説明

赤外線放射素子

【課題】小型かつ高速応答が可能である上に、投入エネルギーに対する赤外線の放射効率が高く省エネルギー化が可能である赤外線放射素子を提供する。
【解決手段】単結晶シリコンの基板3の一表面に熱絶縁層2と赤外線発生層1とが設けられる。赤外線発生層1は、温度上昇により赤外線を放射する放射層4と、目的波長の赤外線に対して透明である透過層5と、赤外線を反射する反射層6とからなる。放射層4と透過層5と反射層6とのいずれかに通電することにより熱を発生させ、放熱層4の温度を上昇させて赤外線を放射させる。透過層5は、目的波長の赤外線に対する光路長が当該赤外線の4分の1波長の奇数倍となる厚み寸法に設定されている。放射層4は、透過層5からの赤外線を通過させる。したがって、赤外線発生層1から放射される赤外線に併せて透過層5からの赤外線を利用して投入電力に対する赤外線の放射効率を高める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として赤外線の高速変調が要求される用途に用いられる赤外線放射素子に関するものである。
【背景技術】
【0002】
従来から、赤外線放射源から放射した赤外線を検出対象に照射し、赤外線の吸収量や反射量に基づいて、検出対象を検出する装置が提供されている。
【0003】
たとえば、赤外線ガス分析計では、赤外線放射源から放射した赤外線を検出対象であるガス(メタン、一酸化炭素、二酸化炭素など)に照射し、赤外線の受光量に応じた受光信号を出力する赤外線受光素子を用いてガスによる赤外線の吸収波長や吸光量を検出することにより、ガスの種類・濃度などを検出している。
【0004】
赤外線受光素子は、赤外線放射源から放射される赤外線のうち検出対象のガスが吸収する波長の赤外線のみを選択的に通過させるフィルタを介して赤外線を受光する。したがって、フィルタを選択的に通過する波長によりガスの種類が特定され、赤外線の受光量(赤外線受光素子の出力信号レベル)に応じてガスの濃度が計測される。
【0005】
この種の装置では、検出対象であるガスでの吸光量を検出するために、1回の分析において、ガスに対して赤外線を断続的に複数回照射することが必要である。したがって、検出対象を検出する時間を短縮するには、高速変調が可能な赤外線放射源を用いて断続させる時間間隔を短くすることが要求される。また、赤外線を複数回照射するから、赤外線の放射に要するエネルギー(電力)を低減するために、投入エネルギーに対する赤外線の放射量を高める必要がある。さらには、検出精度を高めるために、赤外線放射源からの毎回の赤外線の放射量を一定量にすることも必要である。
【0006】
代表的な赤外線放射源には、タングステンや白金などの材料でコイル状に形成したフィラメント、あるいはタングステンや白金からなるコイル状の芯材の表面をアルミナなどのセラミックで被覆することにより赤外線の放射効率を高めたフィラメントを備え、フィラメントを透光性の気密容器に収納した構成の赤外線放射源がある。
【0007】
ただし、この種の赤外線放射源は、フィラメントが外気に露出した状態では使用することができないから、気密容器による大型化を避けることができず、装置の小型化が困難になる。また、フィラメントや気密容器を含む熱容量が大きくなるから、電源投入から赤外線が所要強度まで上昇するのに要する立ち上がり時間、および電源遮断から赤外線が規定強度まで減少するのに要する立ち下がり時間が長く、しかも立ち上がりや立ち下がりに急峻な特性が得られない。
【0008】
したがって、この種の赤外線放射源では、赤外線を断続させる周波数を0.1〜10Hz程度にしか設定できない。また、赤外線の放射強度の立ち上がりや立ち下がりが急峻ではないから、波形のなまりによる検出誤差が生じやすい。
【0009】
一方、小型化が可能な赤外線放射源としては、図9に模式的に示すように、MEMS(Micro Electro Mechanical Systems)技術を用いて形成する赤外線放射素子が提案されている(たとえば、特許文献1参照)。図示する赤外線放射素子は、シリコン基板にエッチングを施して形成した矩形枠状の支持基板21を有し、支持基板21の一表面に窒化シリコンの熱絶縁層22を介してドープしたポリシリコン膜の赤外線放射層23が形成され、さらに、赤外線放射層23を覆う窒化シリコンの絶縁層24に金属層である白熱フィラメント25を埋設した構造を有している。支持基板21において赤外線放射層23の背面側に相当する部位には開口26が形成される。
【0010】
この赤外線放射素子は、白熱フィラメント25に接続された電極27を有し、電極27間に通電することにより白熱フィラメント25を発熱させ、白熱フィラメント25により赤外線放射層23を加熱する傍熱型の構成を有している。また、白熱フィラメント25は、赤外線放射層23の表面を覆っているが、幅を極めて狭くし赤外線放射層23からの赤外線の放射率が著しく減少するのを防止している。
【0011】
この赤外線放射素子は、赤外線放射層23の背面側において支持基板21に開口26を形成し、赤外線の放射に寄与する白熱フィラメント25および赤外線放射層23の周囲を断熱性の高い空気により囲んでいるから、赤外線の放射に寄与する部分と周囲との熱容量差が大きく、白熱フィラメント25に通電する電流の断続に対して比較的高速に応答することが可能になっている。すなわち、上述した気密容器を備える赤外線放射源では、0.1〜10Hz程度の応答であったのに対して、図9の構成を採用した場合に、200Hzまでの応答が可能になることが特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開平9−184757号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
ところで、上述したように、赤外線放射源には、高速な応答性と、投入エネルギーに対する放射効率と、赤外線放射量の安定化とが要求される。特許文献1に記載の構成を採用すれば、上述したように高速な応答性は達成される。
【0014】
しかしながら、白熱フィラメント25と赤外線放射層23との間に絶縁層24が介在する傍熱型の構成であるから、白熱フィラメント25から発生する熱エネルギーの一部が窒化シリコンからなる絶縁層24により吸収されて赤外線放射層23の加熱に寄与せず、結果的に、投入エネルギーに対する赤外線の放射量を十分に高めることができないという問題を有している。また、赤外線放射層23のシート抵抗を調整することにより、放射率を最大で0.5まで上昇させることが可能であるが、それ以上の向上は望めないという問題もある(放射率は図4の曲線ハ参照)。
【0015】
本発明は上記事由に鑑みて為されたものであり、その目的は、小型かつ高速応答が可能である上に、投入エネルギーに対する赤外線の放射効率が高く省エネルギー化が可能である赤外線放射素子を提供することにある。
【課題を解決するための手段】
【0016】
本発明は、基板の一表面に形成され通電に伴って発生した熱により赤外線を放射する赤外線発生層と、一面に赤外線発生層が積層されることにより赤外線発生層を支持するように基板の一表面に形成された熱絶縁層とを備え、赤外線発生層は、温度上昇により赤外線を放射する放射層と、目的波長の赤外線に対して透明である材料により形成され放射層が一面に積層された透過層と、透過層の他面と熱絶縁層との間に形成され赤外線を反射する反射層とからなり、放射層と透過層と反射層とのいずれかに通電することにより熱を発生させるとともに、放熱層の温度を上昇させて赤外線を放射させ、透過層は、目的波長の赤外線に対する光路長が当該赤外線の4分の1波長の奇数倍となる厚み寸法に設定されており、放射層は、赤外線を通過させる機能を有することを特徴とする。
【0017】
また、熱絶縁層の他面は気体に接触していてもよい。
【0018】
放射層と透過層と反射層の各シート抵抗のうち反射層のシート抵抗をもっとも小さくしておき、反射層に通電する構成を採用してもよい。
【0019】
透過層の材料は、シリコンとゲルマニウムとから選択するのが望ましい。
【0020】
放射層の材料は、TaNとTiNとから選択するのが望ましい。
【0021】
熱絶縁層は、ポーラス半導体であることが望ましい。
【発明の効果】
【0022】
本発明の構成によれば、熱絶縁層により赤外線発生層を支持しているから、赤外線発生層の変形による断線が生じにくく、熱容量を低減するために赤外線発生層を薄肉化することが可能であって、結果的に高速応答が可能になる。すなわち、通電を開始してから赤外線の放出までの立ち上がり時間が短いから、赤外線の放射を繰り返すときに、毎回の赤外線の放射量が略一定になり、赤外線ガス分析計のような検査装置に適用すると高精度化が可能になる。また、赤外線発生層を形成する透過層を、目的波長の赤外線に対する光路長が赤外線の4分の1波長の奇数倍の厚み寸法に形成しているから、放射層から反射層に向かって放射された目的波長の赤外線が共鳴条件に合致し、放射層を透過して見かけ上では放射層から放射されることで放射層から透過層に向かって放射されるエネルギの一部が赤外線放射のエネルギーとして利用されることになり、投入電力に対する赤外線の放射効率を高めることができる上に、目的波長の赤外線に対して透過層において共鳴の条件が成立し、目的波長の赤外線について相対的な放射強度を高めることができる。すなわち、放射層から基板側に放射される赤外線を無駄にせずに利用することができることになる。したがって、所望量の赤外線を放射するのに必要な投入電力の低減につながり、目的波長の放射率は1に近付き、非常に高い放射率が得られる。
【0023】
熱絶縁層の一面に赤外線発生層が積層され熱絶縁層の他面が気体に接触している構成を採用すれば、気体の断熱性により熱絶縁層からの放熱が抑制されるから、赤外線発生層で発生する熱のうち放射層の加熱に利用可能な熱量を増加させ、投入電力に対する赤外線の放射効率を高めることができる。
【0024】
一般にシート抵抗が小さいほうが反射率が高いから、反射層は、反射率を高めるためにシート抵抗を小さくする必要がある。とくに、シート抵抗を小さくするために、反射層に良導電性の材料を用いると、反射層を薄肉に形成することが可能になるので、赤外線の放射効率に関与する放射層および透過層の材料や厚み寸法の制約を増加させることがない。すなわち、赤外線発生層の厚み寸法を小さくして赤外線発生層の熱容量を低減することができ、結果的に高速応答が可能になる。また、赤外線発生層のうちシート抵抗が最小である反射層に通電することにより、同出力を得るために必要な駆動電圧を、放射層や透過層に通電する場合よりも低くすることができるから、駆動電圧の確保のために昇圧回路を設ける場合であっても、昇圧比の抑制により昇圧回路の損失を低減して電力効率を高めることができる。
【0025】
シリコンとゲルマニウムとは赤外線に対して透明であるだけでなく赤外線に対する屈折率が大きいから、透過層にシリコンとゲルマニウムとの一方を用いることにより、光学的な厚みを同じにして光路長を確保するための透過層の厚み寸法が小さくなり、赤外線発生層の厚み寸法が小さくなって赤外線発生層の熱容量が低減されることで、高速応答が可能になる。
【0026】
放射層の材料としてTaNとTiNとのいずれかを用いる構成では、放射層の耐酸化性が高いから、放射層を空気中に露出させて使用することが可能になる。つまり、真空中あるいは不活性ガス中で使用する必要がなく、パッケージの構造が簡単になる上に、密封のための窓材が不要であって窓材による赤外線の減衰がなく、放射した赤外線の利用効率を高めることができる。さらに、これらの材料は窒素含有率を調整することによりシート抵抗を調整することができるから、放射層の放射率と透過率とを等しくする所望のシート抵抗を得るのに必要な厚み寸法を調節して熱容量の小さい放射層を形成することができ、結果的に、高速応答が可能になる。また、これらの材料は、耐熱性が高く安定した動作が可能である。
【0027】
ポーラス半導体を熱絶縁層に用いた構成では、熱絶縁層に高い断熱性能が得られる。
【図面の簡単な説明】
【0028】
【図1】実施形態1を示す断面図である。
【図2】同上の製造過程を示す図である。
【図3】同上に用いる赤外線発生層の放射率を示す図である。
【図4】同上用いる放射層の特性を示す図である。
【図5】実施形態1の他の構成例を示す断面図である。
【図6】同上に用いる発熱層の平面図である。
【図7】(a)(b)は実施形態2を示す断面図である。
【図8】熱絶縁層の温度特性を示す図である。
【図9】従来構成を示す断面図である。
【発明を実施するための形態】
【0029】
(実施形態1)
本実施形態の赤外線放射素子は、図1に示すように、通電に伴って発生した熱により赤外線を放射する赤外線発生層1および赤外線発生層1の背面を支持する熱絶縁層2を基板3の一表面に備えた構成を有する。ここに、基板3に対する「一表面」の用語は、面自身ではなく、面に接する領域を意味するものとする。したがって、赤外線発生層1および熱絶縁層2は基板3の一表面に形成されていることになる。
【0030】
赤外線発生層1は、温度上昇により赤外線を放射する放射層4と、赤外線に対して透明である材料により形成され放射層4が一面に積層された透過層5と、透過層5の他面と熱絶縁層2との間に形成され赤外線を反射する反射層6とを積層した積層体として形成される。赤外線発生層1から赤外線を放射させるには、放射層4の温度を上昇させる必要があるから、放射層4と透過層5と反射層6とのいずれかに通電して発熱させる。以下に説明する実施形態では、反射層6に通電する場合を例示する。
【0031】
基板3は、半導体基板(たとえば、単結晶のシリコン基板)であって直方体状に形成されている。熱絶縁層2は、基板3よりも熱伝導率が十分に小さくなるように形成されている。また、熱絶縁層2は、基板3の上記一表面において深さ方向に形成してあり、熱絶縁層2の一面(図1の上面)を基板3の一面(図1の上面)と面一に形成してある。
【0032】
熱絶縁層2は、具体的には、基板3の上記一面の周部を残した領域に陽極酸化を施すことにより、基板3を多孔質化して形成する。陽極酸化の条件(電解液の組成、電流密度、処理時間など)は、基板3の導電形および導電率に応じて適宜設定する。
【0033】
陽極酸化は、フッ化水素水溶液中で行い、多孔度が略70%の多孔質半導体層(たとえば、ポーラスシリコン層)として形成してある。また、基板3の導電形は、p形とn形とのどちらでもよいが、p形のシリコン基板はn形のシリコン基板に比較して陽極酸化による多孔質化を行った際に多孔度が大きくなりやすいという傾向があるから、基板3にはp形のシリコン基板を用いるのが望ましい。たとえば、半導体基板として、低抵抗のp型シリコン基板を用い、電解液の組成としてフッ酸濃度を高くすることで、ナノポアのみを有する熱絶縁層2を形成することができる。
【0034】
さらに、熱絶縁層2における熱伝導率を低減するために熱絶縁層2の一部あるいは全部を酸化あるいは窒化を行ってもよい。酸化あるいは窒化を行えば電気絶縁性も高くなる。陽極酸化により多孔質化した熱絶縁層2は、熱容量および熱伝導率が小さい上に耐熱性が高く、しかも表面が平滑であるという特徴を有している。
【0035】
一方、陽極酸化により多孔質化する代わりに熱酸化により半導体酸化膜を形成し、この半導体酸化膜を熱絶縁層2に用いてもよい。熱絶縁層2として、半導体酸化膜を用いる場合には、熱酸化により熱絶縁層2を形成したり、酸化物を含む材料でCVDにより熱絶縁層2を形成すれば、多孔質化に比較して製造プロセスが簡単になり、量産性を高めることが可能になる。CVDにより熱絶縁層2を形成する場合には、アルミナのような熱絶縁性の高い酸化物を用いたり、この種の酸化物を含む材料を用いることが可能である。さらには、この種の材料の多孔体を熱絶縁層2として形成することも可能である。
【0036】
以下では、赤外線発生層1について、さらに詳しく説明する。赤外線発生層1は、表面に露出する放射層4と熱絶縁層2に積層された反射層6とが透過層5を介して積層された積層体であり、基板3の一表面において反射層6と基板3との間に熱絶縁層2を介して形成されている。
【0037】
放射層4は上述したように加熱されることにより赤外線を放射する。放射層4で発生した赤外線は、前方に放射されるだけではなく、透過層5に向かって後方にも放射されるから、反射層6を設けることにより後方に放射された赤外線を前方に向かって反射させる構成を採用している。また、透過層5は目的波長の赤外線に対して共鳴条件が成立するように形成されており、目的波長の赤外線の放射効率を高める機能を有している。すなわち、投入電力に対する赤外線の放射効率が高くなり省エネルギー化につながっている。
【0038】
反射層6には良導電性の金属材料により形成した一対の電極7が設けられる。この金属材料としては、透過層5の材料と反応しにくく高温での安定性に優れたイリジウムなどが適している。ところで、一般に反射率はシート抵抗が小さいほど高い(図4の曲線イ参照)ことが知られている。したがって、イリジウムを用いることにより、低シート抵抗(望ましくは10Ωsq以下)で高反射率の反射層6を熱容量の小さな極薄膜で形成することができる。反射層6の温度上昇が小さい場合はアルミニウムなどの材料も用いることができるが、これらの材料に限定するものではない。
【0039】
図1においては、電極7を左右に離間して設けてある。反射層6の形状は適宜に設定することができる。たとえば、反射層6を1枚の矩形状に形成し、向かい合う二辺にそれぞれ電極7を形成することができる。あるいはまた、図1の左右方向に長い複数枚の短冊を有し各短冊の長手方向の一端を各電極7にそれぞれ接続した形状の反射層6を形成してもよい。いずれの場合も両電極7の間に電圧を印加することにより、反射層6に通電して発熱させることができる。本実施形態では、イリジウムをスパッタ法で所定の位置に形成し、シート抵抗は1Ωsqになるように厚みを調整した。
【0040】
一方、放射層4は、加熱されることより赤外線を放射する機能を有し、しかも透過層5から放射層4に向かう赤外線を透過させる機能を有している。具体的には後述する材料を選択するとともに、放射層4のシート抵抗を放射率と透過率とが等しくなるように調整している。図4を用いて具体例を示すと、放射率(曲線ハ)と透過率(曲線ロ)とが等しくなるシート抵抗は377Ωsqであり、放射率と透過率とは0.44である。放射率と透過率とが等しいことにより、放射層4から反射層6に向かって放射され共鳴条件に合致した目的波長の赤外線が、見かけ上では放射層4を透過して図1の上方に放射されることになる。
【0041】
放射層4の材料は、TaNとTiNとから選択するのが望ましい。これらの材料は耐熱性および耐酸化性に優れている。したがって、放射層4を空気雰囲気で使用することが可能であって、赤外線放射素子をパッケージに収納せずにベアチップとして基板に実装することが可能になる。また、パッケージに収納する場合でも赤外線を透過させるためにパッケージに形成した窓孔を封止する必要がなく、窓孔に装着する窓部材による赤外線の減衰がないから、赤外線の放射効率を高めることができる。
【0042】
これらの材料は、放射層4として形成するのに適した熱容量の小さくかつ耐久性を備えた厚み寸法(数十nm)において、シート抵抗が所望値(後述する)になるという物性を有している。しかも、シート抵抗は成膜時の窒素ガスの分圧によって制御することが可能である。ただし、放射層4を形成する材料は、TaN,TiN以外も使用可能であり、他の窒化金属や炭化金属を用いてもよい。本実施形態ではTaNを反応性スパッタ法により所定の位置に所定の発熱温度でシート抵抗が377Ωsqとなるように形成した。
【0043】
放射層4から放射される赤外線のピーク波長λ〔μm〕は、ウィーンの変位則を満足しており、放射層4の絶対温度T〔K〕とは、次式の関係がある。
λ=2898/T …(1)
したがって、放射層4の温度を変化させることにより、放射層4から放射される赤外線のピーク波長を変化させることができる。放射層4の温度を調節するには、反射層6に印加する電圧の振幅や波形などを調節し、単位時間当たりに発生するジュール熱を変化させる。
【0044】
たとえば、両電極7の間に100V程度の正弦波状の電圧を印加することによりピーク波長が3〜4〔μm〕の赤外線を放射させるように設計することが可能であり、電圧を調節すれば、ピーク波長が4〔μm〕以上になる赤外線を放射させることも可能である。
【0045】
反射層6と放射層4との間に介装された透過層5は、目的波長の赤外線に対して透明である材料により形成されており、しかも当該赤外線に対する光路長が共鳴条件を満足するように厚み寸法が定められている。透過層5の材料は、シリコンとゲルマニウムとのいずれかを用いることが望ましく、これらの材料は赤外線に対して屈折率が大きいから、光路長を確保するための厚み寸法を小さくすることができる。すなわち、透過層5の厚み寸法が小さいから、反射層6で発生した熱が放射層4に伝導されやすく、反射層6が通電に伴って発熱したときに短時間で放射層4に熱を伝導させることが可能になる。さらに、透過層5自体の熱容量を小さくでき高速応答性も維持できる。
【0046】
上述のように構成した赤外線放射素子において、両電極7に所定の電圧を印加して反射層6に通電すると、反射層6が発熱することにより放射層4の温度が上昇して赤外線が放射される。また、反射層6への通電を停止すると放射層4の温度が低下して赤外線の放射が停止する。反射層6への印加電圧を断続させる場合だけではなく、正弦波状に変化する電圧を印加した場合も電圧の増加期間に温度を上昇させ、電圧の減少期間に温度を下降させることが可能である。つまり、電極7への印加電圧に応じて赤外線の強度を変調することができる。
【0047】
ところで、透過層5と反射層6との境界面において赤外線が反射され、かつ放射層4が赤外線を透過させるから、目的波長の赤外線に対して透過層5で共鳴条件を満足させるには、当該赤外線に対する透過層5の光路長を当該赤外線の4分の1波長の奇数倍にしなければならない。当該赤外線の共鳴条件を満足するように透過層5の厚み寸法を設定しておけば、放射層4から放射される赤外線の強度を高めることができる。
【0048】
いま、透過層5の厚み寸法をLq〔m〕、透過層5の屈折率をnとすると、光路長はn・Lqであるから、目的とする赤外線の真空中での波長をλ〔m〕とすれば、共鳴条件は次式で表される。
n・Lq=(2m−1)λ/4 …(2)
ここに、mは正整数である。たとえば、目的とする赤外線の波長が4μmであって、透過層5の屈折率を3.5とし、m=1に設定すれば、透過層5の厚み寸法Lqは0.286〔μm〕になる。本実施形態では透過層5の材料をシリコンとし、ノンドープのシリコンをスパッタ法により所定の位置に所定の厚み(0.286μm)で形成した。
【0049】
ところで、反射層6に電圧を印加して発熱させると、熱伝導により熱絶縁層2の温度が上昇する。つまり、反射層6の温度上昇時には反射層6の背面に放射された赤外線により熱絶縁層2が加熱されるから、熱絶縁層2の温度が上昇して反射層6の温度変化に追従しなくなると、反射層6の温度変化を放射層4に反映させることができなくなる。そこで、熱絶縁層2の厚み寸法を以下のように設定している。
【0050】
いま、上述の構成の赤外線放射素子の電極7に正弦波状の電圧を印加するものとして、熱絶縁層2の熱伝導率をαp〔W/mK〕、熱絶縁層2の体積熱容量(比熱容量と密度との積)をCp〔J/m3K〕、赤外線発生層1が応答可能な周波数(印加電圧の周波数の2倍)をf〔Hz〕とすれば、熱絶縁層2の熱拡散長μは、次式で表される。
μ=(2αp/ωCp)1/2 …(3)
ただし、ω=2πfである。
【0051】
熱絶縁層2は、反射層6から交流的に変化する熱が与えられたときに、温度振幅が減衰して基板3に放熱されないように厚み寸法Lpを設定する必要がある。すなわち、熱絶縁層2の厚み寸法Lpは少なくとも熱拡散長μよりも大きい値に設定する(Lp>μ)ことが望ましいが、大きくしすぎると熱絶縁層2への蓄熱により温度振幅比が減少するため、最適化が必要である。
【0052】
熱絶縁層2をポーラスシリコンにより形成するものとし、反射層6の応答可能な周波数f、熱絶縁層2の体積熱容量Cp、熱絶縁層2の熱伝導率αpを、それぞれf=10〔kHz〕、αp=1.1〔W/mK〕、Cp=1.05×106〔J/m3K〕として、(3)式に代入すると、μ=5.8×10−6〔m〕になる。したがって、熱絶縁層2の厚み寸法Lpを10〔μm〕に設定すれば、10〔kHz〕以上の正弦波状の電圧に応答可能になる。このように、(3)式を用いることで、反射層6の昇温を阻害しないように熱絶縁層2の厚み寸法Lpを設定することができる。
【0053】
本実施形態の構成では、電極7への電圧印加により反射層6に通電されると、図1にE1で示しているように、反射層6から透過層5を通して放射層4に伝熱されることにより放射層4が加熱されて放射層4から前方(図1の上方)に赤外線が放射される。また、放射層4の背面側に反射層6が設けられるとともに、透過層5の厚み寸法Lqが共鳴条件を満たすように設定されているから、放射層4から背面側に放射された赤外線は、透過層5において共鳴する。放射層4は赤外線透過性を有しているから、透過層5から放射層4に向かう向きに放射された赤外線は、図1にE2で示しているように、放射層4を透過して放射層4の前方に放射される。
【0054】
つまり、赤外線放射素子からは、放射層4から前方に放射される赤外線E1と、透過層5から放射層4を通過して放射層4の前方に放射される赤外線E2とが併せて放射され、結果的に投入電力に対する赤外線の放射効率を高めることができる。
【0055】
以下では、図1に示す構造の赤外線放射素子を製造するプロセスを簡単に説明する。まず、図2(a)に示すように、比抵抗が80〜120Ωcm程度のp型のシリコン基板11に酸化処理(パイロ酸化)を行うことにより、シリコン酸化膜からなる矩形状の開口領域を有した陽極酸化マスク12を形成する。次に、図2(b)のように、シリコン基板11の裏面のシリコン酸化膜を除去した後、バックコンタクト用のアルミ電極13をスパッタリングにより形成する。
【0056】
さらに、図2(c)に示すように、陽極酸化マスク12の開口領域に陽極酸化処理を施しポーラスシリコンからなる熱絶縁層2を形成する。陽極酸化処理では、フッ化水素が30%となるようにフッ化水素水溶液とエタノールとを混合した電解液を用い、シリコン基板11において陽極酸化を行う表面のみを電解液に接触させる。
【0057】
その後、シリコン基板11の厚み方向の各面のうち陽極酸化マスク12を形成しているほうの一面に図示しない白金電極を配置するとともに、厚み方向の他面に通電可能な治具にセットして、所定の電流密度の電流を所定時間だけ流して陽極酸化を行う。
【0058】
電流密度や電流を流す時間は、熱絶縁層2としての目的の多孔度や厚み寸法に応じて調節される。たとえば、多孔度が70%程度の熱絶縁層2を形成するには、電流密度を100〔mA/cm2〕に設定する。
【0059】
熱絶縁層2を形成した後には、図2(d)のように、陽極酸化マスク12に囲まれた開口領域に反射層6を成膜する。反射層6の中央部は開口領域内に形成され、反射層6の端部は開口領域の周部において陽極酸化マスク12の上に形成される。
【0060】
反射層6を形成した後には、適宜の過程において、図2(e)に示すように、反射層6の両端部にそれぞれ電極7を形成する。電極7の形成には、たとえば、メタルマスクを利用した蒸着法を採用することができる。
【0061】
その後、図2(f)(g)のように、反射層6の上に透過層5および放射層4を順に成膜する。透過層5および放射層4の成膜には、通常のスパッタリングや反応性スパッタ法を採用する。たとえば、放射層4をTaNで形成する場合には、反応性スパッタ法を採用し、Taターゲットを用いるとともに、ArガスとN2ガスの混合雰囲気でTaNを成膜する。
【0062】
反応性スパッタ法により放射層4を成膜すれば、投入パワーやN2ガスの分圧によりTaNの組成を制御することが可能であるから、放射層4の比抵抗を制御することが可能になる。すなわち、放射層4のシート抵抗値を成膜条件により所望値に調整することができる。放射層4の厚み寸法は、たとえば40〔nm〕とし、シート抵抗は、たとえば駆動時の最高到達温度で377〔Ωsq〕とする。
【0063】
いま、キルヒホッフの法則より熱平衡状態であるときに、吸収率と放射率とは等しいことが知られているから、放射層4の波長λにおける吸収率は放射率と等しくなる。また、K.C.Liddiardらの文献(Infrared Phys.Vol.34 No.4,pp379,1993)で、赤外線検出素子の吸収率に関し、4分の1波長の共鳴による吸収率の研究が報告されている。これらのことから、本実施形態において、波長λの赤外線の放射率α(λ)は、放射層4のシート抵抗をRs、反射層6のシート抵抗をRr、透過層5の屈折率をnとすると、次式で表される。
α(λ)=(4/Dn2)[{fs(fr+1)2/n2+fr}sin2θ
+(fr+fs)cos2θ] …(4)
ただし、
D={(fr+1)(fs+1)/n2+1}sin2θ
+{(fr+fs+2)/n2}cos2θ
fr=120π/Rr
fs=120π/Rs
θ=2πnd/λ
である。
【0064】
このとき、赤外線の目的波長を4.0〔μm〕、反射層のシート抵抗を1〔Ωsq〕、放射層4のシート抵抗を377〔Ωsq〕とし、(2)式における共鳴条件においてm=1とした場合で、透過層5の材料の屈折率を3.5、厚みを0.286〔μm〕とした場合の見かけの放射率を図3に示す。図3に示すように、目的波長4.0〔μm〕での放射率は1となり、目的波長では放射層4を単独で用いた場合の最大放射率である0.5に比べて放射率が大幅に増大する。
【0065】
上述の構成例では、反射層6に通電して発熱させているが、放射層4あるいは透過層5に通電する構成を採用することも可能である。放射層4に通電する構成は、透過層5や反射層6の加熱に使われるエネルギーを低減することができる点で望ましい。すなわち、放射層4に通電して発熱させる場合には、透過層5や発熱層6から放射層4への熱伝導に伴うエネルギーの損失を抑えることが可能になり、熱的なエネルギー効率では有利になる。以下では、図5に示すように、放射層4に電極7を設け、放射層4に通電する場合の効果について説明する。
【0066】
放射層4に印加する駆動電圧で赤外線の放射強度を制御する場合に、放射層4に投入する電力が同じであれば、放射層4のシート抵抗が小さいほど駆動電圧を低減することができる。駆動電圧が低ければ、後述するように昇圧による損失を低減できるとともに、赤外線放射素子内の電界強度が小さくなって破損の可能性を低減できるから、シート抵抗は小さいほうが望ましい。ここに、(4)式より、赤外線放射素子として必要な目的波長における見かけの放射率を0.6以上とすると、シート抵抗の範囲は約100〜2000Ωsqであることが望ましい。
【0067】
さらに、放射層4は、TaNを用いた場合、温度上昇に伴ってシート抵抗が低下する負の抵抗温度係数を持っている。したがって、駆動電圧が同じであっても温度上昇に伴ってシート抵抗が低下して放射層4を流れる電流が増加する。すなわち、温度上昇に伴って投入電力が増加し、到達最高温度を高くすることができる。
【0068】
ちなみに、放射層4にTaNを用いて抵抗温度係数を−0.001〔1/℃〕に設定し、駆動時の最高到達温度を500〔℃〕として、その温度でのシート抵抗を377〔Ωsq〕とすれば、室温でのシート抵抗は754〔Ωsq〕になる。
【0069】
上述のように放射層4に負の抵抗温度係数を持たせることで、放射層4に印加する電圧を得るために電源電圧を昇圧回路により昇圧している場合に、到達最高温度を高めながらも昇圧回路の昇圧比の増加を抑制することができることになり、昇圧回路での電力損失を抑制できる。
【0070】
さらに、放射層4に通電する場合には、室温でのシート抵抗を変更せずに、図6に示すように、放射層4の形状を変えることによって投入電力に対する駆動電圧を低減することが可能になる。
【0071】
いま、図6(a)のように、平面形状が正方形状である放射層4を基本形状とする。この基本形状に対して、図6(b)のように、両電極7を結ぶ方向における赤外線発生層1の幅寸法を基本形状よりも小さくすれば赤外線発生層1の抵抗値を低減することができる。ここに、シート抵抗は変更しないものとする。この構成では、発熱状態と相関のある赤外線発生層1の単位面積当たりの投入電力を同じにしながらも、印加電圧を低減することができる。
【0072】
また、図6(c)のように、3個の電極7を設けて中央の電極7と両端の電極7との間に電圧を印加するようにしてもよい。この構成では、図6(b)に示した赤外線発生層1を並列に接続したことになり、図6(b)の構成と同じシート抵抗で図6(b)の構成よりもさらに抵抗値を低減させることができる。つまり、印加電圧を低減し、昇圧回路の昇圧比の増加を抑制して電力損失を抑制することができる。しかも、図6(c)の形状では、赤外線を放射する領域の形状が正方形状であって、発光パターンが正方形状になるから光学的な取り扱いが容易である。
【0073】
以上説明したように、本実施形態は、赤外線発生層1を構成する放射層4と透過層5と反射層6とのいずれかに通電することにより放射層4の温度を上昇させて赤外線を放射させる構成を採用しており、放射層4の背方に放射された赤外線を反射層6で反射させて前方に放射させるとともに、透過層5で共鳴条件を成立させて共鳴により振幅を大きくしているから、放射層4を単独で用いる場合よりも赤外線の放射効率を大幅に高めることができる。しかも、赤外線発生層1を支持する熱絶縁層2の背面を基板3に接触させ、熱絶縁層2を比較的大きい厚み寸法に設計することで、熱絶縁層2による蓄熱を防止して赤外線発生層1の温度変化に対する追従性を確保しているから、高速な応答が可能になる。
【0074】
(実施形態2)
実施形態1では、熱絶縁層2を基板3の一表面に形成した例を示したが、本実施形態では、熱絶縁層2の背面に気体が接触する構成を採用している。具体的には、図7(a)のように熱絶縁層2と基板3との間に気体層8を形成するか、図7(b)のように基板3において熱絶縁層2の背面側となる部位に表裏に貫通した開口9を形成する。
【0075】
図7(a)の構造は、ポーラスシリコンからなる熱絶縁層2を陽極酸化により形成した後に、熱絶縁層2の背面側に陽極酸化により気体層8を形成したものである。熱絶縁層2と気体層8とは陽極酸化の際に電流密度などの条件を変えることにより形成される。たとえば、熱絶縁層2を形成する際には多孔質化の条件で電流密度を比較的小さくし、気体層8を形成する際には電解研磨の条件となるように電流密度を大きく設定する。熱絶縁層2を形成した後には、熱絶縁層2が多孔質化されていることによって基板1よりも高抵抗であるから、電解研磨の条件において熱絶縁層2を残したままで気体層8を形成することができる。
【0076】
また、図7(b)の構造を形成するには、基板1の背面からKOHのようなアルカリ液を用いた異方性エッチングにより堀込みを形成し、熱絶縁層2までの数μmを残して異方性エッチングを終了した後、反応性イオンエッチングを行って開口9を熱絶縁層2まで開通させる。
【0077】
ところで、実施形態1では、熱絶縁層2の厚み寸法を(3)式で求められる熱拡散長μよりも大きく設定しているが、本実施形態では、熱絶縁層2の厚み寸法を(3)式で求められる熱拡散長μよりも小さく設定している。
【0078】
すなわち、実施形態1では、反射層6への通電による温度変化が基板3に到達しないように熱絶縁層2の厚み寸法を熱拡散長μよりも大きく設定しているのに対して、本実施形態では、反射層6から熱絶縁層2に伝導された熱が熱絶縁層2の背面において気体に接触するように、熱絶縁層2の厚み寸法を熱拡散長μよりも小さく設定している。
【0079】
いま、実施形態1と同条件で考え、熱絶縁層2をポーラスシリコンで形成し、赤外線発生層1に正弦波状の電圧を印加するものとして、赤外線発生層1の熱的な応答周波数f、熱絶縁層2の体積熱容量Cp、熱絶縁層2の熱伝導率αpを、それぞれf=10〔kHz〕、αp=1.1〔W/mK〕、Cp=1.05×106〔J/m3K〕とすると、(3)式からμ=5.8〔μm〕になる。本実施形態では、熱絶縁層2の厚み寸法Lpを熱拡散長μ(=5.8〔μm〕)よりも小さくすることが必要である(Lp<μ)。
【0080】
ここで、赤外線発生層1の発熱時における熱絶縁層2の厚み方向(反射層6からの深さ方向)における温度分布を考察する。実施形態1のように熱絶縁層2の背面側に基板3を設けた構成では、図8に曲線イで示すように、熱絶縁層2における反射層6に近い部位(図8の左端部)と基板3に近い部位(図8の右端部)との温度差が大きくなる。一方、本実施形態の構成では、熱絶縁層2の裏面が基板3よりも熱伝導率の小さい気体に接触しているから、図8に曲線ロで示すように、深さ方向において大きな温度差が生じないように温度上昇することになる。
【0081】
すなわち、熱絶縁層2の背面が気体に接触する構成では、熱絶縁層2の厚み寸法を上述のように小さく設定することができるから、赤外線発生層1の昇温が阻害されず、赤外線発生層1と熱絶縁層2との全体としての体積熱容量を小さくすることができる。そのため、赤外線発生層1(反射層4、透過層5、放射層6のいずれか)は印加された電圧の変化に高速に応答し、印加電圧の変調周波数を高くすることが可能になる。
【0082】
また、熱絶縁層2をポーラスシリコンにより形成することにより、体積熱容量を低減して熱応答時間を短くすることで、赤外線発生層1の昇温効率をより高めることになる。しかも、本実施形態では、熱絶縁層2の裏面が気体に接触しており、一般に気体は熱絶縁層2よりも熱伝導率が小さいから、熱絶縁層2の背面を断熱することによって、熱絶縁層2から赤外線発生層1の周辺への熱伝導の経路を減少させ赤外線発生層1の周辺部への放熱を抑制することになる。
【0083】
ところで、図8(a)の構成のように気体層8を形成している場合には、気体層8の厚み寸法Lgを、以下の条件で設定するのが望ましい。すなわち、赤外線発生層1への印加電圧を正弦波状とし、印加電圧の周波数をf〔Hz〕、気体層8の熱伝導率をαg〔W/mK〕、気体層8の体積熱容量をCg〔J/m3K〕とするとき、気体層8の厚み寸法Lgを次式で表される範囲に設定する。
0.05Lg′<Lg<3Lg′ …(6)
ただし、Lg′=(2αg/ωCg)1/2、ω=2πfである。
【0084】
たとえば、赤外線発生層1への印加電圧を周波数f=10〔kHz〕の正弦波とし、気体層8の熱伝導率αg、体積熱容量Cgを、それぞれαg=0.0254〔W/mK〕、Cg=1.21×103〔J/m3K〕とすれば、(6)式から1.3〔μm〕<Lg<77.5〔μm〕になるから、気体層8の厚み寸法Lgを、たとえば25〔μm〕に設定することにより、(6)式の条件を満足することができる。望ましくは、この範囲内で温度振幅比が最大となる厚みに設定する。
【0085】
図8(a)に示す構成の気体層8は、基板3の温度を一定とすれば、熱絶縁層2の温度と厚み寸法Lgとに依存して断熱性と放熱性とのいずれかの機能を持つから、気体層8の厚み寸法Lgを(6)式の条件範囲において適宜に調節することにより、赤外線発生層1への印加電圧が上昇する期間には気体層8に断熱性を持たせ、赤外線発生層1への印加電圧が下降する期間には気体層8に放熱性を持たせることが可能になる。
【0086】
すなわち、気体層8の断熱性と放熱性とを利用するタイミングを、赤外線発生層1への印加電圧の増減のタイミングにほぼ一致させることが可能になり、赤外線発生層1への印加電圧が高周波で変調されている場合でも、赤外線発生層1の温度を電圧の周波数に略同期するように変化させることが可能になる。つまり、気体層8を設けていない場合よりも応答性を高めることが可能になる。他の構成および動作は実施形態1と同様である。
【符号の説明】
【0087】
1 赤外線発生層
2 熱絶縁層
3 基板
4 放射層
5 透過層
6 反射層
7 電極
8 気体層

【特許請求の範囲】
【請求項1】
基板の一表面に形成され通電に伴って発生した熱により赤外線を放射する赤外線発生層と、一面に赤外線発生層が積層されることにより赤外線発生層を支持するように基板の一表面に形成された熱絶縁層とを備え、赤外線発生層は、温度上昇により赤外線を放射する放射層と、目的波長の赤外線に対して透明である材料により形成され放射層が一面に積層された透過層と、透過層の他面と熱絶縁層との間に形成され赤外線を反射する反射層とからなり、放射層と透過層と反射層とのいずれかに通電することにより熱を発生させるとともに、放熱層の温度を上昇させて赤外線を放射させ、透過層は、目的波長の赤外線に対する光路長が当該赤外線の4分の1波長の奇数倍となる厚み寸法に設定されており、放射層は、赤外線を通過させる機能を有することを特徴とする赤外線放射素子。
【請求項2】
前記熱絶縁層の他面が気体に接触していることを特徴とする請求項1記載の赤外線放射素子。
【請求項3】
前記放射層と前記透過層と前記反射層との各シート抵抗は反射層がもっとも小さく、反射層に通電されることを特徴とする請求項1又は2記載の赤外線放射素子。
【請求項4】
前記透過層の材料は、シリコンとゲルマニウムとから選択されることを特徴とする請求項1〜3のいずれか1項に記載の赤外線放射素子。
【請求項5】
前記放射層の材料は、TaNとTiNとから選択されることを特徴とする請求項1〜4のいずれか1項に記載の赤外線放射素子。
【請求項6】
前記熱絶縁層は、ポーラス半導体であることを特徴とする請求項1〜5のいずれか1項に記載の赤外線放射素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−236934(P2010−236934A)
【公開日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2009−83240(P2009−83240)
【出願日】平成21年3月30日(2009.3.30)
【出願人】(000005832)パナソニック電工株式会社 (17,916)
【Fターム(参考)】