説明

超音波モータ装置

【課題】小型化を図ると共に、効率が高く、構造が簡単であり、精度の高い動作を行なう。
【解決手段】圧電振動子1が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、圧電振動子1が第一次屈曲振動モードで振動する際の剪断方向の長さをwとした場合、圧電振動子1は、前記w/Lの値が実質的に1.05となるように形成されており、圧電振動子1のいずれか一方の主面上に並設された2枚の電極4a、4bと、2枚の電極4a、4bのうち、少なくとも一方に対して交流電圧を印加して圧電振動子1を駆動させる共振駆動装置32と、2枚の電極4a、4bのうち、少なくとも一方に対して直流電圧を印加して圧電振動子1を駆動させる直流駆動装置33と、共振駆動装置32または直流駆動装置33のいずれか一方を選択して動作させる制御部34と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置に関する。
【背景技術】
【0002】
従来から、圧電素子を矩形に形成し、第一次縦振動モード(L1)と第二次屈曲振動モード(F2)とを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータが知られている。例えば、特開2006−094597号公報には、複数の圧電体を積層し、L1F2共振モードで駆動する超音波振動子が開示されている。この超音波振動子は、圧電素子と内部電極とが交互に積層されており、この積層方向と直交する第2の方向および第3の方向に沿って、概ね4分割された内部電極群を備えている。また、それらの内部電極群とそれぞれ道通する第1の外部電極群および第2の外部電極群とを有している。そして、第1および第2の外部電極群に電圧を印加することにより、第2の方向に発生する縦振動モードと、第3の方向に発生する屈曲振動モードとが同時に励起することによって、楕円振動を発生させる。
【0003】
また、特表2007−538484号公報には、振動子を長さLおよび高さHの圧電プレートで形成して、ラーメモードで駆動する圧電超音波モータが開示されている。この圧電超音波モータでは、圧電プレートで一次非対称定在波が励起され、摺動チップが楕円運動をすることによって駆動力を発生させる。
【特許文献1】特開2006−094597号公報
【特許文献2】特表2007−538484号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来から、超音波モータは種々の目的に用いられているが、工業的に超音波モータに求められる主な特性は、小型であること、効率が高いこと、構造が簡単であることである。ここで、超音波モータが小型であることとは、圧電振動子の共振周波数がなるべく低いことを意味する。また、効率が高いとは、圧電振動子の機械−電気結合係数が大きいことを意味する。
【0005】
しかしながら、第一次縦振動モード(L1)と第二次屈曲振動モード(F2)とを組み合わせた多重振動モードで超音波モータを駆動させようとする場合、主面を4つの領域に分けて、それぞれに電力を配置し、対角に位置する電極同士を接続しなければならず、電極構造が複雑にならざるを得ない。また、ラーメモードで超音波モータを駆動させようとする場合、他のモードと比較して共振周波数が高いため、他のモードと同じ共振周波数で駆動させようとした場合は、他のモードを用いる場合よりも超音波モータが大きくなってしまい、小型化を図ることが困難となる。
【0006】
装置の小型化を図るためには、電極構成を簡略化させると共に、電源の構成も簡略化する必要がある。
【0007】
また、従来から知られている超音波モータでは、圧電振動子の共振周波数帯域の所定の交流電圧を電極に印加して圧電振動子を駆動する。このような超音波モータでは、交流電圧の印加を停止しても、圧電振動子の摺動チップが慣性によって微小に動いてしまう。その結果、摺動チップが駆動対象物に駆動力を与えてしまうため、駆動対象物を高精度で位置決めすることが難しい。特に、ナノメートルの単位で駆動対象物を位置決めしようとする場合は、このような駆動誤差を無視することはできない。
【0008】
本発明は、このような事情に鑑みてなされたものであり、小型化を図ると共に、効率が高く、構造が簡単であり、精度の高い動作を行なうことができる超音波モータ装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の超音波モータ装置は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとし、w/Lを変数として、w/Lと前記圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させた場合、前記圧電振動子は、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されており、前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、前記2枚の電極のうち、少なくとも一方に対して交流電圧を印加して前記圧電振動子を駆動させる共振駆動装置と、前記2枚の電極のうち、少なくとも一方に対して直流電圧を印加して前記圧電振動子を駆動させる直流駆動装置と、前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴としている。
【0010】
このように、圧電振動子が、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。なお、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値とは、圧電振動子が超音波モータとして実用的に機能する範囲という意味である。第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが多少ずれていても、圧電振動子が超音波モータとして実用的に機能するのであれば、w/Lの値は実質的に同一であると言える。逆に言えば、w/Lの値は、圧電振動子が超音波モータとして実用的に機能するのであれば、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とがちょうど同じ値でなければならないわけではない。
【0011】
また、共振駆動装置または直流駆動装置のいずれか一方を選択して動作させるので、最初は圧電振動子を共振駆動させることによって、短時間で駆動対象物を目的位置の近傍まで移動させることができる。駆動対象物が目的位置の近傍に到達した後、圧電振動子を直流駆動、すなわち、圧電振動子に静的変位が生じるように圧電振動子を駆動させることによって、駆動対象物を目的位置に高精度に位置決めすることが可能となる。例えば、半導体デバイスの設計・製造においては、配線パターンの微細化、高集積化が進められており、ステッパのX−Yステージにナノメートルオーダーでの位置制御が要求されている。本発明の超音波モータ装置は、このような位置決め装置に好適に用いられる。
【0012】
(2)また、本発明の超音波モータ装置は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとした場合、前記圧電振動子は、前記w/Lの値が実質的に1.05となるように形成されており、前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、前記2枚の電極のうち、少なくとも一方に対して交流電圧を印加して前記圧電振動子を駆動させる共振駆動装置と、前記2枚の電極のうち、少なくとも一方に対して直流電圧を印加して前記圧電振動子を駆動させる直流駆動装置と、前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴としている。
【0013】
このように、圧電振動子が、w/Lの値が実質的に1.05となるように形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。なお、w/Lの値が実質的に1.05であるとは、圧電振動子が超音波モータとして実用的に機能する範囲という意味である。w/Lの値が1.05の前後にずれていても、圧電振動子が超音波モータとして実用的に機能するのであれば、w/Lの値は実質的に1.05であると言える。逆に言えば、w/Lの値は、圧電振動子が超音波モータとして実用的に機能するのであれば、ちょうど1.05でなければならないわけではない。
【0014】
また、共振駆動装置または直流駆動装置のいずれか一方を選択して動作させるので、最初は圧電振動子を共振駆動させることによって、短時間で駆動対象物を目的位置の近傍まで移動させることができる。駆動対象物が目的位置の近傍に到達した後、圧電振動子を直流駆動、すなわち、圧電振動子に静的変位が生じるように圧電振動子を駆動させることによって、駆動対象物を目的位置に高精度に位置決めすることが可能となる。例えば、半導体デバイスの設計・製造においては、配線パターンの微細化、高集積化が進められており、ステッパのX−Yステージにナノメートルオーダーでの位置制御が要求されている。本発明の超音波モータ装置は、このような位置決め装置に好適に用いられる。
【0015】
(3)また、本発明の超音波モータ装置において、前記2枚の電極と前記共振駆動装置および直流駆動装置との間に設けられ、前記共振駆動装置および直流駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部をさらに備えることを特徴としている。
【0016】
このように、共振駆動装置および直流駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうので、電極構成および電源構成を簡略化することが可能となる。
【0017】
(4)また、本発明の超音波モータ装置は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとし、w/Lを変数として、w/Lと前記圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させた場合、前記圧電振動子は、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されており、前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、前記圧電振動子を駆動する電圧を供給する駆動装置と、前記2枚の電極と前記駆動装置との間に設けられ、前記駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部と、を備えることを特徴としている。
【0018】
このように、圧電振動子が、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。なお、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値とは、圧電振動子が超音波モータとして実用的に機能する範囲という意味である。第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが多少ずれていても、圧電振動子が超音波モータとして実用的に機能するのであれば、w/Lの値は実質的に同一であると言える。逆に言えば、w/Lの値は、圧電振動子が超音波モータとして実用的に機能するのであれば、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とがちょうど同じ値でなければならないわけではない。また、駆動装置から供給された電圧が、2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうので、電極構成および電源構成を簡略化させることが可能となる。
【0019】
(5)また、本発明の超音波モータ装置は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとした場合、前記圧電振動子は、前記w/Lの値が実質的に1.05となるように形成されており、前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、前記圧電振動子を駆動する電圧を供給する駆動装置と、前記2枚の電極と前記駆動装置との間に設けられ、前記駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部と、を備えることを特徴としている。
【0020】
このように、圧電振動子が、w/Lの値が実質的に1.05となるように形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。なお、w/Lの値が実質的に1.05であるとは、圧電振動子が超音波モータとして実用的に機能する範囲という意味である。w/Lの値が1.05の前後にずれていても、圧電振動子が超音波モータとして実用的に機能するのであれば、w/Lの値は実質的に1.05であると言える。逆に言えば、w/Lの値は、圧電振動子が超音波モータとして実用的に機能するのであれば、ちょうど1.05でなければならないわけではない。また、駆動装置から供給された電圧が、2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうので、電極構成および電源構成を簡略化させることが可能となる。
【0021】
(6)また、本発明の超音波モータ装置において、前記駆動装置は、交流電圧を電極に印加して前記圧電振動子を駆動させる共振駆動装置と、直流電圧を電極に印加して前記圧電振動子を駆動させる直流駆動装置と、前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴としている。
【0022】
このように、共振駆動装置または直流駆動装置のいずれか一方を選択して動作させるので、最初は圧電振動子を共振駆動させることによって、短時間で駆動対象物を目的位置の近傍まで移動させることができる。駆動対象物が目的位置の近傍に到達した後、圧電振動子を直流駆動、すなわち、圧電振動子に静的変位が生じるように圧電振動子を駆動させることによって、駆動対象物を目的位置に高精度に位置決めすることが可能となる。例えば、半導体デバイスの設計・製造においては、配線パターンの微細化、高集積化が進められており、ステッパのX−Yステージにナノメートルオーダーでの位置制御が要求されている。本発明の超音波モータ装置は、このような位置決め装置に好適に用いられる。
【発明の効果】
【0023】
本発明によれば、圧電振動子が、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。また、共振駆動装置または直流駆動装置のいずれか一方を選択して動作させるので、最初は圧電振動子を共振駆動させることによって、短時間で駆動対象物を目的位置の近傍まで移動させることができる。駆動対象物が目的位置の近傍に到達した後、圧電振動子を直流駆動、すなわち、圧電振動子に静的変位が生じるように圧電振動子を駆動させることによって、駆動対象物を目的位置に高精度に位置決めすることが可能となる。さらに、駆動装置から供給された電圧が、2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうので、電極構成および電源構成を簡略化させることが可能となる。
【発明を実施するための最良の形態】
【0024】
本発明者は、従来、圧電振動子を円柱形状となるように形成し、圧電振動子をL1F1共振モードで駆動させることによって、円柱の頂部で回転運動を起こさせて、駆動対象物を回転させる超音波モータは知られていたが、矩形型の圧電振動子をL1F1共振モードで駆動するものは実現されていなかった点、および、圧電振動子のいずれか一方の主面上に2枚の電極を並設した超音波モータは知られているが、矩形型の圧電振動子において、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが同一となる場合を利用した超音波モータは実現されていなかった点に着目し、圧電振動子を、その時の寸法に基づいて形成することによって、超音波モータの小型化、高効率化および構成の簡略化を実現することができることを見出し、本発明をするに至った。
【0025】
すなわち、本発明は、矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとし、w/Lを変数として、w/Lと前記圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させた場合、前記圧電振動子は、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されており、前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、前記2枚の電極のうち、少なくとも一方に対して交流電圧を印加して前記圧電振動子を駆動させる共振駆動装置と、前記2枚の電極のうち、少なくとも一方に対して直流電圧を印加して前記圧電振動子を駆動させる直流駆動装置と、前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴としている。
【0026】
これにより、本発明者は、小型化、高効率化および構成の簡略化を図ることを可能とした。以下、本発明に係る実施形態について、図面を参照しながら説明する。
【0027】
図1から図3は、本実施形態に係る圧電振動子の平面図である。この圧電振動子1は、圧電セラミクスから形成されており、紙面に対して垂直方向に分極している。また、圧電振動子1の紙面に対して上側の中央部に、駆動力を伝達する摺動チップ2が設けられている。図2に示すように、圧電振動子1が第一次縦振動モードで振動する際の伸縮方向は、図2中、矢印Aの方向と平行である。また、図3に示すように、圧電振動子1が第一次屈曲振動モードで振動する際の方向(剪断方向)は、図2に示す矢印Aと平行であるが、圧電振動子1の両端で方向が互いに逆となる。図2に示す第一次縦振動モードと図3に示す第一次屈曲振動モードとが合成(縮退)することによって、摺動チップ2は楕円運動をし、駆動力が生ずる。
【0028】
次に、本実施形態に係る超音波モータの駆動原理について説明する。図4は、矩形型の圧電振動子を複数種類の振動モードで振動させたときの周波数スペクトラムを示す図である。ここで、F1、F2およびF3は、屈曲振動を示し、L1およびL2は縦振動を示す。矩形型の圧電振動子が、第一次縦振動モード(L1)で振動する際の伸縮方向の長さをLとし、また、これと直交する方向の圧電振動子の幅をwとする。そして、図4に示すように、w/Lを変数として、w/Lと圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させる。なお、図4ではL=20mmで固定し、w(Width)のみを変化させている。この場合、縦横の二辺の比(以下、「辺比」と呼称する。)w/Lが、1.05付近で両者の共振周波数が一致し、二つの振動が縮退する。このときの共振周波数は、67kHz〜68kHzとなっている。
【0029】
このように、辺比が1.05であり、共振周波数が67kHz〜68kHzであるときに縮退が生じるため、より高い周波数(100kHz程度)で駆動する場合と比較して、効率を高めることが可能となる。また、一辺が20mm程度の正方形となるため、小型化を図ることが可能となる。
【実施例1】
【0030】
図5は、実施例1に係る超音波モータ装置の概略構成を示す図である。この超音波モータ装置10において、圧電振動子1は、矩形の圧電基板1bの一方の主面を2分割するように、電極4aと電極4bとが設けられている。他方の主面は接地されている。これらの電極4a、4bは、互いに絶縁された状態で個別に設けられる。圧電振動子1に用いられる圧電セラミクス材料には、特に制限はないが、通常、チタン酸ジルコン酸鉛系の圧電セラミクスが用いられる。
【0031】
また、超音波モータ装置10は、交流電源5と、スイッチング部6とを備えている。交流電源5からは、超音波モータ装置10に第一次縦振動モードと第一次屈曲振動モードの共振を励起させる周波数の正弦波電圧が出力される。スイッチング部6は、超音波モータ装置10を駆動する際には、電極4aと電極4bのいずれか一方に交流電源5から出力される電圧を印加する。つまり、一対の電極4aと電極4bの一方にのみ、所定の電圧が印加されている場合は、他方の電極に電圧が印加されることはない。
【0032】
このように、圧電振動子1の電極4a、4bのいずれか一方に対して交流電圧が印加されると、圧電振動子1には、図2および図3に示すように、長手方向に伸縮する第一次縦振動モードの振動と、幅方向(剪断方向)で屈曲する第一次屈曲振動モードの振動とが発生する。そして、第一次縦振動モードの共振周波数と、第一次屈曲振動モードの共振周波数とが等しいときに、両振動モードが合成(縮退)され、圧電振動子1の摺動チップ2には楕円振動が発生する。その結果、図5中、例えば、駆動対象物15を矢印Aの方向へスライドさせることができる。一方、スイッチング部6を切替えることにより、矢印Aとは逆の矢印Bの方向へ駆動対象物15をスライドさせることが可能となる。
【0033】
このように、いずれか一方の主面上に2枚の電極が並設されているため、L1F2モードの場合のように、主面を4つの領域に分けて、それぞれに電力を配置し、対角に位置する電極同士を接続しなければならない構成よりも簡単な構成にすることができる。また、駆動装置から供給された電圧が、2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうので、電源構成を簡略化させることが可能となる。
【実施例2】
【0034】
図6は、実施例2に係る超音波モータ装置の概略構成を示す図である。実施例1と同様に、この超音波モータ装置において、圧電振動子1は、摺動チップ2が楕円運動をすることにより、駆動対象物15を図6中、矢印AまたはBの方向へスライドさせる。また、圧電振動子1は、矩形の圧電基板1bの一方の主面を2分割するように、電極4aと電極4bとが設けられている。他方の主面は接地されている。これらの電極4a、4bは、互いに絶縁された状態で個別に設けられる。
【0035】
図6において、駆動装置50は、駆動対象物15の位置を検出する位置センサ31と、超音波モータ装置10を共振駆動する共振駆動装置32と、超音波モータ装置10を直流駆動する直流駆動装置33と、位置センサ31の検出信号に従って共振駆動装置32または直流駆動装置33に駆動指令信号を送る駆動制御装置(CPU)34と、を備えている。共振駆動装置32と直流駆動装置33は、増幅器35a、35bを共有している。さらに、共振駆動装置32は、第1フィードバック制御装置36と位相制御装置37とを有している。直流駆動装置33は、第2フィードバック制御装置38と信号反転器39とを有している。
【0036】
位置センサ31には、レーザを利用した非接触光学式センサシステムが好適に用いられる。例えば、駆動対象物15には駆動対象物15の位置を示すためのマーキング(図示せず)が施されており、位置センサ31は反射光パターンから駆動対象物15の位置を検出する。
【0037】
第1フィードバック制御装置36は、駆動制御装置(CPU)34から超音波モータ装置10を共振駆動させる指令信号を受信すると、超音波モータ装置10を共振駆動させるための共振駆動信号を発生させ、それを増幅器35a、35bに送る。また第1フィードバック制御装置36は、位置センサ31の検出信号を受信して、駆動対象物15の移動速度を調節する。このため第1フィードバック制御装置36は、共振駆動信号の波形を適宜変形させる(例えば、ゼロ−ピーク電圧値を変化させる)ことができるようになっている。
【0038】
第1フィードバック制御装置36から増幅器35a、35bへは同一波形の共振駆動信号が出力される。このため一方の増幅器、つまり増幅器35aに送られる共振駆動信号は増幅器35aに入力される前に位相制御装置37によって位相を90度ずらされる。例えば、第1フィードバック制御装置36から出力される共振駆動信号がV=Vsin(2πft)である場合には、増幅器35bにはこのV=Vsin(2πft)の共振駆動信号が入力されるが、増幅器35aには位相制御装置37によって位相制御されたV=Vcos(2πft)またはV=−Vcos(2πft)の共振駆動信号が入力される。
【0039】
なお、第1フィードバック制御装置36から出力される共振駆動信号はV=Vcos(2πft)であってもよい。この場合には、位相制御装置37からは、V=Vsin(2πft)またはV=−Vsin(2πft)の共振駆動信号が出力される。
【0040】
第2フィードバック制御装置38は、駆動制御装置(CPU)34から超音波モータ装置10を直流駆動させる指令信号を受け取ると、超音波モータ装置10を直流駆動させるための直流電圧信号を発生させ、それを増幅器35a、35bに送る。また第2フィードバック制御装置38は、位置センサ31からの信号を受信して、直流電圧信号の電圧値を適宜調整して増幅器35a、35bに送ることができるようになっている。
【0041】
第2フィードバック制御装置38から増幅器35a、35bへは同じ直流電圧信号が出力される。このため増幅器35aに送られる直流電圧信号は増幅器35aに入力される前に信号反転器39によって正負を逆転される。なお、駆動制御装置34は、電極4aまたは電極4bのいずれか一方のみに電圧を印加させることができ、スイッチング部として機能することができる。
【0042】
図7は、駆動装置50を用いて、駆動対象物15を、駆動対象物15のK点が位置S1にある状態から目的位置S2に位置する状態となるように、移動させる場合の制御範囲を示す説明図である。図5(a)はその全体図を、図5(b)は図5(a)中の点線枠を中心とした拡大図である。また、図8は、K点が位置S1から目的位置S2へ移動するように駆動対象物15を移動させる場合の超音波モータ装置10の駆動手順を示すフローチャートである。以下、図7および図8を参照しながら説明する。
【0043】
まず、初期状態では、超音波モータ装置10の摺動チップ2は、図7中、矢印Aの位置にあり、位置センサ31は、K点が位置S1にある(駆動対象物15は2点鎖線で示す位置にある)ことを示す検出信号を駆動制御装置(CPU)34に送っている。なお、駆動対象物15は、駆動対象物15が移動した際にK点が目的位置S2等にあることを位置センサ31が検出できるように、マーキングされている。この状態から、例えばオペレータによって、K点を目的位置S2へ移動させることを指示する信号が駆動制御装置(CPU)34に入力される。駆動制御装置(CPU)34は、位置センサ31から受信した位置検出信号から、共振駆動装置32または直流駆動装置33のどちらを駆動させるかを判断する。
【0044】
超音波モータ装置10の直流駆動による駆動対象物15の移動可能距離をLとすると、直流駆動装置33による位置決めが可能な範囲は、図5(b)に示されるように、目的位置S2から距離Lだけ離れた位置S5と位置S6の間となる。ここで、位置S1はこの位置S5〜位置S6の間から外れているものとする。そのため、駆動制御装置(CPU)34は共振駆動装置32に動作指令信号を送り、共振駆動装置32が駆動対象物15の駆動を開始する。
【0045】
超音波モータ装置10は、共振駆動によってK点が位置S5〜位置S6の間、好ましくは位置S3〜位置S4の間、に入るように駆動対象物15を移動させる駆動精度を有している。換言すれば、超音波モータ装置10の共振駆動時の位置決め制御長さは距離L以下である。しかし、超音波モータ装置10は、常にK点を目的位置S2に位置するように駆動対象物15を位置決めする駆動精度は有していない。そこでK点が位置S5〜位置S6の間(好ましくは位置S3〜位置S4の間)に入るように、駆動対象物15を移動させる。なお、「K点が目的位置S2に位置する」とは、位置センサ31による駆動対象物15の位置検出の結果、K点が目的位置S2にあると判断される状態をいい、例えば、その精度は図3に示した制御精度のように、目的位置S2を中心として±2nm以下の範囲である。
【0046】
具体的には、共振駆動装置32が具備する第1フィードバック制御装置36は、共振駆動信号(例えば、V=Vsin(2πft))を発生させて増幅器35a、35bに送る。前述したように、増幅器35aには位相制御装置37によって位相が90度ずれた共振駆動信号(V=Vcos(2πft))が入力される。増幅器35a、35bは入力された共振駆動信号の電圧増幅を行ない、この電圧増幅された信号が圧電振動子1に入力される。これにより超音波モータ装置10が共振駆動され、駆動対象物15が移動を開始する。
【0047】
駆動対象物15を目的位置S2から所定距離離れた位置S7まで高速で移動させるために、第1フィードバック制御装置36から出力される共振駆動信号のゼロ−ピーク電圧値と周波数が定められる。なお、増幅器35a、35bにおける共振駆動信号の増幅率は一定とする。駆動対象物15の位置は、位置センサ31によって検出され、その検出信号は、駆動制御装置(CPU)34と第1フィードバック制御装置36に送られる。駆動制御装置(CPU)34は、K点が位置S5と位置S6の間(より好ましくは位置S3と位置S4の間)に入ったという検出信号を位置センサ31から受信するまで共振駆動装置32に動作指令信号を送る。これに対し、第1フィードバック制御装置36は、K点が位置S7を超えて目的位置S2側に入ったという検出信号を位置センサ31から受信した場合には、駆動対象物15の移動速度を減速させて、K点が位置S5と位置S6の間(より好ましくは位置S3と位置S4の間)に入りやすくする。
【0048】
駆動対象物15の移動速度を下げる方法としては、共振駆動信号のゼロ−ピーク電圧値を下げ、または、周波数を共振周波数およびその近傍において変える方法が挙げられる。ここで、「共振周波数およびその近傍」とは超音波モータ装置10が実質的に共振駆動する周波数を指し、より具体的には、共振周波数±10%の範囲の周波数をいう。第1フィードバック制御装置36は、駆動対象物15の移動速度を減速させた後に、位置センサ31からK点が位置S5と位置S6の間(より好ましくは位置S3と位置S4の間)に入ったという検出信号を受信するまで、共振駆動信号を増幅器35a、35bに出力する。
【0049】
K点が位置S5と位置S6の間(より好ましくは位置S3と位置S4の間)に入ったら、駆動制御装置(CPU)34は、第1フィードバック制御装置36の動作を停止させ、次に第2フィードバック制御装置38の動作開始を指令する。直流駆動装置33による駆動対象物15の駆動では、第2フィードバック制御装置38が、位置センサ31から検出信号を受けながら、直流電圧信号を増幅器35a、35bに送る。前述したように、増幅器35aに向けて送られる直流電圧信号は、増幅器35aに入力される前に信号反転器39によって正負の反転処理が行なわれる。増幅器35a、35bでは直流電圧信号が一定の電圧値まで増幅され、圧電振動子1に印加される。これにより、摺動チップ2を微小に動かして、位置センサ31の検出精度限界まで、K点を目的位置S2に位置決めする。
【0050】
駆動対象物15の位置決めが終了しても、圧電振動子1には、K点が常に目的位置S2にあるように、第2フィードバック制御装置38は、位置センサ31からの検出信号を受信しながら、圧電振動子1に印加される直流電圧信号の電圧値を適宜変化させる。駆動対象物15が目的位置S2にある状態で、例えば、駆動対象物15に取り付けられた図示しない被加工体に所定の加工が施されたら、K点をさらに別の位置に、上述したようにK点を位置S1から目的位置S2へ移動させた方法と同じ方法で移動させる。
【0051】
以上、本発明の実施例について説明してきたが、本発明はこのような形態に限定されるものではない。例えば、上記説明においては、駆動対象物15を直線移動させた形態について説明したが、回転自在なロータの外周端面に摺動チップ2を押しあてて超音波モータ装置10を駆動すれば、ロータの回転角度を高精度に制御することができる。
【0052】
以上説明したように、本実施形態によれば、圧電振動子1が、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されているので、他のモード、例えば、L1F2モードで駆動させる場合よりも圧電振動子の主面の形状を正方形に近いものとすることができる。その結果、全体の寸法が扁平とならないため、奥行き寸法を小さくすることができる。これにより、パワー入力が従来のものよりも大きく取ることが可能となる。
【図面の簡単な説明】
【0053】
【図1】本実施形態に係る圧電振動子の平面図である。
【図2】本実施形態に係る圧電振動子の平面図である。
【図3】本実施形態に係る圧電振動子の平面図である。
【図4】矩形型の圧電振動子を複数種類の振動モードで振動させたときの周波数スペクトラムを示す図である。
【図5】実施例1に係る超音波モータ装置の概略構成を示す図である。
【図6】実施例2に係る超音波モータ装置の概略構成を示す図である。
【図7】駆動装置50を用いて、駆動対象物15を、駆動対象物15のK点が位置S1にある状態から目的位置S2に位置する状態となるように、移動させる場合の制御範囲を示す説明図である。
【図8】K点が位置S1から目的位置S2へ移動するように駆動対象物15を移動させる場合の超音波モータ装置10の駆動手順を示すフローチャートである。
【符号の説明】
【0054】
1 圧電振動子
1b 圧電基板
2 摺動チップ
4a 電極
4b 電極
5 交流電源
6 スイッチング部
10 超音波モータ装置
15 駆動対象物
31 位置センサ
32 共振駆動装置
33 直流駆動装置
34 駆動制御装置
35a 増幅器
35b 増幅器
36 第1フィードバック制御装置
37 位相制御装置
38 第2フィードバック制御装置
39 信号反転器
50 駆動装置


【特許請求の範囲】
【請求項1】
矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、
前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとし、w/Lを変数として、w/Lと前記圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させた場合、前記圧電振動子は、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されており、
前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、
前記2枚の電極のうち、少なくとも一方に対して交流電圧を印加して前記圧電振動子を駆動させる共振駆動装置と、
前記2枚の電極のうち、少なくとも一方に対して直流電圧を印加して前記圧電振動子を駆動させる直流駆動装置と、
前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴とする超音波モータ装置。
【請求項2】
矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、
前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとした場合、前記圧電振動子は、前記w/Lの値が実質的に1.05となるように形成されており、
前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、
前記2枚の電極のうち、少なくとも一方に対して交流電圧を印加して前記圧電振動子を駆動させる共振駆動装置と、
前記2枚の電極のうち、少なくとも一方に対して直流電圧を印加して前記圧電振動子を駆動させる直流駆動装置と、
前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴とする超音波モータ装置。
【請求項3】
前記2枚の電極と前記共振駆動装置および直流駆動装置との間に設けられ、前記共振駆動装置および直流駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部をさらに備えることを特徴とする請求項1または請求項2記載の超音波モータ装置。
【請求項4】
矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、
前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとし、w/Lを変数として、w/Lと前記圧電振動子の第一次縦振動モードの共振周波数とを対応させると共に、w/Lと第一次屈曲振動モードの共振周波数とを対応させた場合、前記圧電振動子は、第一次縦振動モードの共振周波数と第一次屈曲振動モードの共振周波数とが実質的に同一となるw/Lの値に基づいて形成されており、
前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、
前記圧電振動子を駆動する電圧を供給する駆動装置と、
前記2枚の電極と前記駆動装置との間に設けられ、前記駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部と、を備えることを特徴とする超音波モータ装置。
【請求項5】
矩形型の圧電振動子が、第一次縦振動モードと第一屈曲振動モードとを組み合わせた多重振動モードで振動することにより駆動力を発生する超音波モータ装置であって、
前記圧電振動子が第一次縦振動モードで振動する際の伸縮方向の長さをLとし、前記圧電振動子が第一次屈曲振動モードで振動する際の剪断方向の長さをwとした場合、前記圧電振動子は、前記w/Lの値が実質的に1.05となるように形成されており、
前記圧電振動子のいずれか一方の主面上に並設された2枚の電極と、
前記圧電振動子を駆動する電圧を供給する駆動装置と、
前記2枚の電極と前記駆動装置との間に設けられ、前記駆動装置から供給された電圧が、前記2枚の電極のうち、いずれか一方のみに印加されるように切り替えを行なうスイッチング部と、を備えることを特徴とする超音波モータ装置。
【請求項6】
前記駆動装置は、
交流電圧を電極に印加して前記圧電振動子を駆動させる共振駆動装置と、
直流電圧を電極に印加して前記圧電振動子を駆動させる直流駆動装置と、
前記共振駆動装置または直流駆動装置のいずれか一方を選択して動作させる制御部と、を備えることを特徴とする請求項4または請求項5記載の超音波モータ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−232642(P2009−232642A)
【公開日】平成21年10月8日(2009.10.8)
【国際特許分類】
【出願番号】特願2008−77850(P2008−77850)
【出願日】平成20年3月25日(2008.3.25)
【出願人】(000000240)太平洋セメント株式会社 (1,449)
【Fターム(参考)】