説明

赤外線検出装置およびその製造方法

【課題】赤外線レンズの位置決め精度が高く、低コスト化が可能な赤外線検出装置およびその製造方法を提供する。
【解決手段】赤外線レンズ3は、レンズ部3aと当該レンズ部3aの周部から外方に延設されパッケージ2における窓部2aの周部に固着されるフランジ部3bとを有する半導体レンズにより構成されている。赤外線レンズ3は、レンズ部3aおよびフランジ部3bの各形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に半導体ウェハとの接触がオーミック接触となるように形成した後に、半導体ウェハの構成元素の酸化物をエッチング除去する溶液からなる電解液中で半導体ウェハの他表面側を陽極酸化することで除去部位となる多孔質部を形成してから、当該多孔質部を除去することにより製造された半導体レンズを半導体ウェハから分割することにより形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、赤外線検出装置およびその製造方法に関するものである。
【背景技術】
【0002】
従来から、図30に示すように、赤外線検出素子101と、当該赤外線検出素子101を収納するパッケージであって赤外線検出素子101の受光面の前方に窓部102aが形成された金属製のパッケージ102と、窓部102aを覆うようにパッケージ102に固着され赤外線検出素子101の受光面へ赤外線を集光する赤外線レンズ103とを備えた赤外線検出装置が提案されている(例えば、特許文献1参照)。
【0003】
ここにおいて、図30に示した構成の赤外線検出装置における赤外線レンズ103は、シリコンからなる母材により平凸型のレンズ部103aと当該レンズ部103aの周部から外方に延設されパッケージ102における窓部102aの周部に固着されるフランジ部103bとが形成され、レンズ部103aにおける光入射面側の凸曲面からなるレンズ面に赤外線反射防止膜103eが形成されるとともに、レンズ部103aにおける光出射面側の平面からなる非レンズ面に光学フィルタ103fが形成されており、フランジ部103bの外周面と光学フィルタ103fの周部表面とに跨って金属層103dが形成されている。
【特許文献1】特開平9−311072号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、上記特許文献1に開示された赤外線検出装置では、赤外線レンズ103を当該赤外線レンズ103のフランジ部103bを利用してパッケージ102に固着することができるので、赤外線レンズ103の光軸方向における赤外線レンズ103と赤外線検出素子101との距離の精度を高めることができるという利点があり、また、金属層103dとパッケージ102とを電気的に接続することで電磁シールド効果を高めることができるという利点がある。
【0005】
しかしながら、この種の赤外線検出装置に用いられる赤外線レンズ103は、シリコン基板からなる母材を研磨して製造されているのが一般的であり、個々の赤外線レンズ103ごとに、シリコン基板を研磨してレンズ部103aを形成する工程とフランジ部103bを形成する工程とを各別に行う必要があるので、赤外線レンズ103の製造に手間がかかるとともに、コストが高くなり、赤外線検出装置のコストアップの大きな要因となっていた。また、上述の金属層103dを備えた赤外線レンズ103の形成にあたっては、個々の赤外線レンズ103ごとに金属層103dを蒸着する必要があり、金属層103dの位置精度の確保が難しく、コストも高いという問題もあった。
【0006】
本発明は上記事由に鑑みて為されたものであり、その目的は、赤外線レンズの位置決め精度が高く、低コスト化が可能な赤外線検出装置およびその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
請求項1の発明は、赤外線検出素子と、当該赤外線検出素子を収納するパッケージであって赤外線検出素子の受光面の前方に窓部が形成されたパッケージと、窓部を覆うようにパッケージに固着され赤外線検出素子の受光面へ赤外線を集光する赤外線レンズとを備え、赤外線レンズは、レンズ部と当該レンズ部の周部から外方に延設されパッケージにおける窓部の周部に固着されるフランジ部とを有する半導体レンズからなり、レンズ部およびフランジ部の各形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に半導体ウェハとの接触がオーミック接触となるように形成した後に半導体ウェハの構成元素の酸化物をエッチング除去する溶液からなる電解液中で半導体ウェハの他表面側を陽極酸化することで除去部位となる多孔質部を形成してから当該多孔質部を除去することにより製造された半導体レンズを半導体ウェハから分割することにより形成されてなることを特徴とする。
【0008】
この発明によれば、赤外線レンズが、レンズ部およびフランジ部の各形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に半導体ウェハとの接触がオーミック接触となるように形成した後に半導体ウェハの構成元素の酸化物をエッチング除去する溶液からなる電解液中で半導体ウェハの他表面側を陽極酸化することで除去部位となる多孔質部を形成してから当該多孔質部を除去することにより製造された半導体レンズを半導体ウェハから分割することにより形成されているので、多数の赤外線レンズが1枚の半導体ウェハに形成されるだけでなく、赤外線レンズにおけるレンズ部とフランジ部とが半導体ウェハにおいて陽極酸化により形成された多孔質部を除去することにより同時に形成されるから、赤外線レンズの低コスト化を図れ、結果的に、赤外線レンズの位置決め精度を高めつつ低コスト化を図れる。
【0009】
請求項2の発明は、請求項1の発明において、前記パッケージが金属製であり、前記赤外線レンズは、前記パッケージと電気的に接続されてなることを特徴とする。
【0010】
この発明によれば、電磁シールド効果を高めることができ、前記赤外線検出素子への電磁ノイズの影響を防止できる。
【0011】
請求項3の発明は、請求項1または請求項2の発明において、前記赤外線レンズは、前記フランジ部に、前記パッケージにおける前記窓部の内周面および周部に位置決めされる段差部が前記半導体ウェハから分割する前に形成されてなることを特徴とする。
【0012】
この発明によれば、前記赤外線レンズの前記フランジ部に、前記パッケージにおける前記窓部の内周面および周部に位置決めされる段差部が前記半導体ウェハから分割する前に形成されているので、前記半導体ウェハを動かさずに段差部を形成するダイシングと前記赤外線レンズを分割するためのダイシングとの2回のダイシングを行うことにより段差部を位置精度良く容易に形成することができ、前記赤外線レンズの光軸方向における前記赤外線レンズと前記赤外線検出素子との距離精度を高めることができるとともに、前記赤外線レンズの光軸と前記赤外線検出素子の受光面の光軸との合わせ精度を高めることができる。
【0013】
請求項4の発明は、請求項1ないし請求項3の発明において、前記パッケージは、前記赤外線レンズの前記フランジ部を位置決めする段差部が形成されてなることを特徴とする。
【0014】
この発明によれば、前記パッケージに前記赤外線レンズの前記フランジ部を位置決めする段差部が形成されているので、前記赤外線レンズの光軸方向における前記赤外線レンズと前記赤外線検出素子との距離精度を高めることができるとともに、前記赤外線レンズの光軸と前記赤外線検出素子の受光面の光軸との合わせ精度を高めることができる。また、請求項3の発明のように前記赤外線レンズの前記フランジ部に段差部を形成する場合に比べて前記赤外線レンズの製造プロセスを簡略化でき、前記赤外線レンズの低コスト化を図れる。
【0015】
請求項5の発明は、請求項1または請求項2の発明において、前記赤外線レンズにおける前記レンズ部の凸曲面と前記フランジ部の平面との境界により前記窓部の光軸方向に直交する面内での前記レンズ部の位置が規定されてなることを特徴とする。
【0016】
この発明によれば、前記赤外線レンズにおける前記レンズ部の凸曲面と前記フランジ部の平面との境界により前記窓部の光軸方向に直交する面内での前記レンズ部の位置が規定されるので、前記フランジ部や前記パッケージに段差部を形成することなく、前記赤外線レンズの光軸方向における前記赤外線レンズと前記赤外線検出素子との距離精度を高めることができるとともに、前記赤外線レンズの光軸と前記赤外線検出素子の受光面の光軸との合わせ精度を高めることができ、請求項3,4の発明に比べて製造工程の簡略化を図れ、低コスト化を図れる。
【0017】
請求項6の発明は、請求項1ないし請求項5の発明において、前記赤外線レンズは、前記パッケージの内側から前記パッケージに固着されてなることを特徴とする。
【0018】
この発明によれば、前記赤外線レンズが前記パッケージの外側から前記パッケージに固着されている場合に比べて、外観が良くなる。
【0019】
請求項7の発明は、請求項1ないし請求項5の発明において、前記赤外線レンズは、前記パッケージの外側から前記パッケージに固着されてなることを特徴とする。
【0020】
この発明によれば、前記赤外線レンズが前記パッケージの内側から前記パッケージに固着されるものに比べて、前記赤外線レンズを前記パッケージに固着する接合工程が容易になるとともに、当該接合工程の歩留まり向上による低コスト化を図れる。
【0021】
請求項8の発明は、請求項1ないし請求項7の発明において、前記赤外線レンズは、前記フランジ部を通して前記赤外線検出素子の前記受光面へ入射しようとする赤外線を阻止する赤外線阻止部を有し、当該赤外線阻止部が前記陽極により構成されてなることを特徴とする。
【0022】
この発明によれば、前記赤外線レンズが、前記フランジ部を通して前記赤外線検出素子の前記受光面へ入射しようとする赤外線を阻止する赤外線阻止部を有しているので、検知エリア外からの不要な赤外線の前記赤外線検出素子への入射を防止することができ、感度が高くなり、しかも、当該赤外線阻止部が前記陽極により構成されているので、赤外線阻止部を別途に形成する場合に比べて、製造工程の簡略化を図れるとともに、赤外線阻止部の位置精度が高くなり高感度化を図れる。
【0023】
請求項9の発明は、請求項1ないし請求項8の発明において、前記赤外線レンズの前方に配置され前記赤外線検出素子の検知エリアを調整する検知エリア調整用光学部材を備え、検知エリア調整用光学部材は、前記赤外線レンズの光軸に交差する方向から入射する赤外線を前記赤外線レンズに向かって変向させる複数のプリズム小体の集合体からなることを特徴とする。
【0024】
この発明によれば、前記赤外線レンズの前方に配置され前記赤外線検出素子の検知エリアを調整する検知エリア調整用光学部材を備えているので、検知エリア調整用光学部材により前記赤外線検出素子の検知エリアを調整することができ、また、検知エリア調整用光学部材が、前記赤外線レンズの光軸に交差する方向から入射する赤外線を前記赤外線レンズに向かって変向させる複数のプリズム小体の集合体により構成されているので、検知エリア調整用光学部材を1つのプリズムにより構成する場合に比べて、検知エリア調整用光学部材の薄型化を図れ、検知エリア調整用光学部材での赤外線の透過率を高めることができ高感度化を図れる。
【0025】
請求項10の発明は、請求項9の発明において、前記検知エリア調整用光学部材は、前記各プリズム小体が1つの面に沿って並設され、前記各プリズム小体の光入射面が同一面上に揃うように形成されてなることを特徴とする。
【0026】
この発明によれば、前記検知エリア調整用光学部材における前記赤外線レンズ側とは反対側に凹凸が形成されていないので、前記検知エリア調整用光学部材に塵や埃などの異物が付着しにくくなる。
【0027】
請求項11の発明は、請求項9の発明において、前記検知エリア調整用光学部材は、前記各プリズム小体が1つの面に沿って並設され、前記各プリズム小体の光出射面が同一面上に揃うように形成されてなることを特徴とする。
【0028】
この発明によれば、請求項10の発明に比べて、視野角を大きくすることが可能となる。
【0029】
請求項12の発明は、請求項1ないし請求項11のいずれか1項に記載の赤外線検出装置の製造方法であって、赤外線レンズの形成にあたっては、所望のレンズ部および所望のフランジ部の形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に形成する陽極形成工程と、電解液中で半導体ウェハの他表面側に対向配置した陰極と陽極との間に通電して半導体ウェハの前記他表面側に除去部位となる多孔質部を形成する陽極酸化工程と、多孔質部を除去することにより半導体レンズを形成する多孔質部除去工程と、半導体レンズを半導体ウェハから分割するダイシング工程とを有し、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いることを特徴とする。
【0030】
この発明によれば、陽極形成工程にて形成する陽極と半導体ウェハとの接触パターンをレンズ部およびフランジ部それぞれの所望の形状に応じて決定することにより、半導体ウェハの前記他表面側の多孔質部の形成に寄与するホールの供給量の面内分布が決まり、陽極酸化工程において半導体ウェハに流れる電流の電流密度の面内分布が決まるから、陽極酸化工程にて形成する多孔質部の厚みの面内分布を制御することができて厚みが連続的に変化した部分と厚みが一様な部分とを有する多孔質部を形成することが可能であり、しかも、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いるので、所望の厚さ分布の多孔質部を1回の陽極酸化工程で容易に形成することができ、当該多孔質部を多孔質部除去工程にて除去することで所望形状のレンズ部およびフランジ部を有する半導体レンズが半導体ウェハに多数形成されるから、レンズ部およびフランジ部を有する半導体レンズからなる赤外線レンズを従来に比べて低コストで形成することができ、赤外線レンズの位置決め精度が高く、低コストの赤外線検出装置を提供することが可能となる。
【0031】
請求項13の発明は、請求項3記載の赤外線検出装置の製造方法であって、赤外線レンズの形成にあたっては、所望のレンズ部および所望のフランジ部の形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に形成する陽極形成工程と、電解液中で半導体ウェハの他表面側に対向配置した陰極と陽極との間に通電して半導体ウェハの前記他表面側に除去部位となる多孔質部を形成する陽極酸化工程と、多孔質部を除去することにより半導体レンズを形成する多孔質部除去工程と、多孔質部除去工程の後で隣り合う半導体レンズのフランジ部に跨る切り込み溝を形成することにより各フランジ部に段差部を形成する段差部形成工程と、段差部形成工程の後で半導体レンズを半導体ウェハから分割するダイシング工程とを有し、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いることを特徴とする。
【0032】
この発明によれば、陽極形成工程にて形成する陽極と半導体ウェハとの接触パターンをレンズ部およびフランジ部それぞれの所望の形状に応じて決定することにより、半導体ウェハの前記他表面側の多孔質部の形成に寄与するホールの供給量の面内分布が決まり、陽極酸化工程において半導体ウェハに流れる電流の電流密度の面内分布が決まるから、陽極酸化工程にて形成する多孔質部の厚みの面内分布を制御することができて厚みが連続的に変化した部分と厚みが一様な部分とを有する多孔質部を形成することが可能であり、しかも、多孔質部除去工程とダイシング工程と間の段差部形成工程において、隣り合う半導体レンズのフランジ部に跨る切り込み溝を形成することにより各フランジ部に段差部を形成しているので、段差部を位置精度良く且つ容易に形成することができ、また、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いるので、所望の厚さ分布の多孔質部を1回の陽極酸化工程で容易に形成することができ、当該多孔質部を多孔質部除去工程にて除去することで所望形状のレンズ部およびフランジ部を有する半導体レンズが半導体ウェハに多数形成されるから、レンズ部およびフランジ部を有する半導体レンズからなる赤外線レンズを従来に比べて低コストで形成することができ、赤外線レンズの位置決め精度が高く、低コストの赤外線検出装置を提供することが可能となる。
【発明の効果】
【0033】
請求項1の発明では、従来に比べて赤外線レンズの低コスト化を図れ、赤外線レンズの位置決め精度の向上および低コスト化を図れるという効果がある。
【0034】
請求項12,13の発明では、レンズ部およびフランジ部を有する半導体レンズからなる赤外線レンズを従来に比べて低コストで形成することができ、赤外線レンズの位置決め精度が高く、低コストの赤外線検出装置を提供することが可能となるという効果がある。
【発明を実施するための最良の形態】
【0035】
(実施形態1)
以下、本実施形態の赤外線検出装置について図1および図2を参照しながら説明する。
【0036】
本実施形態の赤外線検出装置は、焦電素子からなる赤外線検出素子1および赤外線検出素子1の出力を信号処理する信号処理回路が設けられた回路ブロック6と、回路ブロック6を収納するキャンパッケージからなるパッケージ2とを備えている。
【0037】
パッケージ2は、回路ブロック6が絶縁材料からなるスペーサ7を介して実装される金属製のステム21と、回路ブロック6を覆うようにステム21に固着される金属製のキャップ22とを備え、回路ブロック6の適宜部位と電気的に接続される複数本(ここでは、3本)の端子ピン25がステム21を貫通する形で設けられている。ここにおいて、ステム21は、円盤状に形成され、キャップ22は、後面が開放された有底円筒状の形状に形成されており、後面がステム21により閉塞されている。なお、スペーサ7と回路ブロック6およびステム21とは接着剤により固着されている。
【0038】
また、キャップ22において赤外線検出素子1の前方に位置する前壁には、矩形状(本実施形態では、正方形状)の窓部2aが形成されており、赤外線検出素子1の受光面へ赤外線を集光する光学部材として、赤外線レンズ3が窓部2aを覆うようにキャップ22の内側から配設されている。
【0039】
ステム21は、上述の各端子ピン25それぞれが挿通される複数の端子用孔21bが厚み方向に貫設されており、各端子ピン25が端子用孔21bに挿通された形で封止部24により封着されている。
【0040】
上述のキャップ22およびステム21は鋼板により形成されており、ステム21の周部に形成されたフランジ部21cに対して、キャップ22の後端縁から外方に延設された外鍔部22cを溶接により封着してある。
【0041】
回路ブロック6は、上述の信号処理回路の構成要素であるIC63およびチップ状の電子部品64が互いに異なる面に実装されたプリント配線板(例えば、コンポジット銅張積層板など)からなる第1の回路基板62と、第1の回路基板62における電子部品64の実装面側に積層された樹脂層65と、ガラスエポキシなどからなる絶縁性基材の表面に金属材料(例えば、銅など)からなる金属層(以下、シールド層と称す)が形成され樹脂層65に積層されたシールド板66と、赤外線検出素子1が実装されるとともにシールド板66に積層されたプリント配線板(例えば、コンポジット銅張積層板)からなる第2の回路基板67とで構成されている。なお、シールド板66の代わりに、銅箔や金属板のみでシールド層を形成してもよい。
【0042】
第1の回路基板62は、図2における下面側にIC63がフリップチップ実装され、図2における上面側に複数の電子部品64が半田リフローにより実装されている。なお、本実施形態の赤外線検出装置は、人体から放射される赤外線を検出することで人の動きを検知する用途に用いるものであり、IC63は、赤外線検出素子1の所定周波数帯域(例えば、0.1〜10Hz程度)の出力を増幅する増幅回路(バンドパスアンプ)や当該増幅回路の後段のウインドウコンパレータなどが集積化されている。ここで、本実施形態における回路ブロック6では、上述のシールド板66が設けられているので、赤外線検出素子1と上記増幅回路との容量結合などに起因した発振現象の発生を防止することができる。ただし、上記増幅回路の増幅度が比較的小さく上記容量結合などに起因した発振現象が起こりにくい場合には、シールド板66を省略してもよい。
【0043】
第2の回路基板67には、赤外線検出素子1のセンシングエレメントと第2の回路基板67とを熱絶縁するための熱絶縁用孔67aが厚み方向に貫設されているので、赤外線検出素子1のセンシングエレメントとシールド板66との間に空気層が形成され、感度が高くなる。なお、第2の回路基板67に熱絶縁用孔67を貫設する代わりに、第2の回路基板67に、赤外線検出素子1のセンシングエレメントと第2の回路基板67との間に空気層が形成される形で赤外線検出素子1を支持する支持部を突設してもよい。
【0044】
回路ブロック6は、第1の回路基板62、樹脂層65、シールド板66、第2の回路基板67それぞれに、上述の端子ピン25が挿通されるスルーホール62b,65b,66b,67bが厚み方向に貫設されており、赤外線検出素子1と信号処理回路とが端子ピン25を介して電気的に接続されている。なお、第1の回路基板62、樹脂層65、シールド板66、第2の回路基板67を積層し、回路ブロック6の厚み方向に貫通する貫通孔を形成する1回の孔あけ加工でスルーホール62b,65b,66b,67bを形成するような部品内蔵基板工法を採用すれば、製造工程の簡略化を図れるとともに回路ブロック6内の電気的な接続が容易になる。
【0045】
上述の3本の端子ピン25は、1本が給電用の端子ピン25(25a)、他の1本が信号出力用の端子ピン25(25b)、残りの1本がグランド用の端子ピン25(25c)であり、シールド板66におけるシールド層はグランド用の端子ピン25cと電気的に接続されている。ここで、端子ピン25a,25bを封着する封止部24,24(24a,24b)は、絶縁性を有する封着用のガラスにより形成されており、端子ピン25cを封着する封止部24(24c)は、金属材料により形成されている。要するに、端子ピン25a,25bはステム21と電気的に絶縁されているのに対し、グランド用の端子ピン25cはステム21と同電位となっている。要するに、シールド板66の電位はグランド電位に設定されるが、シールド機能を果たすことが可能な特定の電位であれば、グランド電位以外の電位に設定してもよい。
【0046】
本実施形態の赤外線検出装置の製造にあたっては、赤外線検出素子1が搭載された回路ブロック6をステム21にスペーサ7を介して実装した後、赤外線レンズ3が窓部2aを閉塞する形で固着されたキャップ22の外鍔部22cとステム21のフランジ部21cとを溶接することにより、キャップ22とステム21とからなる金属製のパッケージ2内を封止すればよい。なお、本実施形態におけるパッケージ2は、いわゆるCANパッケージであり、外来ノイズに対するシールド効果を高めるとともに、気密性の向上による耐候性の向上を図れる。また、赤外線検出素子1のセンシングエレメントは、焦電型のセンシングエレメントに限らず、サーミスタ型のセンシングエレメント、サーモパイル型のセンシングエレメント、抵抗ボロメータ型のセンシングエレメントなどのように、温度変化を電気信号変化に変換できるものであればよい。
【0047】
ところで、上述の赤外線レンズ3は、赤外線検出素子1の受光面へ赤外線を集光するレンズ部3aと当該レンズ部3aの周部から外方に延設されキャップ22における窓部2aの周部に固着されるフランジ部3bとを有している。
【0048】
ここにおいて、赤外線レンズ3は、シリコンレンズからなる半導体レンズであり、レンズ部3aが、平凸型の非球面レンズの形状に形成されており、レンズ部3a以外の部位であるフランジ部3bの外周形状が矩形状(本実施形態では、正方形状)に形成されている。
【0049】
また、赤外線レンズ3は、窓部2aの内側に位置するレンズ部3a以外の部位であるフランジ部3bを通して赤外線検出素子1の受光面へ入射しようとする赤外線を阻止する赤外線阻止部3dが設けられている。ここで、赤外線阻止部3dは、金属材料(例えば、Al,Al−Siなど)からなる赤外線反射膜により構成してあるが、当該赤外線反射膜の材料は、AlやAl−Siなどに限らず、薄膜形成時に光沢があり凹凸を小さくできる材料であればよく、特に、赤外線の反射率が0.9よりも高いAu、Ag、Alなどの金属材料や、これらの金属材料を主成分とする材料を採用することが好ましい。また、赤外線阻止部3dを構成する赤外線反射膜としては、誘電体膜や、誘電体多層膜を採用してもよい。なお、赤外線阻止部3dは、赤外線を反射する赤外線反射膜に限らず、赤外線を散乱させる機能を有する膜により構成してもよい。
【0050】
また、赤外線阻止部3dは、上述のように赤外線を反射または散乱させる機能を有する膜に限らず、赤外線を吸収する機能を有する赤外線吸収層により構成してもよい。ここで、赤外線吸収層は、例えば、SiO層により構成すればよいが、赤外線吸収層の材料は、SiOに限らず、Si、SiON、セラミック(例えば、Al、AlN、SiCなど)などの非金属(絶縁性材料)や、NiCr、グラファイト、グラファイトライクカーボンなどの反射率の低い金属(導電性材料)や、金属酸化物(例えば、Ti、Mo、Ni、Alなどの金属酸化物)などを採用してもよく、赤外線吸収層として上述の絶縁性材料や金属を採用した場合には、赤外線吸収層の耐熱性が高くて信頼性が高い。なお、赤外線吸収層の材料として金属酸化物を採用する場合には、例えば、金属酸化物膜をスパッタ法やCVD法などにより成膜するようにしてもよいし、Ti、Mo、Ni、Alなどの金属材料からなる金属膜を成膜した後で当該金属膜の少なくとも一部(例えば、当該金属膜の表面側の部分)を酸化することにより金属酸化物膜を形成するようにしてもよい。
【0051】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3におけるレンズ部3a以外の部位であるフランジ部3bを通して赤外線検出素子1へ入射しようとする赤外線を赤外線阻止部3dにより阻止することが可能となり、レンズ部3aの形状などにより決まる検知エリア以外からの不要な赤外線の赤外線検出素子1への入射を防止することができ、高感度化を図れる。また、本実施形態の赤外線検出装置では、赤外線レンズ3をキャップ22に対して導電性の接合材料(例えば、銀ペースト、半田など)を用いて接合して電気的に接続することで外来ノイズなどに対する電磁シールド効果を高めることができ、赤外線検出素子1への電磁ノイズの影響を防止できる。
【0052】
また、本実施形態の赤外線検出装置では、キャップ22の窓部2aが矩形状に開口されるとともに、赤外線レンズ3のフランジ部3bに、キャップ22における窓部2aの内周面および周部に位置決めされる段差部3cが形成されており、赤外線レンズ3のフランジ部3bにおける段差部3cを上記接合材料からなる接合部58を介してキャップ22に固着してある。したがって、赤外線レンズ3と赤外線検出素子1との平行度を高めることができ、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることができる。また、本実施形態の赤外線検出装置では、赤外線レンズ3のレンズ部3aとして球面レンズよりも短焦点で薄型の非球面レンズを形成することができるから、赤外線検出装置全体の薄型化(小型化)を図れるという利点がある。
【0053】
以下、上述の赤外線レンズ3の形成方法について図3(a)〜(e)を参照しながら説明するが、具体的には、導電形がp形のシリコンウェハからなる半導体ウェハ30の一部を陽極酸化工程において多孔質化することにより形成した多孔質シリコンからなる多孔質部34(図3(d)参照)を除去してシリコンレンズからなる半導体レンズを赤外線レンズ3として製造する製造方法を説明する。なお、本実施形態では、半導体ウェハ30の抵抗率を80Ωcmに設定してあるが、この数値は特に限定するものではない。ただし、半導体ウェハ30の抵抗率は、好ましくは0.1〜1000Ωcm、より好ましくは数Ωcm〜数100Ωcmである。
【0054】
まず、図3(a)に示すシリコンウェハからなる半導体ウェハ30を洗浄する洗浄工程、半導体ウェハ30の一表面(図3(a)における下面)にマークを設けるマーキング工程を行ってから、半導体ウェハ30の上記一表面側に陽極酸化工程で利用する陽極32(図3(c)参照)の基礎となる所定膜厚(例えば、1μm)の金属膜(本実施形態では、Al膜)からなる導電性層31を形成する導電性層形成工程を行うことによって、図3(b)に示す構造を得る。ここにおいて、導電性層形成工程では、例えばスパッタ法によって半導体ウェハ30の上記一表面上に導電性層31を成膜した後、NガスおよびHガス雰囲気中で導電性層31のシンタ(熱処理)を行うことにより半導体ウェハ30との接触がオーミック接触をなす導電性層31を形成する。なお、導電性層31の成膜方法はスパッタ法に限らず、例えば蒸着法などの他の周知の薄膜形成方法を採用してもよい。また、導電性層31の材料もAlに限定するものではなく、半導体ウェハ30とオーミック接触が可能な材料であればよく、例えばAlを主成分とするAl−Siなどを採用してもよい。
【0055】
導電性層形成工程の後、導電性層31に円形状の開孔部33を設けるように導電性層31をパターニングするパターニング工程を行うことによって、図3(c)に示す構造を得る。ここにおいて、パターニング工程では、フォトリソグラフィ技術を利用して半導体ウェハ30の上記一表面側に上記開孔部33に対応する部位が開孔されたレジスト層(図示せず)を形成した後、レジスト層をマスクとして導電性層31の不要部分を例えばウェットエッチング技術あるいはドライエッチング技術によってエッチング除去して開孔部33を設けることにより導電性層31の残りの部分からなる陽極32を形成し、その後、上記レジスト層を除去する。なお、導電性層31がAl膜であれば、導電性層31の不要部分をウェットエッチング技術によりエッチング除去する場合には、例えば燐酸系エッチャントを用いればよく、導電性層31の不要部分をドライエッチング技術によりエッチング除去する場合には、例えば反応性イオンエッチング装置などを用いればよい。また、本実施形態では、上述の導電性層形成工程とパターニング工程とで、所望のレンズ形状(所望のレンズ部3aおよび所望のフランジ部3bの形状)に応じて半導体ウェハ30との接触パターンを設計した陽極32を半導体ウェハ30の上記一表面側に形成する陽極形成工程を構成している。
【0056】
パターニング工程の後、陽極酸化用の電解液中で半導体ウェハ30の他表面側(図3(a)の上面側)に対向配置される陰極と上記陽極32との間に通電して半導体ウェハ30の上記他表面側に除去部位となる多孔質半導体(本実施形態では、多孔質シリコン)からなる多孔質部34を形成する陽極酸化工程(陽極酸化処理)を行うことによって、図3(d)に示す構造を得る。なお、本実施形態では、半導体ウェハ30として、導電形がp形のものを用いているので、陽極酸化工程において半導体ウェハ30の上記他表面側に光を照射する必要はないが、半導体ウェハ30として導電形がn形のものを用いる場合には光を照射する必要がある。また、電解液としては、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合溶液を用いているが、フッ化水素水溶液の濃度やフッ化水素水溶液とエタノールとの混合比は特に限定するものではない。また、フッ化水素水溶液と混合する液体もエタノールに限らず、メタノール、プロパノール、イソプロパノール(IPA)などのアルコールなど、陽極酸化反応で発生した気泡を除去できる液体であれば、特に限定するものではない。
【0057】
ところで、p形のシリコンウェハからなる半導体ウェハ30の一部を陽極酸化工程において多孔質化する際には、ホールをh、電子をeとすると、以下の反応が起こっていると考えられる。
Si+2HF+(2−n)h→SiF+2H+ne
SiF+2HF→SiF+H
SiF+2HF→SiH
すなわち、シリコンウェハからなる半導体ウェハ30の陽極酸化では、Fイオンの供給量とホールhの供給量との兼ね合いで多孔質化あるいは電解研磨が起こることが知られており、Fイオンの供給量の方がホールの供給量よりも多い場合には多孔質化が起こり、ホールhの供給量がFイオンの供給量よりも多い場合には電解研磨が起こる。したがって、本実施形態のように半導体ウェハ30としてp形のシリコンウェハを用いている場合には、陽極酸化による多孔質化の速度はホールhの供給量で決まるから、半導体ウェハ30中を流れる電流の電流密度で多孔質化の速度が決まり、多孔質部34の厚みが決まることになる。ここで、半導体ウェハ30の上記他表面側では、陽極32の厚み方向に沿った開孔部33の中心線から離れるほど電流密度が徐々に大きくなるような電流密度の面内分布を有することとなり、半導体ウェハ30の上記他表面側に形成される多孔質部34は、陽極32の開孔部33の上記中心線に近くなるほど徐々に薄くなっている。
【0058】
上述の陽極酸化工程の終了後、多孔質部34を除去する多孔質部除去工程を行うことでレンズ部3aおよびフランジ部3bを形成することによって、図3(e)に示す構造を得る。ここにおいて、本実施形態における赤外線レンズ3の製造方法においては、陽極形成工程で陽極32の材料として赤外線を反射する金属材料(例えば、Al)を採用し、多孔質部除去工程で陽極32が赤外線阻止部3dとして残存するように多孔質部34を選択的に除去するようにしている。したがって、多孔質部除去工程が終了した後の半導体ウェハ30は、図4に示すような状態となる。図4は、(a)が半導体ウェハ30の上記他表面側の概略平面図を示し、(b)が半導体ウェハ30の上記一表面側の概略平面図を示し、(c)が半導体ウェハ30の概略断面図を示している。なお、図4(a),(b)から分かるように半導体ウェハ30にはオリエンテーションフラットOFに平行な方向およびオリエンテーションフラットOFに直交する方向にレンズ部3aが並設されている。
【0059】
多孔質部除去工程の後は、段差部3cを形成する段差部形成工程を行ってから、個々の赤外線レンズ3に分離するダイシング工程を行えばよい。ここにおいて、段差部形成工程およびダイシング工程はダイシング装置を用いて行う。さらに説明すれば、多孔質部除去工程後に、図5(a)に示すように半導体ウェハ30の上記他表面側(つまり、赤外線レンズ3のレンズ面側)を上側とした状態で、ダイシング装置を用いて図5(b)に示すように隣り合う赤外線レンズ3に跨る段差部3c用の切削溝30cを形成し、続いて、ダイシング装置を利用して図5(c)に示すように赤外線レンズ3の個片に分割する。なお、段差部形成工程およびダイシング工程においては、例えば、レンズ部3aとフランジ部3bとの境界や半導体ウェハ30のオリエンテーションフラットOFなどを基準として、切削位置を設定することが可能である。ただし、レンズ部3aとフランジ部3bとの境界はレンズ部3aの曲率半径が大きい場合には観測が難しく、オリエンテーションフラットOFについては加工精度が低いことがあるので、赤外線カメラなどを用いて半導体ウェハ30の上記一表面側の陽極32を観測して陽極32の位置を基準として、切削位置を設定するようにしてもよい。
【0060】
上述の段差部形成工程において形成する第1の切削溝30cの幅寸法をH1、切削深さ寸法をD1、上述のダイシング工程において形成する第2の切削溝の幅寸法をH2とすれば、ダイシング工程において形成する上記第2の切削溝の幅寸法H2を段差部形成工程において形成する上記第1の切削溝30cの幅寸法H1よりも小さくすることで、ダイシング工程前に各赤外線レンズ3に形成した段差部3cをダイシング工程後にも各赤外線センサ3の個片ごとに残存させることができる。なお、ダイシング工程において上記第2の切削溝を形成する部位は半導体ウェハ30の当初の厚みよりも薄くなっているので、ダイシング工程では、ハーフカット方式に限らず、半導体ウェハ30を完全に切断するフルカット方式を採用してもよい。また、段差部形成工程およびダイシング工程において、ダイシングソー方式を採用し、段差部形成工程とダイシング工程とでブレードの幅を変えることにより、上記第1の切削溝30cの幅寸法H1と上記第2の切削溝の幅寸法H2とを変えることができ、しかも、上記第1の切削溝30cの深さ寸法D1の寸法精度を高めることができ、結果的に、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることが可能となる。
【0061】
以上説明した赤外線レンズ3の製造方法によれば、陽極形成工程にて形成する陽極32と半導体ウェハ30との接触パターンにより陽極酸化工程において半導体ウェハ30に流れる電流の電流密度の面内分布が決まるので、陽極酸化工程にて形成する多孔質部34の厚みの面内分布を制御することができて厚みが連続的に変化した多孔質部34を形成することが可能であり、当該多孔質部34を多孔質部除去工程にて選択的に除去することで所望の形状のレンズ部3aおよびフランジ部3bおよび赤外線阻止部3dを有する赤外線レンズ3が形成されるから、赤外線阻止部3dを形成するために別途の工程を必要とせず、赤外線阻止部3dを別途に形成する場合に比べて、製造プロセスの簡略化を図れるとともに、赤外線阻止部3dの位置精度を高めることができて遮光性が向上する。
【0062】
また、上述の赤外線レンズ3の製造方法では、レンズ径が数mm程度のレンズ形状でも1回の陽極酸化工程と1回の多孔質部除去工程とで形成することができるという利点もある。
【0063】
なお、本実施形態では、半導体ウェハ30としてシリコンウェハを採用しているが、半導体ウェハ30の材料はSiに限らず、Ge、SiC、GaAs、GaP、InPなどの陽極酸化処理による多孔質化が可能な他の材料でもよく、導電形もp形に限らず、n形でもよい。ここで、陽極酸化工程において用いる電解液であって半導体ウェハ30の構成元素の酸化物を除去する電解液としては、例えば、下記表1のような電解液を用いればよい。
【0064】
【表1】

【0065】
また、本実施形態の赤外線検出装置では、赤外線レンズ3が、レンズ部3aおよびフランジ部3bの各形状に応じて半導体ウェハ30との接触パターンを設計した陽極32を半導体ウェハ30の上記一表面側に半導体ウェハ30との接触がオーミック接触となるように形成した後に半導体ウェハ30の構成元素の酸化物をエッチング除去する溶液からなる電解液中で半導体ウェハ30の他表面側を陽極酸化することで除去部位となる多孔質部34を形成してから当該多孔質部34を除去することにより製造された半導体レンズを半導体ウェハ30から分割することにより形成されているので、多数の赤外線レンズ3が1枚の半導体ウェハ30に形成されるだけでなく、赤外線レンズ3におけるレンズ部3aとフランジ部3bとが半導体ウェハ30において陽極酸化により形成された多孔質部34を除去することにより同時に形成されるから、赤外線レンズ3の低コスト化を図れ、結果的に、赤外線レンズ3の位置決め精度の向上および低コスト化を図れ、赤外線レンズ3の位置決め精度の向上による高感度化を図れる。
【0066】
また、本実施形態の赤外線検出装置では、赤外線レンズ3のフランジ部3bに、パッケージ2における窓部2aの内周面および周部に位置決めされる段差部3cが当該赤外線レンズ3を半導体ウェハ30から分割する前に形成されているので、半導体ウェハ30を動かさずに段差部3cを形成するダイシングと赤外線レンズ3を分割するためのダイシングとの2回のダイシングを行うことにより段差部3cを位置精度良く容易に形成することができ、当該赤外線レンズ3の段差部3cとキャップ22の窓部2aとでパッケージ2に対する赤外線レンズ3の位置を規定することができるから、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることができる。また、本実施形態の赤外線検出装置では、パッケージ2における窓部2aの開口形状および赤外線レンズ3の外周形状が矩形状なので、パッケージ2に対する赤外線レンズ3の位置決め精度のより一層の向上を図れる。また、本実施形態の赤外線検出装置では、赤外線レンズ3がパッケージ2の内側から窓部2aを覆うようにパッケージ2に固着されているので、赤外線レンズ3がパッケージ2の外側からパッケージ2に固着されている場合に比べて、外観が良くなり、赤外線レンズ3の厚みによってはレンズ部3aがパッケージ2から突出するのを防止できてレンズ部3aの凸曲面からなるレンズ面に傷がつきにくくなるという利点がある。
【0067】
ところで、上述の赤外線レンズ3の製造方法においては、陽極酸化工程において半導体ウェハ30に流れる電流の電流密度の面内分布によってレンズ部3aの形状(本実施形態では、平凸型の非球面レンズ状のレンズ部3aにおける非球面の曲率半径やレンズ径)が決まるので、半導体ウェハ30の抵抗率や厚み、陽極酸化工程にて用いる電解液の電気抵抗値や、半導体ウェハ30と陰極との間の距離、陰極の平面形状(半導体ウェハ30に対向配置した状態において半導体ウェハ30に平行な面内での形状)、陽極32における円形状の開孔部33の内径などを適宜設定することにより、レンズ部3aの形状を制御することができる。ここにおいて、電解液の電気抵抗値は、例えば、フッ化水素水溶液の濃度や、フッ化水素水溶液とエタノールとの混合比などを変えることにより調整することができるので、陽極32の形状(つまり、陽極32と半導体ウェハ30との接触パターン)の他に、陽極32の形状以外の条件(例えば、電解液の電気抵抗値)を適宜設定することによって、赤外線レンズ3のレンズ部3aの形状をより制御しやすくなる。
【0068】
なお、赤外線レンズ3のレンズ部3aの形状を平凹型の非球面レンズ状の形状とする場合には、上述の赤外線レンズ3の製造方法において、陽極形成工程において円形状の陽極32を形成する必要があり、陽極32がレンズ部3aに対応する部位にあるので、多孔質部除去工程において陽極32を除去するようにし、キャップ22の窓部22の開口形状をレンズ部3aに合致する円形状の開口形状とすればよい。
【0069】
また、上述の赤外線レンズ3としては、図6に示すように、レンズ部3aの両面に、所望の波長域(例えば、8μm〜13μm)の赤外線を透過し不要な波長域(例えば、5μm以下)の赤外線を反射する多層干渉フィルタ3e,3fを形成した構成を採用してもよい。図6に示した構成の赤外線レンズ3では、レンズ部3aの両面に、所望の波長域の赤外線を透過し不要な波長域の赤外線を反射する多層干渉フィルタ3e,3fが形成されているので、不要な波長域の赤外線をカットすることができ(太陽光によるノイズを除去することができ)、高感度化を図れる。なお、後述の各実施形態で説明する赤外線レンズ3においても、図6と同様の多層干渉フィルタ3e,3fを設けることが好ましい。
【0070】
ここで、図6に示す構成の赤外線レンズ3を採用する場合には、上述の赤外線レンズ3の製造方法において、多孔質部除去工程と段差部形成工程との間に、多層干渉フィルタ3e,3fを周知の薄膜形成技術を利用して形成するフィルタ形成工程を行うようにすれば多層干渉フィルタ3e,3fをウェハレベルで多数のレンズ部3aに同時に形成することができ、しかも、段差部形成工程で段差部3cを形成することにより、フランジ部3b表面に形成されている多層干渉フィルタ3eおよびフランジ部3bの一部が除去されてフランジ部3bに半導体表面が露出することとなる。また、段差部形成工程の後のダイシング工程を行うことにより赤外線レンズ3における切断面(フランジ部3bの外周面)に半導体表面が露出することとなる。したがって、赤外線レンズ3においてフランジ部3bのうち半導体表面が露出した部分を銀ペーストなどかなる接合部58(図1参照)を介してキャップ22と接合して電気的に接続することにより、赤外線検出装置全体の電磁シールド効果を高めることが可能となる。ここにおいて、本実施形態のように赤外線検出素子として焦電素子を用いた赤外線検出装置では、特に外来ノイズが大きく影響するので、赤外線検出装置全体をグランド電位でシールドする効果が非常に大きい。なお、図6に示した例では、レンズ部3aの両面に多層干渉フィルタ3e,3fを形成してあるが、少なくとも一面に形成してあればよい。また、図6に例示した赤外線レンズ3は、赤外線レンズ3の非レンズ面側に多層干渉フィルタ3fを形成する際に、赤外線阻止部3dの外周部上に多層干渉フィルタ3fが形成されないように遮蔽マスクを配置した状態で多層干渉フィルタ3fを形成したものであり、赤外線阻止部3dの外周部が露出しているので、当該赤外線阻止部3dとパッケージ2とを上記接合材料により接合することで当該赤外線レンズ3とパッケージ2とを電気的に接続してもよい。
【0071】
(実施形態2)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、図7に示すように、赤外線レンズ3が、当該赤外線レンズ3のレンズ面を赤外線検出素子1に向けた形でパッケージ2の外側からパッケージ2に固着されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0072】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3とパッケージ2との接合工程をパッケージ2の外側で行うことができるので、実施形態1に比べて、赤外線レンズ3をパッケージ2のキャップ22に固着する接合工程が容易になるとともに赤外線レンズ3とパッケージ2との接合部58の確認が容易になり、当該接合工程の歩留まり向上による低コスト化を図れる。
【0073】
(実施形態3)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、図8に示すように、赤外線レンズ3とパッケージ2とを接合する接合部58が、赤外線阻止部3dの表面とフランジ部3bの外周面とキャップ2とに跨って形成されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0074】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3の段差部3cとパッケージ2における窓部2aの内周面および周部との間に接合部58を介在させる必要がないので、実施形態1に比べて、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることが可能となるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることが可能となる。
【0075】
(実施形態4)
本実施形態の赤外線検出装置の基本構成は実施形態2と略同じであって、図9に示すように、赤外線レンズ3とパッケージ2とを接合する接合部58が、赤外線阻止部3dの表面とフランジ部3bの外周面とキャップ2とに跨って形成されている点が相違する。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
【0076】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3の段差部3cとパッケージ2における窓部2aの内周面および周部との間に接合部58を介在させる必要がないので、実施形態2に比べて、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることが可能となるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることが可能となる。
【0077】
(実施形態5)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、図10に示すように、赤外線レンズ3のフランジ部3bにおける段差部3cが、赤外線レンズ3の非レンズ面側に形成されており、赤外線レンズ3が、当該赤外線レンズ3の非レンズ面を赤外線検出素子1側としてパッケージ2の外側からパッケージ2に固着されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0078】
本実施形態における赤外線レンズ3の製造方法は、実施形態1と略同じであって、多孔質部除去工程の後に段差部3cを形成する段差部形成工程と、個々の赤外線レンズ3に分離するダイシング工程とが相違している。
【0079】
本実施形態では、多孔質部除去工程後に、図11(a)に示すように半導体ウェハ30の上記一表面側(つまり、赤外線レンズ3の非レンズ面側)を上側とした状態で、ダイシング装置を用いて図11(b)に示すように隣り合う赤外線レンズ3に跨る段差部3c用の切削溝30cを形成し、続いて、ダイシング装置を利用して図11(c)に示すように赤外線レンズ3の個片に分割する。なお、段差部形成工程およびダイシング工程においては、例えば、半導体ウェハ30の上記一表面側の陽極32を観測し、陽極32の位置を基準として、切削位置を設定するようにすることで、加工精度を高めることができる。
【0080】
上述の段差部形成工程において形成する第1の切削溝30cの幅寸法をH1、切削深さ寸法をD1、上述のダイシング工程において形成する第2の切削溝の幅寸法をH2とすれば、ダイシング工程において形成する上記第2の切削溝の幅寸法H2を段差部形成工程において形成する上記第1の切削溝30cの幅寸法H1よりも小さくすることで、ダイシング工程前に各赤外線レンズ3に形成した段差部3cをダイシング工程後にも各赤外線センサ3の個片ごとに残存させることができる。なお、ダイシング工程において上記第2の切削溝を形成する部位は半導体ウェハ30の当初の厚みよりも薄くなっているので、ダイシング工程では、ハーフカット方式に限らず、半導体ウェハ30を完全に切断するフルカット方式を採用してもよい。また、段差部形成工程およびダイシング工程において、ダイシングソー方式を採用し、段差部形成工程とダイシング工程とでブレードの幅を変えることにより、上記第1の切削溝30cの幅寸法H1と上記第2の切削溝の幅寸法H2とを変えることができ、しかも、上記第1の切削溝30cの深さ寸法D1の寸法精度を高めることができる。
【0081】
以上説明した本実施形態の赤外線検出装置においても、赤外線レンズ3の段差部3cとパッケージ2における窓部2aの内周面および周部とで赤外線レンズ3を位置決めすることにより、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることが可能となる。なお、図10では、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0082】
(実施形態6)
本実施形態の赤外線検出装置の基本構成は実施形態5と略同じであって、図12に示すように、赤外線レンズ3が、当該赤外線レンズ3のレンズ面を赤外線検出素子1側としてパッケージ2の内側からパッケージ2に固着されている点が相違する。なお、実施形態5と同様の構成要素には同一の符号を付して説明を省略する。
【0083】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3がパッケージ2の外側に突出することがないので、外観が良くなるとともに、赤外線レンズ3に傷がつきにくくなるという利点がある。なお、図11においても、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0084】
(実施形態7)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、実施形態1で赤外線レンズ3に段差部3cを形成していたのに対して、本実施形態では、図13に示すように、パッケージ2の一部を構成するキャップ22における窓部2aの周部に、赤外線レンズ3のフランジ部3bを位置決めする段差部22aを形成してある点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。また、本実施形態では、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0085】
本実施形態における赤外線レンズ3の製造方法は、実施形態1と略同じであって、多孔質部除去工程の後に、実施形態1で説明した段差部形成工程を行わずに、個々の赤外線レンズ3に分離するダイシング工程を行う点が相違している。
【0086】
本実施形態では、多孔質部除去工程後に、例えば、図14(a)に示すように半導体ウェハ30の上記一他面側(つまり、赤外線レンズ3のレンズ面側)を上側とした状態で、ダイシング装置を用いて図14(b)に示すように赤外線レンズ3の個片に分割するようにしてもよいし、例えば、図15(a)に示すように半導体ウェハ30の上記一表面側(つまり、赤外線レンズ3の非レンズ面側)を上側とした状態で、ダイシング装置を用いて図15(b)に示すように赤外線レンズ3の個片に分割するようにしてもよい。なお、図14に示した例では、ダイシング工程において、例えば、赤外線カメラなどを用いて半導体ウェハ30の上記一表面側の陽極32を観測し、陽極32の位置を基準として、切削位置を設定するようにすることで、加工精度を高めることができる。また、図15に示した例では、ダイシング工程において、陽極32を目印として切削位置を設定することにより、加工精度を高めることができる。
【0087】
しかして、本実施形態の赤外線検出装置では、パッケージ2に赤外線レンズ3のフランジ部3bを位置決めする段差部22aが形成されているので、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることができる。また、実施形態1のように赤外線レンズ3のフランジ部3bに段差部3cを形成する場合に比べて赤外線レンズ3の製造プロセスを簡略化でき、赤外線レンズ3の低コスト化を図れる。なお、パッケージ2の窓部2aの開口形状は矩形状に限らず、円形状でもよく、円形状の開口形状とした場合には、赤外線阻止部3dによる遮光の効果を持たせなくても、パッケージ2における窓部2aの周部で遮光の効果を持たせることが可能となる。
【0088】
(実施形態8)
本実施形態の赤外線検出装置の基本構成は実施形態7と略同じであって、図16に示すように、赤外線レンズ3が、当該赤外線レンズ3のレンズ面を赤外線検出素子1側としてパッケージ2の内側からパッケージ2に固着されている点が相違する。なお、実施形態7と同様の構成要素には同一の符号を付して説明を省略する。
【0089】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3がパッケージ2の外側に突出することがないので、外観が良くなるとともに、赤外線レンズ3に傷がつきにくくなるという利点がある。なお、図16においても、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0090】
(実施形態9)
本実施形態の赤外線検出装置の基本構成は実施形態7と略同じであって、図17に示すように、赤外線レンズ3に実施形態1と同じ段差部3c(図1参照)が形成されている点が相違し、他の構成は実施形態7と同じである。
【0091】
しかして、本実施形態の赤外線検出装置では、実施形態7に比べて、赤外線レンズ3の位置決め精度をより高めることが可能となる。
【0092】
(実施形態10)
本実施形態の赤外線検出装置の基本構成は実施形態8と略同じであって、図18に示すように、赤外線レンズ3に実施形態5,6と同じ段差部3c(図10,図12参照)が形成されている点が相違する。なお、実施形態7と同様の構成要素には同一の符号を付して説明を省略する。
【0093】
しかして、本実施形態の赤外線検出装置では、実施形態8に比べて、赤外線レンズ3の位置決め精度をより高めることが可能となる。
【0094】
(実施形態11)
本実施形態の赤外線検出装置の基本構成は実施形態7と略同じであって、図19に示すように、赤外線レンズ3に実施形態5,6と同じ段差部3c(図10,図12参照)が形成されている点が相違する。なお、実施形態7と同様の構成要素には同一の符号を付して説明を省略する。
【0095】
本実施形態の赤外線検出装置では、赤外線レンズ3における段差部3cの形成により露出した半導体表面全体をパッケージ2との電気的な接続に利用することが可能となるので、シールド効果が高くなる。なお、図19においても、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0096】
(実施形態12)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、図20に示すように、赤外線レンズ3におけるレンズ部3aの凸曲面とフランジ部3bの平面との境界により窓部2aの光軸方向に直交する面内でのレンズ部3aの位置が規定されている点が相違する。ここにおいて、本実施形態の赤外線検出装置では、窓部2aの開口形状が正方形状であり、窓部2aの各辺の寸法とレンズ部3aのレンズ径とを略一致させるように設計してある。また、本実施形態における赤外線レンズ3の構造は実施形態7と略同じである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0097】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3におけるレンズ部3aの凸曲面とフランジ部3bの平面との境界により窓部2aの光軸方向に直交する面内でのレンズ部3aの位置が規定されるので、フランジ部3bやパッケージ2に段差部を形成することなく、赤外線レンズ3の光軸方向における赤外線レンズ3と赤外線検出素子1との距離精度を高めることができるとともに、赤外線レンズ3の光軸と赤外線検出素子1の受光面の光軸との合わせ精度を高めることができ、製造工程の簡略化を図れ、低コスト化を図れる。なお、図20においても、赤外線レンズ3とパッケージ2とを接合して電気的に接続する接合部の図示を省略してある。
【0098】
(実施形態13)
本実施形態の赤外線検出装置の基本構成は実施形態12と略同じであって、図21に示すように、窓部2aの開口形状が円形状であり、窓部2aの内径とレンズ部3aのレンズ径とを略一致させるように設計してある。なお、実施形態12と同様の構成要素には同一の符号を付して説明を省略する。
【0099】
しかして、本実施形態の赤外線検出装置では、パッケージ2の一部を構成するキャップ22に形成する窓部2aの開口形状が円形状なので、実施形態12のように窓部2aの開口形状が正方形状である場合に比べて、窓部2aの加工が容易になるとともに加工精度が高くなる。また、本実施形態の赤外線検出装置では、赤外線レンズ3のフランジ部3b全体がキャップ22における窓部2aの周部で覆われており、パッケージ2の外側からの赤外線が赤外線レンズ3のフランジ部3bへ入射するのをキャップ22により阻止することができるので、実施形態12の赤外線レンズ3における赤外線阻止部3d(図20参照)を設けていない(実施形態1にて説明した多孔質部除去工程において陽極32(図3参照)も除去している)が、赤外線阻止部3dを備えていてもよい。
【0100】
(実施形態14)
本実施形態の赤外線検出装置の基本構成は実施形態13と略同じであって、図22に示すように、赤外線レンズ3がレンズ面を赤外線検出素子1側としてパッケージ2の外側からパッケージ2に固着されている点が相違する。なお、実施形態13と同様の構成要素には同一の符号を付して説明を省略する。
【0101】
しかして、本実施形態の赤外線検出装置では、赤外線レンズ3とパッケージ2との接合工程をパッケージ2の外側で行うことができるので、実施形態13に比べて、赤外線レンズ3をパッケージ2のキャップ22に固着する接合工程が容易になる(組立作業が容易になる)とともに赤外線レンズ3とパッケージ2との接合部(図示せず)の確認が容易になり、当該接合工程の歩留まり向上による低コスト化を図れる。
【0102】
(実施形態15)
本実施形態の赤外線検出装置の基本構成は実施形態1と略同じであって、図23に示すように、赤外線レンズ3の前方に配置され赤外線検出素子1の検知エリアを調整する検知エリア調整用光学部材8を備えている点が相違する。ここにおいて、検知エリア調整用光学部材8は、例えば、パッケージ2を収納するハウジング(図示せず)に取り付けたり、パッケージ2を保護するカバー部材に形成するようにしてもよい。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0103】
しかして、本実施形態の赤外線検出装置では、検知エリア調整用光学部材8により赤外線検出素子1の検知エリアを調整することができる。図24に、本実施形態の赤外線検出装置において赤外線レンズ3により赤外線検出素子1へ集光される赤外線の進行経路のシミュレーション結果を示し、図25に、検知エリア調整用光学部材8を設けていない比較例において赤外線レンズ3により赤外線検出素子1へ集光される赤外線の進行経路のシミュレーション結果を示す。図24と図25とを比較すれば、検知エリア調整用光学部材8を設けたことにより、検知エリアが広くなっていることが分かる。
【0104】
ここにおいて、本実施形態の赤外線検出装置では、検知エリア調整用光学部材8を、赤外線レンズ3の光軸に交差する方向から入射する赤外線を赤外線レンズ3に向かって変向させる複数のプリズム小体81の集合体81により構成してあるので、図26に示すように検知エリア調整用光学部材9を1つのプリズム91により構成する場合に比べて、検知エリア調整用光学部材8の薄型化を図れ、検知エリア調整用光学部材8での赤外線の透過率を高めることができ高感度化を図れる。なお、図26にも、赤外線レンズ3により赤外線検出素子1へ集光される赤外線の進行経路のシミュレーション結果を示してある。
【0105】
また、本実施形態における検知エリア調整用光学部材8は、各プリズム小体81が1つの面に沿って並設され、各プリズム小体81の光入射面が同一面上に揃うように形成されており、検知エリア調整用光学部材8における赤外線レンズ3側とは反対側に凹凸が形成されていないので、検知エリア調整用光学部材8に塵や埃などの異物が付着しにくくなる。なお、検知エリア調整用光学部材8は、ポリエチレンにより形成されている。また、プリズム小体81は、断面二等辺三角形状の形状に形成されている。
【0106】
なお、本実施形態では、検知エリア調整用光学部材8を設けることによって検知エリアを広げてあるが、検知エリア調整用光学部材8のプリズム小体81の形状や配置を適宜設計することにより、複数の検知エリアを設定したり、検知エリアの視野角を設定することも可能である。また、本実施形態では、検知エリア調整用光学部材8全体としての光入射面が平面となっているが、当該光入射面を曲面とすれば、赤外線レンズ3の収差を小さくすることも可能である。
【0107】
(実施形態16)
本実施形態の赤外線検出装置の基本構成は実施形態15と略同じであって、図27および図28に示すように、検知エリア調整用光学部材8における各プリズム小体81の形状が相違するだけで、他の構成は実施形態15と同じである。
【0108】
本実施形態における検知エリア調整用光学部材8は、プリズム小体81が実施形態15のような断面二等辺三角形状の形状ではなく、非対称の断面三角形状の形状となっている。
【0109】
(実施形態17)
本実施形態の赤外線検出装置の基本構成は実施形態15と略同じであって、図29に示すように、赤外線レンズ3の前方に配置される検知エリア調整用光学部材8の形状が相違するだけである。なお、他の構成要素は実施形態15と同じなので、図示および説明を省略する。
【0110】
本実施形態における検知エリア調整用光学部材8は、各プリズム小体81が1つの面に沿って並設され、各プリズム小体81の光出射面が同一面上に揃うように形成されており、検知エリア調整用光学部材8における赤外線レンズ3側とは反対側に凹凸が形成されているので、実施形態15に比べて、視野角を大きくすることができ、180度以上の視野角を持たせることも可能となる。なお、図29にも、赤外線レンズ3により赤外線検出素子1へ集光される赤外線の進行経路のシミュレーション結果を示してある。また、本実施形態では、検知エリア調整用光学部材8全体としての光出射面が平面となっているが、当該光出射面を曲面とすれば、赤外線レンズ3の収差を小さくすることも可能である。
【0111】
ところで、上記各実施形態では、パッケージ2内に収納する回路ブロック6として部品内蔵基板工法により形成したものを例示したが、回路ブロック6は、基板単体で構成してもよいし、例えば特許第3211074号公報に記載されているような3次元回路ブロックで構成してもよい。また、赤外線検出素子1以外の回路部品(図2に示した電子部品64およびIC63)を外付け部品として、赤外線検出素子1のみをパッケージ2内に収納するようにしてもよい。
【0112】
また、上記各実施形態では、赤外線レンズ3のレンズ部3aが平凸レンズとなっているが、平凸レンズに限らず、凹レンズや両凸レンズなど他の単レンズでもよいし、隣り合う単レンズが互いに重なりあった所謂マルチレンズや、上述の単レンズをアレー状に設けた所謂アレーレンズや上述の複数種類の単レンズを複合させたレンズでもよく、いずれも実施形態1にて説明した赤外線レンズ3の製造方法の技術思想を適用して製造することができる。
【図面の簡単な説明】
【0113】
【図1】実施形態1における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図2】同上の赤外線検出装置の概略分解斜視図である。
【図3】同上における赤外線レンズの製造方法を説明するための主要工程断面図である。
【図4】同上における赤外線レンズの製造方法の説明図である。
【図5】同上における赤外線レンズの製造方法を説明するための主要工程断面図である。
【図6】同上における赤外線レンズの他の構成例を示す概略断面図である。
【図7】実施形態2における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図8】実施形態3における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図9】実施形態4における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図10】実施形態における赤外線検出装置の概略断面図である。
【図11】同上における赤外線レンズの製造方法を説明するための主要工程断面図である。
【図12】実施形態6における赤外線検出装置の概略断面図である。
【図13】実施形態7における赤外線検出装置の概略断面図である。
【図14】同上における赤外線レンズの製造方法を説明するための主要工程断面図である。
【図15】同上における赤外線レンズの製造方法の他の例を説明するための主要工程断面図である。
【図16】実施形態8における赤外線検出装置の概略断面図である。
【図17】実施形態9における赤外線検出装置の概略断面図である。
【図18】実施形態10における赤外線検出装置の概略断面図である。
【図19】実施形態11における赤外線検出装置の概略断面図である。
【図20】実施形態12における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図21】実施形態13における赤外線検出装置を示し、(a)は概略平面図、(b)は概略断面図である。
【図22】実施形態14における赤外線検出装置の概略断面図である。
【図23】実施形態15における赤外線検出装置の概略断面図である。
【図24】同上における外部からの赤外線の進行経路の説明図である。
【図25】同上の比較例における外部からの赤外線の進行経路の説明図である。
【図26】同上の他の比較例における外部からの赤外線の進行経路の説明図である。
【図27】実施形態16における赤外線検出装置の概略断面図である。
【図28】同上における外部からの赤外線の進行経路の説明図である。
【図29】実施形態17における外部からの赤外線の進行経路の説明図である。
【図30】従来例を示す概略断面図である。
【符号の説明】
【0114】
1 赤外線検出素子
2 パッケージ
2a 窓部
3 赤外線レンズ(半導体レンズ)
3a レンズ部
3b フランジ部
3c 段差部
3d 赤外線阻止部
8 検知エリア調整用光学部材
30 半導体ウェハ
32 陽極
34 多孔質部
81 プリズム小体

【特許請求の範囲】
【請求項1】
赤外線検出素子と、当該赤外線検出素子を収納するパッケージであって赤外線検出素子の受光面の前方に窓部が形成されたパッケージと、窓部を覆うようにパッケージに固着され赤外線検出素子の受光面へ赤外線を集光する赤外線レンズとを備え、赤外線レンズは、レンズ部と当該レンズ部の周部から外方に延設されパッケージにおける窓部の周部に固着されるフランジ部とを有する半導体レンズからなり、レンズ部およびフランジ部の各形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に半導体ウェハとの接触がオーミック接触となるように形成した後に半導体ウェハの構成元素の酸化物をエッチング除去する溶液からなる電解液中で半導体ウェハの他表面側を陽極酸化することで除去部位となる多孔質部を形成してから当該多孔質部を除去することにより製造された半導体レンズを半導体ウェハから分割することにより形成されてなることを特徴とする赤外線検出装置。
【請求項2】
前記パッケージが金属製であり、前記赤外線レンズは、前記パッケージと電気的に接続されてなることを特徴とする請求項1記載の赤外線検出装置。
【請求項3】
前記赤外線レンズは、前記フランジ部に、前記パッケージにおける前記窓部の内周面および周部に位置決めされる段差部が前記半導体ウェハから分割する前に形成されてなることを特徴とする請求項1または請求項2記載の赤外線検出装置。
【請求項4】
前記パッケージは、前記赤外線レンズの前記フランジ部を位置決めする段差部が形成されてなることを特徴とする請求項1ないし請求項3のいずれか1項に記載の赤外線検出装置。
【請求項5】
前記赤外線レンズにおける前記レンズ部の凸曲面と前記フランジ部の平面との境界により前記窓部の光軸方向に直交する面内での前記レンズ部の位置が規定されてなることを特徴とする請求項1または請求項2記載の赤外線検出装置。
【請求項6】
前記赤外線レンズは、前記パッケージの内側から前記パッケージに固着されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の赤外線検出装置。
【請求項7】
前記赤外線レンズは、前記パッケージの外側から前記パッケージに固着されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の赤外線検出装置。
【請求項8】
前記赤外線レンズは、前記フランジ部を通して前記赤外線検出素子の前記受光面へ入射しようとする赤外線を阻止する赤外線阻止部を有し、当該赤外線阻止部が前記陽極により構成されてなることを特徴とする請求項1ないし請求項7のいずれか1項に記載の赤外線検出装置。
【請求項9】
前記赤外線レンズの前方に配置され前記赤外線検出素子の検知エリアを調整する検知エリア調整用光学部材を備え、検知エリア調整用光学部材は、前記赤外線レンズの光軸に交差する方向から入射する赤外線を前記赤外線レンズに向かって変向させる複数のプリズム小体の集合体からなることを特徴とする請求項1ないし請求項8のいずれか1項に記載の赤外線検出装置。
【請求項10】
前記検知エリア調整用光学部材は、前記各プリズム小体が1つの面に沿って並設され、前記各プリズム小体の光入射面が同一面上に揃うように形成されてなることを特徴とする請求項9記載の赤外線検出装置。
【請求項11】
前記検知エリア調整用光学部材は、前記各プリズム小体が1つの面に沿って並設され、前記各プリズム小体の光出射面が同一面上に揃うように形成されてなることを特徴とする請求項9記載の赤外線検出装置。
【請求項12】
請求項1ないし請求項11のいずれか1項に記載の赤外線検出装置の製造方法であって、赤外線レンズの形成にあたっては、所望のレンズ部および所望のフランジ部の形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に形成する陽極形成工程と、電解液中で半導体ウェハの他表面側に対向配置した陰極と陽極との間に通電して半導体ウェハの前記他表面側に除去部位となる多孔質部を形成する陽極酸化工程と、多孔質部を除去することにより半導体レンズを形成する多孔質部除去工程と、半導体レンズを半導体ウェハから分割するダイシング工程とを有し、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いることを特徴とする赤外線検出装置の製造方法。
【請求項13】
請求項3記載の赤外線検出装置の製造方法であって、赤外線レンズの形成にあたっては、所望のレンズ部および所望のフランジ部の形状に応じて半導体ウェハとの接触パターンを設計した陽極を半導体ウェハの一表面側に形成する陽極形成工程と、電解液中で半導体ウェハの他表面側に対向配置した陰極と陽極との間に通電して半導体ウェハの前記他表面側に除去部位となる多孔質部を形成する陽極酸化工程と、多孔質部を除去することにより半導体レンズを形成する多孔質部除去工程と、多孔質部除去工程の後で隣り合う半導体レンズのフランジ部に跨る切り込み溝を形成することにより各フランジ部に段差部を形成する段差部形成工程と、段差部形成工程の後で半導体レンズを半導体ウェハから分割するダイシング工程とを有し、陽極形成工程では、陽極と半導体ウェハとの接触がオーミック接触となるように陽極を形成し、陽極酸化工程では、電解液として、半導体ウェハの構成元素の酸化物をエッチング除去する溶液を用いることを特徴とする赤外線検出装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2008−128912(P2008−128912A)
【公開日】平成20年6月5日(2008.6.5)
【国際特許分類】
【出願番号】特願2006−316216(P2006−316216)
【出願日】平成18年11月22日(2006.11.22)
【出願人】(000005832)松下電工株式会社 (17,916)
【Fターム(参考)】