,42、MIMダイオード18を形成する。この部分の形状は、赤外線センサ10の性能に大きな影響を与えるので、極めて高い精度の加工技術が要求される。加工には、例えばナノ・オーダーの加工精度を実現する電子ビームリソグラフィ(以下、EBLと称す)を用いる。
【0029】
パターンの形成に際して、先ず上酸化膜層24表面にEBL用のレジスト層を形成し、EBLで第1及び第2アンテナパターン14,16及び第1及び第2出力引出線40,42を描画する。第1及び第2出力引出線40,42は、一対のビア44,46に接続する。次に、第1アンテナパターン14の第1接合部36上に、EBLを用いて下金属層30を堆積させ、その上層部を酸素雰囲気中で酸化させることによって絶縁層32を形成し、その上面にEBLを用いて上金属層34を堆積させる。そして、上金属層34と第2アンテナパターン16とを接続する第2接合部38を形成し、最後に不要なレジスト層を除去する。なお、下金属層30と第1接合部36を兼用する場合、下金属層30を堆積させる工程が省略され、上金属層34を第2接合部38で兼用する場合、上金属層34を堆積させる工程が省略される。
【0030】
次に、半導体基板12の表面に光学用の樹脂を用いてレンズ20を所定形状に成形し、この後、半導体基板12を図示しないパッケージに収容して配線の接続を行い、パッケージングして完成する。
【0031】
以上説明した赤外線センサ10は、第1及び第2アンテナパターン14,16により検出した電磁波である赤外線を、MIMダイオード18で検波し整流するので、赤外線領域、特に波長が数十μm以下の帯域でも良好な感度を得ることができる。また、ノイズの発生も小さく、外部に動作用の電源を設ける必要がなく、室温での動作が可能なため冷却等の温度管理も不要である。
【0032】
また、第1及び第2アンテナパターン14,16の長さ等を調整することにより、検知可能な赤外線の波長(又は周波数)を容易に変更することができる。例えば、クッキングヒーター用の鍋底の温度調整用センサであれば6μm〜8μm程度の波長の赤外線を検知可能に当該パターン長さを調整すればよい。同様に、ビル空調用の二酸化炭素濃度モニタリングセンサの用途であれば2μm〜4μm程度の波長の赤外線を検知可能に、施設エネルギー管理用の人体検知センサの用途であれば約10μmの波長の赤外線を検知可能に第1及び第2アンテナパターン14,16の長さを調整すればよい。このように、用途ごとに最適な赤外線センサを、同一の製造設備、または同様の製造プロセスを用いて製造することができる。
【0033】
また、赤外線センサ10は、半導体基板12上に、第1及び第2アンテナパターン14,16、MIMダイオード18の金属層30,34及び絶縁層32等を、層の厚み方向に積み重ねたシンプルな構造なので、製造コストの面で有利であり、EBL等を用いてナノ・オーダーの精密加工を行うのにも適している。さらに、半導体基板12からレンズ20迄を一体的に形成することができ、半導体のC−MOS構造との相性が良く、半導体基板12にビア構造の他、アンプ等の回路を一体的に形成することも可能である。
【0034】
なお、この発明は、上記実施形態に限定されるものではなく、MIMダイオードは、金属表面の酸化膜を絶縁層にしたMOM(Metal-Oxide-Metal)型の他、金属層間に絶縁層となるバリア層を挟んだMBM(Metal-Barrier-Metal)ダイオードでも良く、絶縁層は適宜選択可能なものである。その他、アンテナパターンの形態は、ほぼ2次元的に構成することができ、赤外線の周波数帯域の検出に適用可能なものであればよく、上記のダイポールアンテナ状の形態と異なる他の形態を用いてもよい。また、赤外線集光用のレンズは、必要に応じて省略してもよく、MIMダイオードの出力を外部出力端子に出力するための配線やパッケージの形態は、適宜変更することができる。
【符号の説明】
【0035】
10 赤外線センサ
12 半導体基板
14 第1アンテナパターン
16 第2アンテナパターン
18 MIMダイオード
20 レンズ
30 下金属層
32 絶縁層
34 上金属層


【特許請求の範囲】
【請求項1】
検知対象の電磁波である赤外線の波長に対応した長さで半導体基板上に形成された一対のアンテナパターンと、下金属層、絶縁層及び上金属層の3層から成り前記一対のアンテナパターンの間に設けられ、このアンテナパターンにより検出された電磁波を整流するMIMダイオードとを備え、
前記MIMダイオードは、前記3層が厚み向に積層して設けられ、前記下金属層及び前記上金属層が前記一対のアンテナパターンの互いに対向する端部にそれぞれ接続されていることを特徴とする赤外線センサ。
【請求項2】
前記MIMダイオードの下金属層と上金属層は、Al、Pt、Ti、Niの中から選ばれた同一又は異種の金属から成る請求項1記載の赤外線センサ。
【請求項3】
前記MIMダイオードの下金属層は、前記アンテナパターンと連続して形成されたAlであり、前記下金属層の表面を酸化して、前記絶縁層が形成されている請求項2記載の赤外線センサ。
【請求項4】
前記アンテナパターン及びMIMダイオードは、前記半導体基板上に設けられた集光レンズにより覆われている請求項1,2又は3記載の赤外線センサ。
【請求項5】
前記集光レンズは光学用の樹脂から成り、前記アンテナパターンを被覆して前記半導体基板上に一体に設けられている請求項4記載の赤外線センサ。
【請求項6】
前記MIMダイオードに接続した前記アンテナパターンの端部から前記MIMダイオード近傍で延びた引出線が、前記半導体基板に設けられたビアを介して前記半導体基板裏面に引き出されている請求項1,2又は3記載の赤外線センサ。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−156286(P2012−156286A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−13666(P2011−13666)
【出願日】平成23年1月26日(2011.1.26)
【出願人】(591020445)立山科学工業株式会社 (71)
【Fターム(参考)】