説明

車両用空調装置

【課題】乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制可能に構成された車両用空調装置を提供する。
【解決手段】車室内へ送風される送風空気を冷却する冷凍サイクルの圧縮機11の冷媒吐出能力の上限値IVOmaxを決定する上限値決定手段が、車室内へ吹き出される送風空気の目標吹出温度TAOの低下に伴って上限値IVOmaxを上昇させるように決定する。これにより、低冷房熱負荷時には上限値IVOmaxを低下させて乗員にとって耳障りとなる空調作動音の低減を図ることができ、高冷房熱負荷時には上限値IVOmaxを上昇させて空調フィーリングの悪化を抑制することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車室内の空調を行う車両用空調装置に関する。
【背景技術】
【0002】
従来、特許文献1に、送風機から送風される送風空気を蒸気圧縮式の冷凍サイクルの蒸発器にて冷却して車室内へ吹き出す車両用空調装置が開示されている。
【0003】
この特許文献1の車両用空調装置では、乗員の操作によって送風機の送風能力を設定する風量設定スイッチを備えており、設定された送風能力の低下に伴って冷凍サイクルの圧縮機の冷媒吐出能力の上限値を低下させるようにしている。これにより、送風機の送風能力を低下させた際の圧縮機の作動音等に起因する空調作動音を低減させている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−315041号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の車両用空調装置のように、送風機の送風能力を低下させた際に圧縮機の冷媒吐出能力を低下させてしまうと、蒸発器における冷媒蒸発温度が上昇してしまうので、送風空気を充分に冷却することができなくなってしまうことがある。このため、例えば、少ない送風空気量で車室内の温度を比較的低い温度に維持する場合のような高冷房熱負荷時に乗員が暑さを感じてしまい、乗員の空調フィーリング(冷房感)が悪化してしまう。
【0006】
上記点に鑑みて、本発明は、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するため、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)および圧縮機(11)へ吸入される冷媒を蒸発させる蒸発器(26)を有し、蒸発器(26)にて冷媒が蒸発する際の吸熱作用によって車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル(10)と、送風空気の目標温度(TAO)を決定する目標温度決定手段(S5)と、蒸発器(26)における冷媒の目標蒸発温度(TEO)を決定する目標蒸発温度決定手段(S111)と、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を決定する上限値決定手段(S113…S121)とを備え、
上限値決定手段(S115)は、目標温度(TAO)の低下に伴って上限値(IVOmax)を上昇させるように決定する車両用空調装置を特徴とする。
【0008】
これによれば、上限値決定手段(S115)が、目標温度(TAO)の低下に伴って圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を上昇させるように決定するので、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリング(冷房感)の悪化を抑制することができる。
【0009】
つまり、送風空気の目標温度(TAO)が比較的低くなった際、すなわち車室内温度を通常の冷房時に対して比較的低い温度に維持する場合のような高冷房熱負荷時に、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を上昇させて、蒸発器(26)における実際の冷媒蒸発温度を速やかに目標蒸発温度(TEO)に近づけることができる。
【0010】
これにより、高冷房熱負荷時には、蒸発器(26)にて送風空気の温度を充分に低下させて、乗員の空調フィーリングの悪化を抑制できる。さらに、高冷房熱負荷時は、乗員が暑さを感じ易い運転条件であるから、この運転条件における空調作動音は乗員にとって耳障りとなりにくい。
【0011】
一方、送風空気の目標温度(TAO)が比較的高くなった際、すなわち車室内温度を通常の冷房時に対して比較的高い温度に維持する場合のような低冷房熱負荷時に、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を低下させても、乗員の空調フィーリングの悪化は少ない。
【0012】
さらに、目標温度(TAO)が比較的高くなった際は、乗員が暑さを感じにくい運転条件であるから、空調作動音が乗員にとって耳障りとなりやすい。これに対して、上限値決定手段(S115)が、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を低下させるので、乗員にとって耳障りとなる空調作動音の低減を図ることができる。
【0013】
従って、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することができる。
【0014】
なお、目標温度決定手段(S5)が目標温度(TAO)を決定する際には、冷房熱負荷の増加に伴って目標温度(TAO)を低下させるように決定するようになっていてもよい。また、目標蒸発温度決定手段(S111)が、目標蒸発温度(TEO)を決定する際には、乗員の空調フィーリングを悪化させない範囲で車室内の冷房を充分に実現可能な温度に決定されることが望ましい。
【0015】
請求項2に記載の発明では、請求項1に記載の車両用空調装置において、上限値決定手段(S115)は、目標温度(TAO)が予め定めた所定温度低下した際に、上限値(IVOmax)を予め定めた所定量上昇させるように決定することを特徴とする。
【0016】
これによれば、上限値(IVOmax)を段階的に変化させることができ、目標温度(TAO)が頻繁に変化する運転条件であっても、上限値(IVOmax)が頻繁に変化してしまうことを抑制できる。従って、圧縮機(11)の作動状態の変化に伴って生じる空調作動音を抑制することができ、乗員にとって耳障りとなる空調作動音をより一層効果的に低減できる。
【0017】
請求項3に記載の発明では、請求項1または2に記載の車両用空調装置において、送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)を備え、さらに、上限値決定手段(S118)は、送風空気における車室外空気の割合である外気導入率(FRSr)の減少に伴って上限値(IVOmax)を低下させるように決定することを特徴とする。
【0018】
ここで、車室内の冷房時に、外気導入率(FRSr)を減少させると、車室外空気よりも温度の低い車室内空気を車室内へ循環送風する割合が増える。従って、外気導入率(FRSr)を減少に伴って圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を低下させても、乗員の空調フィーリングの悪化を抑制しつつ、乗員にとって耳障りとなる空調作動音を低減することができる。
【0019】
なお、本請求項の上限値決定手段(S118)は、目標温度(TAO)に基づいて決定された上限値(IVOmax)を、さらに、送風空気の内気割合に基づいて補正するものに限定されることなく、例えば、目標温度(TAO)および外気導入率(FRSr)の2つのパラメータに基づいて制御マップを参照して上限値(IVOmax)を決定する等、2つのパラメータを同時に用いて上限値(IVOmax)を決定するもの等を広く含む。
【0020】
つまり、本請求項の上限値決定手段(S113…S121)は、目標温度(TAO)に基づいて上限値(IVOmax)を決定する機能の他に、少なくとも外気導入率(FRSr)に基づいて上限値(IVOmax)を決定する機能を有するものと表現することができる。
【0021】
また、請求項4に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)を有し、車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル(10)と、送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)と、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を決定する上限値決定手段(S113…S121)とを備え、
上限値決定手段(S113、S117)は、車両の車速(Vv)の低下に伴って上限値(IVOmax)を低下させるように決定するとともに、送風空気における車室外空気の割合である外気導入率(FRSr)の減少に伴って上限値(IVOmax)を低下させるように決定する車両用空調装置を特徴とする。
【0022】
これによれば、上限値決定手段(S113、S117)が、車両の車速(Vv)の低下に伴って上限値(IVOmax)を低下させるように決定するとともに、外気導入率(FRSr)の減少に伴って上限値(IVOmax)を低下させるように決定するので、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリング(冷房感)の悪化を抑制することができる。
【0023】
つまり、車速(Vv)が低下した際には、道路と車輪との摩擦音(ロードノイズ)等が小さくなり乗員に空調作動温が聞こえやすくなるものの、上限値決定手段(S113)が、車速(Vv)の低下に伴って圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を低下させるので、乗員にとって耳障りとなる空調作動音を低減することができる。
【0024】
さらに、外気導入率(FRSr)が減少した際には、車室外空気よりも温度の低い車室内空気を車室内へ循環送風する風量割合が増えるので、上限値決定手段(S117)が、圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を低下させても、乗員の空調フィーリングの悪化を抑制しつつ、乗員にとって耳障りとなる空調作動音を低減することができる。
【0025】
従って、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することができる。
【0026】
なお、本請求項の上限値決定手段(S113、S117)は、車速(Vv)に基づいて決定された上限値(IVOmax)を、さらに、外気導入率(FRSr)に基づいて補正するものに限定されることなく、例えば、車速(Vv)および外気導入率(FRSr)の2つのパラメータに基づいて制御マップを参照して上限値(IVOmax)を決定する等、2つのパラメータを同時に用いて上限値(IVOmax)を決定するもの等を広く含む。
【0027】
つまり、本請求項の上限値決定手段(S113、S117)は、少なくとも車速(Vv)に基づいて上限値(IVOmax)を決定する機能および外気導入率(FRSr)に基づいて上限値(IVOmax)を決定する機能を有するものと表現することができる。
【0028】
請求項5に記載の発明では、請求項4に記載の車両用空調装置において、上限値決定手段(S118)は、外気導入率(FRSr)が予め定めた所定量減少した際に、上限値(IVOmax)を予め定めた所定量低下させることを特徴とする。
【0029】
これによれば、上限値(IVOmax)を段階的に変化させることができ、車速(Vv)あるいは外気導入率(FRSr)が頻繁に変化する運転条件であっても、上限値(IVOmax)が頻繁に変化してしまうことを抑制できる。従って、圧縮機(11)の作動状態の変化に伴って生じる空調作動音を抑制することができ、乗員にとって耳障りとなる空調作動音をより一層効果的に低減できる。
【0030】
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載の車両用空調装置において、さらに、上限値決定手段(S116)は、日射量(Ts)の増加に伴って上限値(IVOmax)を上昇させるように決定することを特徴とする。
【0031】
ここで、日射量(Ts)が増加すると車両天井温度や窓ガラス温度が上昇するので、その輻射熱によって乗員が暑さを感じやすくなる。従って、上限値決定手段(S116)が日射量(Ts)の増加に伴って上限値(IVOmax)を上昇させる機能を有していることで、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0032】
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の車両用空調装置において、さらに、上限値決定手段(S117)は、外気温(Tam)の上昇に伴って上限値(IVOmax)を上昇させるように決定することを特徴とする。
【0033】
ここで、外気温(Tam)が上昇すると蒸発器(26)にて車室外空気を充分に温度低下させることができなくなり、乗員が暑さを感じやすくなる。従って、上限値決定手段(S117)が外気温(Tam)の上昇に伴って上限値(IVOmax)を上昇させる機能を有していることで、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0034】
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の車両用空調装置において、乗員の操作によって車室内の設定温度(Tset)を設定する車室内温度設定手段とを備え、さらに、上限値決定手段(S119)は、設定温度(Tset)の低下に伴って上限値(IVOmax)を上昇させるように決定することを特徴とする。
【0035】
ここで、乗員の操作によって設定された設定温度(Tset)が低下した際には、乗員が暑さを感じている運転条件である。従って、上限値決定手段(S119)が設定温度(Tset)の上昇に伴って上限値(IVOmax)を増加させる機能を有していることで、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0036】
請求項9に記載の発明では、請求項1ないし8のいずれか1つに記載の車両用空調装置において、送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)と、送風空気の目標温度(TAO)を決定する目標温度決定手段(S5)とを備え、上限値決定手段(S119)は、目標温度(TAO)が予め定めた基準目標温度(KTAO)以上となり、かつ、送風空気における車室外空気の割合である外気導入率(FRSr)が予め定めた基準外気導入率(KFRSr)以下となった際に、上限値(IVOmax)を上昇させるように決定することを特徴とする。
【0037】
これによれば、基準目標温度(KTAO)として車室内の暖房が行われる温度を設定し、基準外気導入率(KFRSr)として、送風空気における車室内空気の割合よりも車室外空気の割合が小さくなる値を設定しておくことで、車両窓ガラスの曇りが発生しやすい運転条件に圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を上昇させることができる。従って、車両窓ガラスの防曇性を向上して、乗員の視認性(安全性)を確保できる。
【0038】
請求項10に記載の発明では、請求項1ないし9のいずれか1つに記載の車両用空調装置において、送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)を備え、上限値決定手段(S119)は、外気温(Tam)が予め定めた基準外気温(KTam)以下となり、かつ、送風空気における車室外空気の割合である外気導入率(FRSr)が予め定めた基準外気導入率(KRFSr)以下となった際に、上限値(IVOmax)を増加させるように決定することを特徴とする。
【0039】
これによれば、基準外気温(KTam)として車室内の暖房が必要となる温度を設定し、基準外気導入率(KFRSr)として、送風空気における車室内空気の割合よりも車室外空気の割合が小さくなる値を設定しておくことで、車両窓ガラスの曇りが発生しやすい運転条件に圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を上昇させることができる。従って、車両窓ガラスの防曇性を向上して、乗員の視認性(安全性)を確保できる。
【0040】
なお、請求項9および10において、具体的に、基準目標温度(KTAO)として、外気温(Tam)より高い温度を採用してもよいし、乗員が暖かいと感じる程度の温度以上の値を採用してもよい。ここで、乗員が暖かいと感じる温度は、一般的に、25℃〜30℃程度と定義できる。
【0041】
さらに、具体的に、基準外気温(KTam)として、車室内の暖房を行う必要のある温度、すなわち乗員が寒いと感じる程度の温度以下の値を採用してもよい。ここで、乗員が寒いと感じる程度の温度は、一般的に、20℃以下程度と定義できる(渡辺 敏監修、「自動車工学シリーズ カーエアコン 第2版」、株式会社 山海堂発行、2003年1月15日、p43参照)。
【0042】
また、基準外気導入率(KFRSr)としては、送風空気における車室内空気の割合よりも車室外空気の割合が小さくなる値以下、すなわち50%以下の値を採用してもよい。
【0043】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【図面の簡単な説明】
【0044】
【図1】第1実施形態の車両用空調装置の冷房モード時の冷媒回路を示す全体構成図である。
【図2】第1実施形態の車両用空調装置の暖房モード時の冷媒回路を示す全体構成図である。
【図3】第1実施形態の車両用空調装置の第1除湿モード時の冷媒回路を示す全体構成図である。
【図4】第1実施形態の車両用空調装置の第2除湿モード時の冷媒回路を示す全体構成図である。
【図5】第1実施形態の車両用空調装置の電気制御部を示すブロック図である。
【図6】第1実施形態の車両用空調装置の制御処理を示すフローチャートである。
【図7】第1実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
【図8】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図9】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図10】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図11】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図12】第1実施形態の各運転モードにおける各電磁弁の作動状態を示す図表である。
【図13】第2実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
【図14】第3実施形態の車両用空調装置の全体構成図である。
【発明を実施するための形態】
【0045】
(第1実施形態)
以下、図面を用いて、本発明の第1実施形態を説明する。まず、図1〜4は、本実施形態の車両用空調装置1の全体構成図であり、図5は、車両用空調装置1の電気制御部を示すブロック図である。本実施形態では、この車両用空調装置1を、内燃機関(エンジン)EGおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド車両に適用している。
【0046】
本実施形態のハイブリッド車両は、車両停車時に外部電源(商用電源)から供給された電力をバッテリ81に充電することのできる、いわゆるプラグインハイブリッド車両として構成されている。プラグインハイブリッド車両は、車両走行開始前の車両停車時に外部電源からバッテリ81に充電しておくことによって、走行開始時のようにバッテリ81の蓄電残量SOCが予め定めた走行用基準残量以上になっているときには、主に走行用電動モータの駆動力によって走行する(以下、この運転モードをEV運転モードという)。
【0047】
一方、車両走行中にバッテリ81の蓄電残量SOCが走行用基準残量よりも低くなっているときには、主にエンジンEGの駆動力によって走行する(以下、この運転モードをHV運転モードという)。このようにEV運転モードとHV運転モードとを切り替えることによって、車両走行用の駆動力をエンジンEGのみから得る通常の車両に対してエンジンEGの燃料消費量を抑制して、車両燃費を向上させている。
【0048】
なお、EV運転モードは、主に走行用電動モータが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際にはエンジンEGを作動させて走行用電動モータを補助する。同様に、HV運転モードは、主にエンジンEGが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジンEGを補助する。このようなエンジンEGおよび走行用電動モータの作動は、図示しないエンジン制御装置によって制御される。
【0049】
また、エンジンEGから出力される駆動力は、車両走行用として用いられるのみならず、発電機80を作動させるためにも用いられる。そして、発電機80にて発電された電力および外部電源から供給された電力は、バッテリ81に蓄えることができる。従って、本実施形態の発電機80は、バッテリ81に電力を充電する充電手段を構成している。
【0050】
さらに、車両走行時に発電機80が発電した電力のうち、バッテリ81へ充電される電力は、エンジン制御装置によって制御される。これにより、バッテリ81の過充電および過放電が抑制される。従って、本実施形態のエンジン制御装置は、バッテリ81へ充電される電力量を制御する充電制御手段としての機能を備えている。バッテリ81に蓄えられた電力は、走行用電動モータのみならず、車両用空調装置1を構成する電動式構成機器をはじめとする各種電動式の車載機器に供給できる。
【0051】
次に、本実施形態の車両用空調装置1の詳細構成を説明する。この車両用空調装置1は、車両走行時に車室内の空調を行う通常空調の他に、乗員が車両に乗り込む前に車室内の空調を行うプレ空調を行うことができる。さらに、この車両用空調装置1は、車室内を冷房する冷房モード(COOLサイクル)、車室内を暖房する暖房モード(HOTサイクル)、車室内を除湿する第1除湿モード(DRY_EVAサイクル)および第2除湿モード(DRY_ALLサイクル)の冷媒回路を切替可能に構成された蒸気圧縮式の冷凍サイクル10を備えている。
【0052】
図1〜4では、それぞれ、冷房モード、暖房モード、第1、第2除湿モード時の冷凍サイクル10における冷媒の流れを実線矢印で示している。なお、第1除湿モードは、暖房能力に対して除湿能力を優先する除湿モードであり、第2除湿モードは、除湿能力に対して暖房能力を優先する除湿モードである。従って、第1除湿モードを低温除湿モードあるいは単なる除湿モード、第2除湿モードを高温除湿モードあるいは除湿暖房モードと表現することもできる。
【0053】
冷凍サイクル10は、圧縮機11、室内熱交換器としての室内凝縮器12および室内蒸発器26、冷媒を減圧膨張させる減圧手段としての温度式膨張弁27および固定絞り14、並びに、冷媒回路切替手段としての複数(本実施形態では5つ)の電磁弁13、17、20、21、24等を備え、車室内へ送風される送風空気の温度を調整する温度調整手段としての機能を果たす。
【0054】
また、この冷凍サイクル10では、冷媒としてフロン系冷媒を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、この冷凍機油の一部は冷媒とともにサイクルを循環している。
【0055】
圧縮機11は、エンジンルーム内に配置され、冷凍サイクル10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機構11aを電動モータ11bにて駆動する電動圧縮機として構成されている。
【0056】
固定容量型圧縮機構11aとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。電動モータ11bは、インバータ61から出力される交流電圧によって、その作動(回転数)が制御される交流モータである。また、インバータ61は、後述する空調制御装置50から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータ11bは、圧縮機11の吐出能力変更手段を構成している。
【0057】
圧縮機11の吐出側には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、車両用空調装置の室内空調ユニット30において車室内へ送風される送風空気の空気通路を形成するケーシング31内に配置されて、その内部を流通する冷媒と後述する室内蒸発器26通過後の送風空気とを熱交換させることで送風空気を加熱する加熱用熱交換器である。なお、室内空調ユニット30の詳細については後述する。
【0058】
室内凝縮器12の冷媒出口側には、電気式三方弁13が接続されている。この電気式三方弁13は、空調制御装置50から出力される制御電圧によって、その作動が制御される冷媒回路切替手段である。
【0059】
より具体的には、電気式三方弁13は、電力が供給される通電状態では、室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続する冷媒回路に切り替え、電力の供給が停止される非通電状態では、室内凝縮器12の冷媒出口側と第1三方継手15の1つの冷媒流入出口との間を接続する冷媒回路に切り替える。
【0060】
固定絞り14は、暖房モード、第1および第2除湿モード時に、電気式三方弁13から流出した冷媒を減圧膨張させる暖房除湿用の減圧手段である。この固定絞り14としては、キャピラリチューブ、オリフィス等を採用できる。もちろん、暖房除湿用の減圧手段として、空調制御装置50から出力される制御信号によって絞り通路面積が調整される電気式の可変絞り機構を採用してもよい。固定絞り14の冷媒出口側には、後述する第3三方継手23の冷媒流入出口が接続されている。
【0061】
第1三方継手15は、3つの冷媒流入出口を有し、冷媒流路を分岐する分岐部として機能するものである。このような三方継手は、冷媒配管を接合して構成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて構成してもよい。また、第1三方継手15の別の冷媒流入出口には、室外熱交換器16の一方の冷媒流入出口が接続され、さらに別の冷媒流入出口には、低圧電磁弁17の冷媒入口側が接続されている。
【0062】
低圧電磁弁17は、冷媒流路を開閉する弁体部と、弁体部を駆動するソレノイド(コイル)を有し、空調制御装置50から出力される制御電圧によって、その作動が制御される冷媒回路切替手段である。より具体的には、低圧電磁弁17は、通電状態で開弁して非通電状態で閉弁する、いわゆるノーマルクローズ型の開閉弁として構成されている。
【0063】
低圧電磁弁17の冷媒出口側には、第1逆止弁18を介して、後述する第5三方継手28の1つの冷媒流入出口が接続されている。この第1逆止弁18は、低圧電磁弁17側から第5三方継手28側へ冷媒が流れることのみを許容している。
【0064】
室外熱交換器16は、エンジンルーム内に配置されて、内部を流通する冷媒と送風ファン16aから送風された車室外空気(外気)とを熱交換させるものである。送風ファン16aは、空調制御装置50から出力される制御電圧によって回転数(送風能力)が制御される電動式送風機である。
【0065】
さらに、本実施形態の送風ファン16aは、室外熱交換器16のみならず、エンジンEGの冷却水を放熱させるラジエータ(図示せず)にも室外空気を送風している。具体的には、送風ファン16aから送風された車室外空気は、室外熱交換器16→ラジエータの順に流れる。ラジエータは、図1〜4の破線で示す冷却水回路40を構成する冷却水配管に接続されている。この冷却水回路40については後述する。
【0066】
室外熱交換器16の他方の冷媒流入出口には、第2三方継手19の1つの冷媒流入出口が接続されている。この第2三方継手19の基本的構成は、第1三方継手15と同様である。また、第2三方継手19の別の冷媒流入出口には、高圧電磁弁20の冷媒入口側が接続され、さらに別の冷媒流入出口には、熱交換器遮断電磁弁21の一方の冷媒流入出口が接続されている。
【0067】
高圧電磁弁20および熱交換器遮断電磁弁21は、空調制御装置50から出力される制御電圧によって、その作動が制御される冷媒回路切替手段であり、その基本的構成は、低圧電磁弁17と同様である。但し、高圧電磁弁20および熱交換器遮断電磁弁21は、通電状態で閉弁して非通電状態で開弁する、いわゆるノーマルオープン型の開閉弁として構成されている。
【0068】
高圧電磁弁20の冷媒出口側には、第2逆止弁22を介して、後述する温度式膨張弁27の絞り機構部入口側が接続されている。この第2逆止弁22は、高圧電磁弁20側から温度式膨張弁27側へ冷媒が流れることのみを許容している。
【0069】
熱交換器遮断電磁弁21の他方の冷媒流入出口には、第3三方継手23の1つの冷媒流入出口が接続されている。この第3三方継手23の基本的構成は、第1三方継手15と同様である。また、第3三方継手23の別の冷媒流入出口には、前述の如く、固定絞り14の冷媒出口側が接続され、さらに別の冷媒流入出口には、除湿電磁弁24の冷媒入口側が接続されている。
【0070】
除湿電磁弁24は、空調制御装置50から出力される制御電圧によって、その作動が制御される冷媒回路切替手段であり、その基本的構成は、低圧電磁弁17と同様である。さらに、除湿電磁弁24もノーマルクローズ型の開閉弁として構成されている。そして、本実施形態の冷媒回路切替手段は、電力の供給が停止されると予め定めた開弁状態あるいは閉弁状態となる電気式三方弁13、低圧電磁弁17、高圧電磁弁20、熱交換器遮断電磁弁21、除湿電磁弁24の複数(5つ)の電磁弁によって構成される。
【0071】
除湿電磁弁24の冷媒出口側には、第4三方継手25の1つの冷媒流入出口が接続されている。この第4三方継手25の基本的構成は、第1三方継手15と同様である。また、第4三方継手25の別の冷媒流入出口には、温度式膨張弁27の絞り機構部出口側が接続され、さらに別の冷媒流入出口には、室内蒸発器26の冷媒入口側が接続されている。
【0072】
室内蒸発器26は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の送風空気流れ上流側に配置されて、その内部を流通する冷媒と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器である。
【0073】
室内蒸発器26の冷媒出口側には、温度式膨張弁27の感温部入口側が接続されている。温度式膨張弁27は、絞り機構部入口から内部へ流入した冷媒を減圧膨張させて絞り機構部出口から外部へ流出させる冷房用の減圧手段である。
【0074】
より具体的には、本実施形態では、温度式膨張弁27として、室内蒸発器26出口側冷媒の温度および圧力に基づいて室内蒸発器26出口側冷媒の過熱度を検出する感温部27aと、感温部27aの変位に応じて室内蒸発器26出口側冷媒の過熱度が予め定めた所定範囲となるように絞り通路面積(冷媒流量)を調整する可変絞り機構部27bとを1つのハウジング内に収容した内部均圧型膨張弁を採用している。
【0075】
温度式膨張弁27の感温部出口側には、第5三方継手28の1つの冷媒流入出口が接続されている。この第5三方継手28の基本的構成は、第1三方継手15と同様である。また、第5三方継手28の別の冷媒流入出口には、前述の如く、第1逆止弁18の冷媒出口側が接続され、さらに別の冷媒流入出口には、アキュムレータ29の冷媒入口側が接続されている。
【0076】
アキュムレータ29は、第5三方継手28から、その内部に流入した冷媒の気液を分離して、余剰冷媒を蓄える低圧側気液分離器である。さらに、アキュムレータ29の気相冷媒出口には、圧縮機11の冷媒吸入口が接続されている。
【0077】
次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、前述の室内蒸発器26、室内凝縮器12、ヒータコア36、PTCヒータ37等を収容したものである。
【0078】
ケーシング31は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置31aが配置されている。
【0079】
内外気切替装置31aは、ケーシング31内に内気を導入させる内気導入口(図1〜図4のREC側)および外気を導入させる外気導入口(図1〜図4のFRS側)が形成された箱状体の内部に、内気導入口および外気導入口の開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる内外気切替ドアを収容して構成されたものである。
【0080】
さらに、内外気切替ドアは、内外気切替ドア用の電動アクチュエータ62によって駆動され、この電動アクチュエータ62は、空調制御装置50から出力される制御信号によって、その作動が制御される。
【0081】
内外気切替ドアによって切り替えられる吸込口モードとしては、内気導入口を全開とするとともに外気導入口を全閉としてケーシング31内へ内気を導入する内気モード、内気導入口を全閉とするとともに外気導入口を全開としてケーシング31内へ外気を導入する外気モード、および、内気モードと外気モードとの間で、内気導入口および外気導入口の開口面積を連続的に調整することにより、内気と外気の導入比率を連続的に変化させる内外気混入モードがある。
【0082】
従って、本実施形態の内外気切替装置31aは、車室内へ送風される送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段を構成している。内外気切替装置31aの空気流れ下流側には、内外気切替装置31aを介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置50から出力される制御電圧によって回転数(送風能力)が制御される。
【0083】
送風機32の空気流れ下流側には、前述の室内蒸発器26が配置されている。さらに、室内蒸発器26の空気流れ下流側には、室内蒸発器26通過後の空気を流す加熱用冷風通路33、冷風バイパス通路34といった空気通路、並びに、加熱用冷風通路33および冷風バイパス通路34から流出した空気を混合させる混合空間35が形成されている。
【0084】
加熱用冷風通路33には、室内蒸発器26通過後の空気を加熱するための加熱手段としてのヒータコア36、室内凝縮器12、およびPTCヒータ37が、送風空気流れ方向に向かってこの順で配置されている。ヒータコア36は、冷却水回路40を構成する冷却水配管に接続されており、エンジンEGの冷却水と室内蒸発器26通過後の空気とを熱交換させて、室内蒸発器26通過後の空気を加熱する加熱用熱交換器である。
【0085】
ここで、冷却水回路40について説明する。冷却水回路40は、エンジンEGを冷却する冷却水を循環させる回路である。さらに、冷却水回路40の冷却水配管には、冷却水を圧送する電動式の冷却水ポンプ40aが配置されている。この冷却水ポンプ40aは、空調制御装置50から出力される制御電圧によって回転数(水圧送能力)が制御される。
【0086】
そして、空調制御装置50が冷却水ポンプ40aを作動させることによって、エンジンEGの廃熱によって加熱された冷却水が、ラジエータあるいはヒータコア36へ流入することによって冷却され、ラジエータあるいはヒータコア36にて冷却された冷却水が、再びエンジンEGへ戻るように構成されている。
【0087】
つまり、冷却水は、ヒータコア36にて車室内へ送風される送風空気を加熱する熱源媒体であり、冷却水回路40のうち、図1〜4の破線で示す冷却水ポンプ40a→ヒータコア36→エンジンEG→冷却水ポンプ40aの順に冷却水を循環させる回路は、送風空気の温度を調整する温度調整手段を構成している。
【0088】
また、PTCヒータ37は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力を供給されることによって発熱して、室内凝縮器12通過後の空気を加熱する電気ヒータである。なお、本実施形態のPTCヒータ37は、複数本(具体的には3本)設けられており、空調制御装置50が、通電するPTCヒータ37の本数を変化させることによって、複数のPTCヒータ37全体としての加熱能力が制御される。
【0089】
一方、冷風バイパス通路34は、室内蒸発器26通過後の空気を、ヒータコア36、室内凝縮器12、およびPTCヒータ37を通過させることなく、混合空間35に導くための空気通路である。従って、混合空間35にて混合された送風空気の温度は、加熱用冷風通路33を通過する空気および冷風バイパス通路34を通過する空気の風量割合によって変化する。
【0090】
そこで、本実施形態では、室内蒸発器26の空気流れ下流側であって、加熱用冷風通路33および冷風バイパス通路34の入口側に、加熱用冷風通路33および冷風バイパス通路34へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア38を配置している。
【0091】
従って、エアミックスドア38は、混合空間35内の空気温度(車室内へ送風される送風空気の温度)を調節する温度調節手段を構成している。より具体的には、エアミックスドア38は、エアミックスドア用の電動アクチュエータ63によって駆動され、この電動アクチュエータ63は、空調制御装置50から出力される制御信号によって、その作動が制御される。
【0092】
さらに、ケーシング31の送風空気流れ最下流部には、混合空間35から冷却対象空間である車室内へ温度調整された送風空気を吹き出す吹出口(図示せず)が配置されている。この吹出口としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口、乗員の足元に向けて空調風を吹き出すフット吹出口、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ吹出口が設けられている。
【0093】
また、フェイス吹出口、フット吹出口、およびデフロスタ吹出口の空気流れ上流側には、それぞれ、フェイス吹出口の開口面積を調整するフェイスドア、フット吹出口の開口面積を調整するフットドア、デフロスタ吹出口の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
【0094】
これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切替える吹出口モード切替手段を構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータ64に連結されて連動して回転操作される。なお、この電動アクチュエータ64も、空調制御装置50から出力される制御信号によってその作動が制御される。
【0095】
また、吹出口モード切替手段によって切り替えられる吹出口モードとしては、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード、およびフット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出すフットデフロスタモードがある。
【0096】
さらに、乗員が後述する操作パネル60のスイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
【0097】
なお、本実施形態の車両用空調装置1が適用されるハイブリッド車両は、車両用空調装置とは別に、図示しない電熱デフォッガを備えている。電熱デフォッガとは、車室内窓ガラスの内部あるいは表面に配置された電熱線であって、窓ガラスを加熱することで防曇あるいは窓曇り解消を行うものである。この電熱デフォッガについても空調制御装置50から出力される制御信号によって、その作動を制御できるようになっている。
【0098】
次に、図5により、本実施形態の電気制御部について説明する。空調制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された圧縮機11の電動モータ11b用のインバータ61、冷媒回路切替手段を構成する各電磁弁13、17、20、21、24、送風ファン16a、送風機32、PTCヒータ37、各種電動アクチュエータ62、63、64等の作動を制御する。
【0099】
また、空調制御装置50の入力側には、車室内温度Trを検出する内気センサ51、外気温Tamを検出する外気センサ52(外気温検出手段)、車室内の日射量Tsを検出する日射センサ53、圧縮機11の吐出冷媒温度Tdを検出する吐出温度センサ54(吐出温度検出手段)、圧縮機11の吐出側冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ55(吐出圧力検出手段)、室内蒸発器26における冷媒蒸発温度(蒸発器温度)Teを検出する蒸発器温度センサ56(蒸発器温度検出手段)、第1三方継手15と低圧電磁弁17との間を流通する冷媒の温度Tsiを検出する吸入温度センサ57、ヒータコア36へ流入するエンジン冷却水温度Twを検出する冷却水温度センサ等の空調制御用のセンサ群の検出信号が入力される。
【0100】
なお、本実施形態の圧縮機11の吐出側冷媒圧力(高圧側冷媒圧力)Pdは、冷房モードでは、圧縮機11の冷媒吐出口側から温度式膨張弁27の可変絞り機構部27b入口側へ至るサイクルの高圧側冷媒圧力であり、その他の運転モードでは、圧縮機11の冷媒吐出口側から固定絞り14入口側へ至るサイクルの高圧側冷媒圧力となる。なお、吐出圧力センサ55は、一般的な冷凍サイクルにおいても、高圧側冷媒圧力の異常上昇を監視するために設けられている。
【0101】
また、蒸発器温度センサ56は、具体的に室内蒸発器26の熱交換フィン温度を検出している。もちろん、蒸発器温度センサ56として、室内蒸発器26のその他の部位の温度を検出する温度検出手段を採用してもよいし、室内蒸発器26を流通する冷媒自体の温度を直接検出する温度検出手段を採用してもよい。
【0102】
さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル60に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル60に設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、オートスイッチ、運転モードの切替スイッチ、吹出口モードの切替スイッチ、送風機32の風量設定スイッチ、車室内温度設定手段としての車室内温度設定スイッチ、エコノミースイッチ、現在の車両用空調装置1の作動状態等を表示する表示部60a等が設けられている。
【0103】
オートスイッチは、車両用空調装置1の自動制御を設定あるいは解除するスイッチである。また、エコノミースイッチは、冷凍サイクル10の省動力化を優先させるスイッチである。さらに、エコノミースイッチを投入することにより、EV運転モード時に、走行用電動モータを補助するために作動させるエンジンEGの作動頻度を低下させる信号がエンジン制御装置に出力される。
【0104】
また、空調制御装置50は、乗員が携帯する無線端末90(具体的には、リモコン)あるいは移動体通信手段(具体的には、携帯電話、スマートフォン)と制御信号の送受信を行う送受信部50aを有している。この無線端末90あるいは移動体通信手段は、乗員が前述のプレ空調を行うことの要求信号を出力する機能を果たす。
【0105】
また、図示しないエンジン制御装置は、空調制御装置50と同様に、周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶されたエンジン制御用プログラムに基づいて各種演算、処理を行い、出力側に接続された各種エンジン制御機器の作動を制御する。
【0106】
エンジン制御装置の出力側には、エンジンEGを構成する各種エンジン構成機器等が接続されている。具体的には、エンジンEGを始動させるスタータ、エンジンEGに燃料を供給する燃料噴射弁(インジェクタ)の駆動回路(いずれも図示せず)等が接続されている。
【0107】
エンジン制御装置の入力側には、バッテリ81の端子間電圧VBを検出する電圧計、アクセル開度Accを検出するアクセル開度センサ、エンジン回転数Neを検出するエンジン回転数センサ、車速Vvを検出する車速センサ(いずれも図示せず)等の種々のエンジン制御用のセンサ群が接続されている。
【0108】
さらに、空調制御装置50およびエンジン制御装置は、電気的に接続されて通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。例えば、空調制御装置50がエンジン制御装置へエンジンEGの作動要求指令を出力することによって、エンジンEGを作動させることができる。
【0109】
なお、空調制御装置50およびエンジン制御装置は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
【0110】
例えば、空調制御装置50のうち、圧縮機11の電動モータ11bに接続されたインバータ61から出力される交流電圧の周波数を制御して、圧縮機11の冷媒吐出能力を制御する構成が圧縮機制御手段を構成し、送風手段である送風機32の作動を制御して、送風機32の送風能力を制御する構成が送風機制御手段を構成している。
【0111】
次に、図6により、上記構成における本実施形態の作動を説明する。図6は、本実施形態の車両用空調装置1の制御処理を示すフローチャートである。この制御処理は、車両システムが停止している場合でも、バッテリから空調制御装置50に電力が供給されていれば実行される。なお、図6〜図12中の各制御ステップは、空調制御装置50が有する各種の機能実現手段を構成している。
【0112】
まず、ステップS1では、車両用空調装置1の作動スイッチが投入(ON)されているか否か、および、プレ空調のスタートスイッチが投入されているか否かを判定する。そして、車両用空調装置1の作動スイッチ、あるいはプレ空調のスタートスイッチが投入されていると判定されるとステップS2へ進む。
【0113】
ステップS2では、フラグ、タイマ等の初期化、および上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等が行われる。なお、フラグの初期化には、現在のフラグの状態を維持することも含まれる。ステップS3では、操作パネル60の操作信号を読み込んでステップS4へ進む。具体的な操作信号としては、車室内温度設定スイッチによって設定される車室内設定温度Tset、吹出口モードの選択信号、吸込口モードの選択信号、送風機32の風量の設定信号等がある。
【0114】
ステップS4では、空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群51〜57の検出信号を読み込んで、ステップS5へ進む。ステップS5では、車室内吹出空気の目標吹出温度TAOを算出する。さらに、暖房モードでは、暖房用熱交換器目標温度を算出する。目標吹出温度TAOは、下記数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ51によって検出された内気温、Tamは外気センサ52によって検出された外気温、Tsは日射センサ53によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
【0115】
また、暖房用熱交換器目標温度は、基本的に上述の数式F1にて算出される値となるが、消費電力の抑制のために数式F1にて算出されTAOよりも低い値とする補正が行われる場合もある。従って、本実施形態の制御ステップS5は、車室内へ送風される送風空気の目標温度決定手段を構成している。
【0116】
さらに、上記数式F1から明らかなように、本実施形態の目標温度決定手段を構成する制御ステップS5は、内気温Trが高い場合、外気温Tamが高い場合、さらに日射量Tsが多い場合のように、冷房熱負荷が増加するに伴って目標吹出温度TAOを低下させるように決定している。つまり、目標吹出温度TAOは、車室内の空調熱負荷を総合的に表す指標であり、乗員の所望の車室内温度を実現するために必要な送風空気の温度を表しているといえる。
【0117】
また、暖房用熱交換器目標温度は、基本的に上述の数式F1にて算出される値となるが、消費電力の抑制のために数式F1にて算出されTAOよりも低い値とする補正が行われる場合もある。従って、本実施形態の制御ステップS5は、車室内へ送風される送風空気の目標温度決定手段を構成している。
【0118】
続くステップS6〜S16では、空調制御装置50に接続された各種機器の制御状態が決定される。まず、ステップS6では、空調環境状態に応じて、冷房モード、暖房モード、第1除湿モードおよび第2除湿モードの選択およびPTCヒータ37に対する通電有無の決定が行われる。このステップS6の詳細については、図7を用いて説明する。
【0119】
ステップS61では、プレ空調を行っているか否かを判定する。ステップS61にてプレ空調を行っていると判定された場合は、ステップS62へ進み、外気温Tamが−3℃よりも低いか否かを判定する。ステップS62にて外気温Tamが−3℃よりも低いと判定された場合は、ステップS63にてPTCヒータ37への通電の必要があると判定してステップS7へ進む。
【0120】
このように外気温Tamが−3℃よりも低いときにPTCヒータ37への通電が必要であると判定する理由は、外気温Tamが−3℃よりも低いときに冷凍サイクル10にて暖房を行うと、サイクルの高低圧差が大きくなり、サイクル効率(COP)が低下してしまうとともに、室外熱交換器16における冷媒蒸発温度が低くなり、室外熱交換器16に着霜するおそれがあるからである。
【0121】
ステップS62にて外気温Tamが−3℃よりも低くなっていないと判定された場合は、ステップS64へ進み、吹出口モードがフェイスモードであるか否かを判定する。ステップS64にて吹出口モードがフェイスモードであると判定された場合は、ステップS65へ進み、冷房モードを選択してステップS7へ進む。その理由は、後述するステップS9で説明するように、フェイスモードは主に夏季に選択される運転モードだからである。
【0122】
ステップS64にて吹出口モードがフェイスモードでないと判定された場合は、ステップS66へ進み、室内蒸発器26における冷媒蒸発温度Teの低下に伴って除湿の必要性が高くなるものとして、暖房モード→第1除湿モード→第2除湿モードの順に選択されて、ステップS7へ進む。
【0123】
一方、ステップS61にてプレ空調を行っていないと判定された場合は、ステップS67へ進み、外気温Tamが−3℃よりも低いか否かを判定する。ステップS67にて外気温Tamが−3℃よりも低いと判定された場合は、ステップS68へ進み、冷房モードを選択してステップS7へ進む。
【0124】
ステップS67にて外気温Tamが−3℃よりも低くなっていないと判定された場合は、ステップS69へ進み、吹出口モードがフェイスモードであるか否かを判定する。ステップS69にて吹出口モードがフェイスモードであると判定された場合は、ステップS70へ進み、冷房モードを選択してステップS7へ進む。その理由はステップS65と同様である。ステップS69にて吹出口モードがフェイスモードでないと判定された場合は、前述のステップS66へ進む。
【0125】
ステップS7では、送風機32により送風される空気の目標送風量を決定する。具体的には、送風機32の電動モータに印加するブロワモータ電圧を決定する。このステップ7では、操作パネル60のオートスイッチが投入されていない場合には、操作パネル60の風量設定スイッチによってマニュアル設定された乗員の所望の風量となるブロワモータ電圧が決定されて、ステップS8へ進む。
【0126】
一方、操作パネル60のオートスイッチが投入されている場合には、TAOの極低温域(最大冷房域)および極高温域(最大暖房域)でブロワモータ電圧を最大値付近の高電圧(例えば、12V)にして、送風機32の風量を最大風量付近に制御する。
【0127】
さらに、TAOが極低温域から中間温度域に向かって上昇すると、TAOの上昇に応じてブロワモータ電圧を減少して送風機32の風量を減少させ、TAOが極高温域から中間温度域に向かって低下すると、TAOの低下に応じてブロワモータ電圧を減少して送風機32の風量を減少させる。また、TAOが所定の中間温度域内に入ると、ブロワモータ電圧を最小値付近の低電圧(例えば、4V)にして送風機32の風量を最小値にする。
【0128】
なお、このステップS7では、現在の車両用空調装置1の作動がプレ空調としての作動である場合は、プレ空調としての作動でない場合よりも、ブロワモータ電圧の値が小さくなるように決定してもよい(例えば、上記の高電圧を10Vとし、低電圧を3V)。また、プレ空調の開始から時間経過に伴って徐々にブロワモータ電圧を小さくしてもよい。これにより、プレ空調時における送風機32の消費電力を低減させることができる。
【0129】
ステップS8では、吸込口モードを決定する。換言すると、ステップS8では、送風空気における車室外空気の割合である外気導入率FRSrを決定する。このステップS8の詳細については、図8を用いて説明する。ステップS81では、TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して第1外気導入率FRSr1を決定する。
【0130】
具体的には、TAOが0℃から20℃へ上昇するに伴って第1外気導入率FRSr1は0%から100%へ増加するように決定して、ステップS82へ進む。なお、ステップS81においてTAOが0℃以下では、第1外気導入率FRSr1は0%となり、20℃以上では、第1外気導入率FRSr1は100%となる。
【0131】
ステップS82では、外気温Tamに基づいて、予め空調制御装置50に記憶された制御マップを参照して第2外気導入率FRSr2を決定する。具体的には、Tamが25℃以上では、第2外気導入率FRSr2を0%に決定し、Tamが25℃未満では、第2外気導入率FRSr2を100%に決定して、ステップS83へ進む。
【0132】
ステップS83では、第1外気導入率FRSr1および第2外気導入率FRSr2のうち、小さい方の値を、送風空気における車室外空気の導入割合、すなわち外気導入率FRSrとして決定する。
【0133】
そして、外気導入率FRSr=0%では、前述の内外気切替ドアが外気導入口を閉塞させて内気導入口を全開させる内気モードとし、外気導入率FRSr=100%では、内外気切替ドアが外気導入口を全開させて内気導入口を閉塞させる外気モードとし、外気導入率FRSrが0%より大きく100%より小さいときは、外気導入口および内気導入口の双方を開口させる内外気混入モードとなる。
【0134】
上記説明から明らかなように、本実施形態では、基本的に外気を導入する外気モードが優先されるが、TAOが極低温域となって高い冷房性能を得たい場合等に内気を導入する内気モードが選択されることになる。さらに、外気の排ガス濃度を検出する排ガス濃度検出手段を設け、排ガス濃度が予め定めた基準濃度以上となったときに、内気モードを選択するようにしてもよい。
【0135】
ステップS9では、吹出口モードを決定する。この吹出口モードもTAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。
【0136】
従って、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択される。さらに、車両窓ガラス近傍の相対湿度を検出する湿度検出手段を設け、湿度検出手段の検出値から算出される窓ガラス表面の相対湿度RHWに基づいて、窓ガラスに曇りが発生する可能性が高いと判定された場合に、フットデフロスタモードあるいはデフロスタモードを選択するようにしてもよい。
【0137】
ステップS10では、エアミックスドア38の目標開度SWを上記TAO、蒸発器温度センサ56によって検出された室内蒸発器26における冷媒蒸発温度Teおよび加熱器温度に基づいて算出する。
【0138】
ここで、加熱器温度とは、加熱用冷風通路33に配置された加熱手段(ヒータコア36、室内凝縮器12、およびPTCヒータ37)の加熱能力に応じて決定される値であって、一般的には、エンジン冷却水温度Twを採用できる。従って、目標開度SWは、次の数式F2により算出できる。
SW=[(TAO−Te)/(Tw−Te)]×100(%)…(F2)
なお、SW=0(%)は、エアミックスドア38の最大冷房位置であり、冷風バイパス通路34を全開し、加熱用冷風通路33を全閉する。これに対し、SW=100(%)は、エアミックスドア38の最大暖房位置であり、冷風バイパス通路34を全閉し、加熱用冷風通路33を全開する。
【0139】
ステップS11では、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を決定する。ここで、圧縮機11の基本的な回転数の決定手法を説明する。まず、冷房モードでは、ステップS4で決定したTAO等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、空調フィーリングを悪化させないように、室内蒸発器26における冷媒蒸発温度Teの目標蒸発温度TEOを決定する。
【0140】
そして、この目標蒸発温度TEOと冷媒蒸発温度Teの偏差En(TEO−Te)を算出し、今回算出された偏差Enから前回算出された偏差En−1を減算した偏差変化率Edot(En−(En−1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fCn−1に対する回転数変化量Δf_Cを求める。
【0141】
また、暖房モード、第1除湿モードおよび第2除湿モードでは、ステップS4で決定した暖房用熱交換器目標温度等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、吐出側冷媒圧力(高圧側冷媒圧力)Pdの目標高圧PDOを決定する。
【0142】
そして、この目標高圧PDOと吐出側冷媒圧力Pdの偏差Pn(PDO−Pd)を算出し、今回算出された偏差Pnから前回算出された偏差Pn−1を減算した偏差変化率Pdot(Pn−(Pn−1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fHn−1に対する回転数変化量Δf_Hを求める。
【0143】
このステップS11のより詳細な制御内容については、図9〜図11を用いて説明する。まず、図9に示すステップS111では、冷房モード(COOLサイクル)時の回転数変化量Δf_Cを求める。図9のステップS111には、ルールとして用いるファジールール表を記載している。このルール表では、上述の偏差Enと偏差変化率Edotに基づいて室内蒸発器26の着霜が防止されるようにΔf_Cが決定される。
【0144】
なお、本実施形態のステップS111では、目標吹出温度TAOの低下に伴って、目標蒸発温度TEOを低下させるように決定する。従って、本実施形態の制御ステップS111は、目標蒸発温度決定手段を構成している。
【0145】
ステップS112では、暖房モード(HOTサイクル)、第1除湿モード(DRY_EVAサイクル)および第2除湿モード(DRY_ALLサイクル)時の回転数変化量Δf_Hを求める。図9のステップS112には、ルールとして用いるファジールール表を記載している。このルール表では、上述の偏差Pnと偏差変化率Pdotに基づいて高圧側冷媒圧力Pdの異常上昇が防止されるようにΔf_Hが決定される。
【0146】
続くステップS113では、エンジン制御装置から取得した車速Vvが基準車速KVv(本実施形態では、30km/h)以上となっているか否かが判定される。
【0147】
ステップS113にて、車速Vvが30km/h以上となっていると判定された場合は、車両の速度が高車速になっているものとしてステップS114へ進み、IVOmax_目標吹出温度=12000、IVOmax_日射量=0、IVOmax_外気温=0、IVOmax_内外気=0、IVOmax_設定温度=0、IVOmax_防曇=0に決定して、図10に示すステップS121へ進む。
【0148】
なお、IVOmax_目標吹出温度は、目標吹出温度TAOから決定される圧縮機回転数の上限値IVOmax、すなわち圧縮機11の冷媒吐出能力の上限値を決定するために用いられるパラメータであり、IVOmax_外気温、IVOmax_日射量、IVOmax_内外気、IVOmax_設定温度、IVOmax_防曇は、それぞれ圧縮機回転数の上限値IVOmaxを補正するために用いられるパラメータである。
【0149】
一方、ステップS113にて、車速Vvが30km/h以上となっていないと判定された場合は、車両の速度が低車速になっているものとしてステップS115へ進む。ステップS115では、ステップS4で決定したTAOに基づいて、予め空調制御装置50に記憶されている制御マップを参照して、IVOmax_目標吹出温度を決定する。
【0150】
具体的には、図9のステップS115の制御特性図に示すように、TAOの低下に伴ってIVOmax_目標吹出温度を段階的に上昇させるように決定する。より詳細には、TAOの下降過程では、予め定めた所定温度(本実施形態では10℃)低下した際に、IVOmax_目標吹出温度を予め定めた所定量(本実施形態では、1000rpm)上昇させるように決定する。
【0151】
一方、TAOの上昇過程では、予め定めた所定温度(本実施形態では10℃)上昇した際に、IVOmax_目標吹出温度を予め定めた所定量(本実施形態では、1000rpm)低下させるように決定する。なお、図9の制御特性図におけるIVOmax_目標吹出温度を増加させるTAOの値と減少させるTAOの値との差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0152】
図10に示すステップS116では、日射量Tsの増加に伴ってIVOmax_日射量を段階的に上昇させるように決定する。このステップS116においても、ステップS115と同様に、日射量Tsが、予め定めた所定量増加した際に、IVOmax_日射量を予め定めた所定量増加させるように決定して、ステップS117へ進む。
【0153】
ステップS117では、外気温Tamの上昇に伴ってIVOmax_外気温を段階的に増加させるように決定する。このステップS117においても、ステップS115と同様に、外気温Tamが、予め定めた所定量上昇した際に、IVOmax_外気温を予め定めた所定量増加させるように決定して、ステップS118へ進む。
【0154】
ステップS118では、外気導入率FRSrの減少に伴ってIVOmax_内外気を段階的に低下させるように決定する。このステップS118においても、ステップS115と同様に、外気導入率FRSrが、予め定めた所定量減少した際に、IVOmax_内外気を予め定めた所定量低下させるように決定して、ステップS119へ進む。
【0155】
ステップS119では、車室内温度設定スイッチによって設定された車室内設定温度Tsetの低下に伴ってIVOmax_設定温度を段階的に上昇させるように決定する。このステップS119においても、ステップS115と同様に、車室内設定温度Tsetが、予め定めた所定量低下した際に、IVOmax_設定温度を予め定めた所定量上昇させるように決定して、ステップS120へ進む。
【0156】
ステップS120では、目標吹出温度TAOが予め定めた基準目標温度KTAO(本実施形態では、40℃)より高く且つ外気導入率FRSrが予め定めた基準外気導入率KFRSr(本実施形態では、5%)以下になっている場合、あるいは、外気温Tamが予め定めた基準外気温KTam(本実施形態では、10℃)以下となり且つ外気導入率FRSrが予め定めた基準外気導入率KFRSr(本実施形態では、5%)以下になっている場合に、IVOmax_防曇を3000rpmに決定し、それ以外の条件ではIVOmax_防曇を0rpmに決定して、ステップS121へ進む。
【0157】
なお、本実施形態では、基準目標温度KTAOとして、車室内の暖房を行うために必要な温度を採用しており、基準外気温KTamとして、車室内の暖房を行う必要のある温度を採用しており、さらに、基準外気導入率KFRSrとして、送風空気における車室内空気の割合よりも車室外空気の割合が小さくなる値を採用している。従って、ステップS120では、車両窓ガラスに曇りが発生しやすい運転条件にて、IVOmax_防曇を3000rpmに決定し、その他の条件にて、IVOmax_防曇を0rpmに決定している。
【0158】
ステップS121では、圧縮機回転数の上限値IVOmaxを決定して、ステップS122へ進む。具体的には、ステップS121では、ステップS115〜S120にて決定されたIVOmax_目標吹出温度にIVOmax_日射量、IVOmax_外気温、IVOmax_内外気、IVOmax_設定温度、IVOmax_防曇を加算した値、および、圧縮機11の耐久性から決定される最大回転数(本実施形態では、10000rpm)のうち、小さい方の値を圧縮機回転数の上限値IVOmaxとしている。
【0159】
従って、ステップS113にて、車速Vvが30km/h以上となっていると判定された場合は、圧縮機回転数の上限値IVOmaxは、最大回転数となるように決定され、ステップS113にて、車速Vvが30km/h未満となっていると判定された場合は、圧縮機回転数の上限値IVOmaxは、最大回転数以下となるように決定される。換言すると、圧縮機回転数の上限値IVOmaxは、車速Vvの低下に伴って低下するように決定される。
【0160】
さらに、上記説明から明らかなように、本実施形態における制御ステップS113〜S121は、圧縮機回転数の上限値IVOmax、すなわち圧縮機11の冷媒吐出能力の上限値を決定する上限値決定手段を構成している。特に、制御ステップS115を車室内の目標温度に基づく上限値決定手段であり、制御ステップS116〜S120は、ステップS115にて決定された上限値を補正する上限値補正手段と表現することができる。
【0161】
続いて、図11に示すステップS122では、ステップS6で決定された運転モードが冷房モードであるか否かが判定される。ステップS122にて、ステップS6で決定された運転モードが冷房モードであると判定された場合は、ステップS123へ進み、ステップS111にて決定されたΔf_Cを圧縮機11の回転数変化量Δfに決定して、ステップS125へ進む。
【0162】
一方、ステップS122にてステップS6で決定された運転モードが冷房モードでないと判定された場合は、ステップS124へ進み、ステップS112にて決定されたΔf_Hを圧縮機11の回転数変化量Δfに決定して、ステップS125へ進む。
【0163】
ステップS125では、前回の圧縮機回転数fn−1に回転数変化量Δfを加えた値とステップS121にて決定された上限値IVOmaxとを比較して、小さい方の値を、今回の圧縮機回転数fnと決定して、ステップS12へ進む。すなわち、制御ステップS125では、圧縮機回転数fnがステップS121にて決定された上限値IVOmaxに制限される。
【0164】
なお、ステップS11における圧縮機回転数fnの決定は、図6のメインルーチンが繰り返される制御周期τ毎に行われるものではなく、所定の制御間隔(本実施形態では1秒)毎に行われる。
【0165】
ステップS12では、室外熱交換器16に向けて外気を送風する送風ファン16aの稼働率(具体的には、送風ファン16aの回転数)を決定する。本実施形態の基本的な送風ファン16aの稼働率(回転数)の決定手法は以下の通りである。つまり、圧縮機11の吐出冷媒温度Tdの増加に伴って送風ファン16aの稼働率(回転数)が増加するように第1の仮稼働率(回転数)を決定し、エンジン冷却水温度Twの上昇に伴って送風ファン16aの稼働率(回転数)が増加するように第2の仮稼働率(回転数)を決定する。
【0166】
さらに、第1、第2の仮稼働率(回転数)のうち大きい方を選択し、選択された稼働率(回転数)に対して、送風ファン16aの騒音低減や車速(Vv)を考慮した補正を行った値を送風ファン16aの稼働率(回転数)に決定する。
【0167】
ステップS13では、PTCヒータ37の作動本数の決定および電熱デフォッガの作動状態の決定が行われる。PTCヒータ37の作動本数は、例えば、ステップS6にてPTCヒータ37への通電の必要があるとされたときに、暖房モード時にエアミックスドア38の目標開度SWが100%となっても、暖房用熱交換器目標温度を得られない場合に、内気温Trと暖房用熱交換器目標温度との差に応じて決定すればよい。
【0168】
また、車室内の湿度および温度から窓ガラスに曇りが発生する可能性が高い場合、あるいは窓ガラスに曇りが発生している場合は、電熱デフォッガを作動させる。
【0169】
ステップS14では、ヒータコア36とエンジンEGとの間で冷却水を循環させる冷却水ポンプ40aを作動させるか否かを決定する。具体的には、冷却水温度Twが室内蒸発器26からの冷媒蒸発温度Teより高い場合には、冷却水ポンプ40aを停止(OFF)させ、冷却水温度Twが冷媒蒸発温度Te以下となっている場合に、冷却水ポンプ40aを作動(ON)させる。
【0170】
その理由は、冷却水温度Twが冷媒蒸発温度Te以下となっている場合に冷却水をヒータコア36へ流すと、ヒータコア36を流れる冷却水が蒸発器13通過後の空気を冷却して、かえって吹出口からの吹出空気温度を低下させてしまうからである。冷却水温度Twが冷媒蒸発温度Te以下となっている場合は、冷却水を冷媒水回路40内を循環させることで、ヒータコア36を通過する空気とを熱交換させて送風空気を加熱することができる。
【0171】
ステップS15では、上述のステップS6で決定された運転モードに応じて、冷媒回路切替手段である各電磁弁13〜24の作動状態を決定する。具体的には、図12の図表に示すように、運転モードが冷房モード(COOLサイクル)に決定されている場合は、全ての電磁弁を非通電状態とする。また、暖房モード(HOTサイクル)に決定されている場合は、電気式三方弁13、高圧電磁弁20、低圧電磁弁17を通電状態とし、残りの電磁弁21、24を非通電状態とする。
【0172】
また、第1除湿モード(DRY_EVAサイクル)に決定されている場合は、電気式三方弁13、低圧電磁弁17、除湿電磁弁24および熱交換器遮断電磁弁21を通電状態とし、高圧電磁弁20を非通電状態とする。また、第2除湿モード(DRY_ALLサイクルに決定されている場合は、電気式三方弁13、低圧電磁弁17、除湿電磁弁24を通電状態とし、残りの電磁弁20、21を非通電状態とする。
【0173】
つまり、本実施形態では、いずれの運転モードの冷媒回路に切り替えた場合であっても、各電磁弁13〜24のうち少なくとも1つの電磁弁に対する電力の供給が停止されるように構成されている。これにより、本実施形態の各電磁弁13〜24の合計消費電力を低減できるようにしている。
【0174】
ステップS16では、上述のステップS6〜S15で決定された制御状態が得られるように、空調制御装置50より各種機器61、13、17、20、21、24、16a、32、37、62、63、64に対して制御信号および制御電圧が出力される。例えば、圧縮機11の電動モータ11b用のインバータ61に対しては、圧縮機11の回転数がステップS11で決定された回転数となるように制御信号が出力される。
【0175】
ステップS17では、制御周期τの間待機し、制御周期τの経過を判定するとステップS3へ戻る。なお、本実施形態は制御周期τを250msとしている。これは、車室内の空調制御は、エンジン制御等と比較して遅い制御周期であってもその制御性に悪影響を与えないからである。さらに、車両内における空調制御のための通信量を抑制して、エンジン制御等のように高速制御を行う必要のある制御系の通信量を充分に確保することができる。
【0176】
本実施形態の車両用空調装置1は、以上の如く制御されるので、制御ステップS6にて選択された運転モードに応じて以下のように作動する。
【0177】
(a)冷房モード(COOLサイクル:図1参照)
冷房モードでは、空調制御装置50が全ての電磁弁を非通電状態とするので、電気式三方弁13が室内凝縮器12の冷媒出口側と第1三方継手15の1つの冷媒流入出口との間を接続し、低圧電磁弁17が閉弁し、高圧電磁弁20が開弁し、熱交換器遮断電磁弁21が開弁し、除湿電磁弁24が閉弁する。
【0178】
これにより、図1の矢印に示すように、圧縮機11→室内凝縮器12→電気式三方弁13→第1三方継手15→室外熱交換器16→第2三方継手19→高圧電磁弁20→第2逆止弁22→温度式膨張弁27の可変絞り機構部27b→第4三方継手25→室内蒸発器26→温度式膨張弁27の感温部27a→第5三方継手28→アキュムレータ29→圧縮機11の順に冷媒が循環する蒸気圧縮式冷凍サイクルが構成される。
【0179】
この冷房モードの冷媒回路では、電気式三方弁13から第1三方継手15へ流入した冷媒は、低圧電磁弁17が閉弁しているので低圧電磁弁17側へ流出することはない。また、室外熱交換器16から第2三方継手19へ流入した冷媒は、除湿電磁弁24が閉弁しているので熱交換器遮断電磁弁21側へ流出することはない。また、温度式膨張弁27の可変絞り機構部27bから流出した冷媒は、除湿電磁弁24が閉弁しているので除湿電磁弁24側へ流出することはない。さらに、温度式膨張弁27の感温部27aから第5三方継手28へ流入した冷媒は、第2逆止弁22の作用によって第2逆止弁22側に流出することはない。
【0180】
従って、圧縮機11にて圧縮された冷媒は、室内凝縮器12にて室内蒸発器26通過後の送風空気(冷風)と熱交換して冷却され、さらに、室外熱交換器16にて外気と熱交換して冷却され、温度式膨張弁27にて減圧膨張される。温度式膨張弁27にて減圧された低圧冷媒は室内蒸発器26へ流入し、送風機32から送風された送風空気から吸熱して蒸発する。この吸熱作用により、室内蒸発器26を通過する送風空気が冷却される。
【0181】
この際、前述の如くエアミックスドア38の開度が調整されるので、室内蒸発器26にて冷却された送風空気の一部(または全部)が冷風バイパス通路34から混合空間35へ流入し、室内蒸発器26にて冷却された送風空気の一部(または全部)が加熱用冷風通路33へ流入してヒータコア36、室内凝縮器12、ヒータコア36を通過する際に再加熱されて混合空間35へ流入する。
【0182】
これにより、混合空間35にて混合されて車室内へ吹き出す送風空気の温度が所望の温度に調整されて、車室内の冷房を行うことができる。なお、冷房モードでは、送風空気の除湿能力も高いが、暖房能力は殆ど発揮されない。
【0183】
また、室内蒸発器26から流出した冷媒は、温度式膨張弁27の感温部61aを介して、アキュムレータ29へ流入する。アキュムレータ29にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
【0184】
(b)暖房モード(HOTサイクル:図2参照)
暖房モードでは、空調制御装置50が電気式三方弁13、高圧電磁弁20、低圧電磁弁17を通電状態とし、残りの電磁弁21、24を非通電状態とするので、電気式三方弁13が室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続し、低圧電磁弁17が開弁し、高圧電磁弁20が閉弁し、熱交換器遮断電磁弁21が開弁し、除湿電磁弁24が閉弁する。
【0185】
これにより、図2の矢印に示すように、圧縮機11→室内凝縮器12→電気式三方弁13→固定絞り14→第3三方継手23→熱交換器遮断電磁弁21→第2三方継手19→室外熱交換器16→第1三方継手15→低圧電磁弁17→第1逆止弁18→第5三方継手28→アキュムレータ29→圧縮機11の順に冷媒が循環する蒸気圧縮式冷凍サイクルが構成される。
【0186】
この暖房モードの冷媒回路では、固定絞り14から第3三方継手23へ流入した冷媒は、除湿電磁弁24が閉弁しているので除湿電磁弁24側へ流出することはない。また、熱交換器遮断電磁弁21から第2三方継手19へ流入した冷媒は、高圧電磁弁20が閉弁しているので高圧電磁弁20側へ流出することはない。また、室外熱交換器16から第1三方継手15へ流入した冷媒は、電気式三方弁13が室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続しているので電気式三方弁13側へ流出することはない。第1逆止弁18から第5三方継手28へ流入した冷媒は、除湿電磁弁24が閉じているので温度式膨張弁27側へ流出することはない。
【0187】
従って、圧縮機11にて圧縮された冷媒は、室内凝縮器12にて送風機32から送風された送風空気と熱交換して冷却される。これにより、室内凝縮器12を通過する送風空気が加熱される。この際、エアミックスドア38の開度が調整されるので、冷房モードと同様に、混合空間35にて混合されて車室内へ吹き出す送風空気の温度が所望の温度に調整されて、車室内の暖房を行うことができる。なお、暖房モードでは、送風空気の除湿能力は発揮されない。
【0188】
また、室内凝縮器12から流出した冷媒は、固定絞り14にて減圧されて室外熱交換器16へ流入する。室外熱交換器16へ流入した冷媒は、送風ファン16aから送風された車室外空気から吸熱して蒸発する。室外熱交換器16から流出した冷媒は、低圧電磁弁17、第1逆止弁18等を介して、アキュムレータ29へ流入する。アキュムレータ29にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
【0189】
(c)第1除湿モード(DRY_EVAサイクル:図3参照)
第1除湿モードでは、空調制御装置50が電気式三方弁13、低圧電磁弁17、熱交換器遮断電磁弁21および除湿電磁弁24を通電状態とし、高圧電磁弁20を非通電状態とするので、電気式三方弁13が室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続し、低圧電磁弁17が開弁し、高圧電磁弁20が開弁し、熱交換器遮断電磁弁21が閉弁し、除湿電磁弁24が開弁する。
【0190】
これにより、図3の矢印に示すように、圧縮機11→室内凝縮器12→電気式三方弁13→固定絞り14→第3三方継手23→除湿電磁弁24→第4三方継手25→室内蒸発器26→温度式膨張弁27の感温部27a→第5三方継手28→アキュムレータ29→圧縮機11の順に冷媒が循環する蒸気圧縮式冷凍サイクルが構成される。
【0191】
この第1除湿モードの冷媒回路では、固定絞り14から第3三方継手23へ流入した冷媒は、熱交換器遮断電磁弁21が閉弁しているので熱交換器遮断電磁弁21側へ流出することはない。また、除湿電磁弁24から第4三方継手25へ流入した冷媒は、第2逆止弁22の作用によって温度式膨張弁27の可変絞り機構部27b側へ流出することはない。また、温度式膨張弁27の感温部27aから第5三方継手28へ流入した冷媒は、第1逆止弁18の作用によって第1逆止弁18側へ流出することはない。
【0192】
従って、圧縮機11にて圧縮された冷媒は、室内凝縮器12にて室内蒸発器26通過後の送風空気(冷風)と熱交換して冷却される。これにより、室内凝縮器12を通過する送風空気が加熱される。室内凝縮器12から流出した冷媒は、固定絞り14にて減圧されて室内蒸発器26へ流入する。
【0193】
室内蒸発器26へ流入した低圧冷媒は、送風機32から送風された送風空気から吸熱して蒸発する。これにより、室内蒸発器26を通過する送風空気が冷却されて除湿される。従って、室内蒸発器26にて冷却されて除湿された送風空気は、ヒータコア36、室内凝縮器12、ヒータコア36を通過する際に再加熱されて、混合空間35から車室内へ吹き出される。すなわち、車室内の除湿を行うことができる。なお、第1除湿モードでは、送風空気の除湿能力を発揮できるが、暖房能力は小さい。
【0194】
また、室内蒸発器26から流出した冷媒は、温度式膨張弁27の感温部61aを介して、アキュムレータ29へ流入する。アキュムレータ29にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
【0195】
(d)第2除湿モード(DRY_ALLサイクル:図4参照)
第2除湿モードでは、空調制御装置50が電気式三方弁13、低圧電磁弁17、除湿電磁弁24を通電状態とし、残りの電磁弁20、21を非通電状態とするので、電気式三方弁13が室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続し、低圧電磁弁17が開弁し、高圧電磁弁20が開弁し、熱交換器遮断電磁弁21が開弁し、除湿電磁弁24が開弁する。
【0196】
これにより、図4の矢印に示すように、圧縮機11→室内凝縮器12→電気式三方弁13→固定絞り14→第3三方継手23→熱交換器遮断電磁弁21→第2三方継手19→室外熱交換器16→第1三方継手15→低圧電磁弁17→第1逆止弁18→第5三方継手28→アキュムレータ29→圧縮機11の順に冷媒が循環するとともに、圧縮機11→室内凝縮器12→電気式三方弁13→固定絞り14→第3三方継手23→除湿電磁弁24→第4三方継手25→室内蒸発器26→温度式膨張弁27の感温部27a→第5三方継手28→アキュムレータ29→圧縮機11の順に冷媒が循環する蒸気圧縮式冷凍サイクルが構成される。
【0197】
つまり、第2除湿モードでは、固定絞り14から第3三方継手23へ流入した冷媒が熱交換器遮断電磁弁21側および除湿電磁弁24側の双方に流出して、第1逆止弁18から第5三方継手28へ流入した冷媒および温度式膨張弁27の感温部27aから第5三方継手28へ流入した冷媒の双方が第5三方継手28にて合流してアキュムレータ29側へ流出する。
【0198】
なお、この第2除湿モードの冷媒回路では、室外熱交換器16から第1三方継手15へ流入した冷媒は、電気式三方弁13が室内凝縮器12の冷媒出口側と固定絞り14の冷媒入口側との間を接続しているので電気式三方弁13側へ流出することはない。また、除湿電磁弁24から第4三方継手25へ流入した冷媒は、第2逆止弁22の作用によって温度式膨張弁27の可変絞り機構部27b側へ流出することはない。
【0199】
従って、圧縮機11にて圧縮された冷媒は、室内凝縮器12にて室内蒸発器26通過後の送風空気(冷風)と熱交換して冷却される。これにより、室内凝縮器12を通過する送風空気が加熱される。室内凝縮器12から流出した冷媒は、固定絞り14にて減圧された後、第3三方継手23にて分岐されて室外熱交換器16および室内蒸発器26へ流入する。
【0200】
室外熱交換器16へ流入した冷媒は、送風ファン16aから送風された車室外空気から吸熱して蒸発する。室外熱交換器16から流出した冷媒は、低圧電磁弁17、第1逆止弁18等を介して、第5三方継手28へ流入する。室内蒸発器26へ流入した低圧冷媒は、送風機32から送風された送風空気から吸熱して蒸発する。これにより、室内蒸発器26を通過する送風空気が冷却されて除湿される。
【0201】
従って、室内蒸発器26にて冷却されて除湿された送風空気は、ヒータコア36、室内凝縮器12、ヒータコア36を通過する際に再加熱されて、混合空間35から車室内へ吹き出される。この際、第2除湿モードでは、第1除湿モードに対して、室外熱交換器16にて吸熱した熱量を室内凝縮器12にて放熱することができるので、送風空気を第1除湿モードよりも高温に加熱できる。すなわち、第2除湿モードでは、高い暖房能力を発揮させながら除湿能力も発揮させる除湿暖房を行うことができる。
【0202】
また、室内蒸発器26から流出した冷媒は、第5三方継手28へ流入して室外熱交換器16から流出した冷媒と合流し、アキュムレータ29へ流入する。アキュムレータ29にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
【0203】
さらに、上記の如く、冷房モードの冷媒回路、暖房モードの冷媒回路、および第1除湿モードの冷媒回路は、いずれも圧縮機11に吸入される冷媒を室外熱交換器16と室内熱交換器(具体的には、室内凝縮器12、室内蒸発器26)とのうちいずれか一方に流通させる単独熱交換器モードの冷媒回路であり、第2除湿モードの冷媒回路は、圧縮機11に吸入される冷媒を室外熱交換器16と室内熱交換器(具体的には、室内蒸発器26)との双方に流通させる複合熱交換器モードの冷媒回路であると表現することもできる。
【0204】
本実施形態の車両用空調装置は、以上の如く作動して、車室内の冷房、暖房および除湿暖房を実現できるだけでなく、制御ステップS113〜S121にて構成される圧縮機11の冷媒吐出能力の上限値IVOmaxを決定する上限値決定手段を備えているので、乗員にとって耳障りとなる圧縮機11の作動音等に起因する空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することができる。
【0205】
まず、制御ステップS113にて、車両の車速Vvが基準車速KVvより小さくなっていると判定された際に、上限値IVOmaxを低下させるように決定している。換言すると、車速Vvの低下に伴って上限値IVOmaxを低下させるように決定している。
【0206】
ここで、車速Vvが低下した際には、道路と車輪との摩擦音(ロードノイズ)等が小さくなり乗員に空調作動音が聞こえやすくなるものの、本実施形態の如く、車速Vvの低下に伴って上限値IVOmaxを低下させることで、乗員にとって耳障りとなる空調作動音を低減することができる。
【0207】
また、制御ステップS115にて、目標吹出温度TAOの低下に伴って上限値IVOmaxを上昇させるように決定するので、乗員にとって耳障りとなる空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することができる。
【0208】
つまり、目標吹出温度TAOが比較的低くなった際、すなわち車室内温度を通常の冷房時に対して比較的低い温度に維持する場合のような高冷房熱負荷時に、上限値IVOmaxを上昇させて、室内蒸発器26における実際の冷媒蒸発温度を速やかに目標蒸発温度TEOに近づけることができる。
【0209】
従って、高冷房熱負荷時には、室内蒸発器26にて送風空気の温度を充分に低下させて、乗員の空調フィーリングの悪化を抑制できる。さらに、高冷房熱負荷時は、乗員が暑さを感じ易い運転条件であるから、この運転条件における空調作動音は乗員にとって耳障りとなりにくい。
【0210】
一方、目標吹出温度TAOが比較的高くなった際、すなわち車室内温度を通常の冷房時に対して比較的高い温度に維持する場合のような低冷房熱負荷時に、上限値IVOmaxを低下させても、乗員の空調フィーリングの悪化は少ない。
【0211】
さらに、目標吹出温度TAOが比較的高くなった際は、乗員が暑さを感じにくい運転条件であるから、空調作動音が乗員にとって耳障りとなりやすい。従って、上限値IVOmaxを低下させることで、乗員にとって耳障りとなる空調作動音の低減を図ることができる。
【0212】
また、日射量Tsが増加した際には、車両天井温度や窓ガラス温度が上昇するので、その輻射熱によって乗員が暑さを感じやすくなる。そこで、制御ステップS116では、日射量Tsの増加に伴って上限値IVOmaxを上昇させるようにしているので、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0213】
また、外気温Tamが上昇した際には、室内蒸発器26にて車室外空気を充分に温度低下させることができなくなり、乗員が暑さを感じやすくなる。そこで、制御ステップS117では、外気温Tamの上昇に伴って上限値IVOmaxを上昇させるようにしているので、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0214】
また、車室内の冷房時に、外気導入率FRSrが減少すると、車室外空気よりも温度の低い車室内空気を車室内へ循環送風する割合が増える。そこで、制御ステップS118では、外気導入率FRSrの減少に伴って上限値IVOmaxを低下させるように決定しているので、乗員の空調フィーリングの悪化を抑制しつつ、乗員にとって耳障りとなる空調作動音を低減することができる。
【0215】
また、乗員の操作によって車室内の設定温度Tsetが低下した際は、乗員が暑さを感じている運転条件である。そこで、制御ステップS119では、設定温度Tsetの低下に伴って上限値IVOmaxを上昇させるように決定しているので、乗員の空調フィーリングの悪化をより一層抑制することができる。
【0216】
上記の如く、本実施形態の車両用空調装置1では、乗員にとって空調騒音が気になる運転条件では、圧縮機11の冷媒吐出能力の上限値IVOmaxを低下させて、乗員にとって耳障りとなる空調作動音を低減することができる。さらに、乗員が暑さを感じる高冷房熱負荷となる運転条件では、圧縮機11の冷媒吐出能力の上限値IVOmaxを上昇させて、乗員の空調フィーリングの悪化を抑制することができる。
【0217】
さらに、制御ステップS120では、目標吹出温度TAOが予め定めた基準目標温度KTAOより高く且つ外気導入率FRSrが予め定めた基準外気導入率KFRSr以下になっている場合、あるいは、外気温Tamが予め定めた基準外気温KTam以下となり且つ外気導入率FRSrが予め定めた基準外気導入率KFRSr以下になっている場合に、IVOmax_防曇を3000rpmに決定している。
【0218】
この際、基準目標温度KTAOとして車室内の暖房を行うために必要な温度を採用し、基準外気温KTamとして車室内の暖房を行う必要のある温度を採用し、基準外気導入率KFRSrとして送風空気における車室内空気の割合よりも車室外空気の割合が小さくなる値を採用している。
【0219】
従って、車両窓ガラスの曇りが発生しやすい運転条件に圧縮機11の冷媒吐出能力の上限値IVOmaxを上昇させることができ、車両窓ガラスの防曇性を向上させて、乗員の視認性(安全性)を確保することもできる。
【0220】
(第2実施形態)
本実施形態では、第1実施形態に対して、図6の制御ステップS11における圧縮機11の制御態様を変更し、車速Vvおよび外気導入率FRSrを用いて、圧縮機11の冷媒吐出能力の上限値IVOmaxを決定する例を説明する。
【0221】
具体的には、本実施形態では、第1実施形態に対して、図6の制御ステップS11の詳細制御態様を図13に示すように変更している。まず、ステップS111〜S113では、第1実施形態と全く同様に、それぞれ冷房モードにおける圧縮機11の回転数の変化量Δf_Cおよび暖房モード、第1除湿モードおよび第2除湿モードにおける圧縮機11の回転数の変化量Δf_Hが決定される。
【0222】
さらに、ステップS113では、車速Vvが基準車速KVv(本実施形態では、30km/h)以上となっているか否かが判定される。なお、図13のステップS111およびS112は、第1実施形態の図9と全く同様なので、図13では、図示の明確化のため、ルールとして用いるファジールール表の記載を省略している。
【0223】
ステップS113にて、車速Vvが30km/h以上となっていると判定された場合は、車両の速度が高車速になっているものとしてステップS1141へ進み、IVOmax_内外気=12000に決定して、ステップS1211へ進む。
【0224】
一方、ステップS113にて、車速Vvが30km/h以上となっていないと判定された場合は、車両の速度が低車速になっているものとしてステップS1181へ進む。ステップS1181では、第1実施形態と同様に、外気導入率FRSrの減少に伴ってIVOmax_内外気を段階的に低下させるように決定して、ステップS1211へ進む。
【0225】
ステップS1211では、圧縮機回転数の上限値IVOmaxを決定して、ステップS122へ進む。具体的には、ステップS1211では、ステップS1141、S1181にて決定されたIVOmax_内外気、および、圧縮機11の耐久性から決定される最大回転数(本実施形態では、10000rpm)のうち、小さい方の値を圧縮機回転数の上限値IVOmaxとしている。
【0226】
従って、ステップS113にて、車速Vvが30km/h以上となっていると判定された場合は、圧縮機回転数の上限値IVOmaxは、最大回転数となるように決定され、ステップS113にて、車速Vvが30km/h未満となっていると判定された場合は、圧縮機回転数の上限値IVOmaxは、最大回転数以下となるように決定される。
【0227】
ステップS122以降の作動、および、その他の車両用空調装置1の構成は、第1実施形態と同様である。従って、本実施形態によれば、第1実施形態と同様に、車室内の冷房、暖房および除湿暖房を実現できるだけでなく、制御ステップS113〜S1211にて構成される圧縮機11の冷媒吐出能力の上限値IVOmaxを決定する上限値決定手段を備えているので、乗員にとって耳障りとなる圧縮機11の作動音等に起因する空調作動音の低減を図りつつ、空調フィーリングの悪化を抑制することができる。
【0228】
なお、上記説明から明らかなように、本実施形態の上限値決定手段は、第1実施形態に対して、車速Vvと外気導入率FRSrに基づいて上限値IVOmaxを決定している。このように、第1実施形態に記載された目標吹出温度TAO、日射量Ts、外気温Tam、外気導入率FRSr、設定温度Tsetおよび車速Vvのうち少なくとも1つのパラメータに基づいて、上限値IVOmaxを決定してもよい。
【0229】
さらに、本実施形態の制御フローに第1実施形態の図10にて説明した制御ステップS120を追加してもよい。この場合は、制御ステップS1181の直後に制御ステップS1181を追加し、制御ステップS1211にて、IVOmax_内外気とIVOmax_防曇との加算値、および、圧縮機11の耐久性から決定される最大回転数(本実施形態では、10000rpm)のうち、小さい方の値を圧縮機回転数の上限値IVOmaxとすればよい。
【0230】
(第3実施形態)
上述の各実施形態では、冷房モード、暖房モード、第1除湿モードおよび第2除湿モードの冷媒回路を切替可能に構成された冷凍サイクル10を採用した例を説明したが、本実施形態では、図14に示すように、冷媒回路の切替機能を有していない冷凍サイクル10を採用している。なお、図14では、第1実施形態と同一もしくは均等部分には同一の符号を付している。
【0231】
具体的には、本実施形態の冷凍サイクル10は、圧縮機11、室外熱交換器16、温度式膨張弁27、室内蒸発器26をこの順で環状に接続したもので、送風機車室内へ送風される送風空気を冷却する機能を果たす。つまり、上述の各実施形態における冷房モードを実現可能に構成されている。
【0232】
従って、本実施形態の冷凍サイクル10では、冷媒回路切替手段である各電磁弁13〜24は廃止されている。さらに、圧縮機11の冷媒吸入口に接続されたアキュムレータ29を廃止して、室外熱交換器16流出冷媒の気液を分離して余剰冷媒を蓄える高圧側気液分離器であるレシーバ29aを設けている。その他の構成は、第1実施形態と同様である。
【0233】
さらに、本実施形態の作動は、基本的に第1実施形態の図6に示す制御フローに基づいて実行されるが、本実施形態では、冷媒回路切替手段である各電磁弁13〜24が廃止されているので、ステップS6、S16等の冷媒回路の切り替えに関する制御は廃止されている。
【0234】
また、例えば、第1実施形態の図7のS68等の冷房モードであるか否かの判定は実施されない。具体的には、図7の制御ステップS68等は廃止してもよいし、ステップS68の判定時に、常時、冷房モードであると判定されるようにすればよい。
【0235】
従って、本実施形態のように、送風機車室内へ送風される送風空気を冷却する冷房モードを実現する機能に特化された冷凍サイクル10を採用する車両用空調装置1であっても、上述の実施形態に記載された制御態様を適用することで、上述の実施形態に記載された効果を得ることができる。
【0236】
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
【0237】
(1)上述の実施形態では、車速Vvの低下に伴って、圧縮機11の冷媒吐出能力の上限値IVOmaxを低下させる一例として、実際の車速Vvが基準車速KVvよりも小さくなっているときに決定される上限値IVOmaxが、基準車速KVv以上になっているときよりも低い値になるように決定される例を説明したが、車速Vvに基づく上限値IVOmaxの決定はこれに限定されない。
【0238】
例えば、図9の制御ステップS113を廃止し、車速によらず制御ステップS115〜S120にてIVOmax_目標吹出温度にIVOmax_日射量、IVOmax_外気温、IVOmax_内外気、IVOmax_設定温度、IVOmax_防曇を決定し、さらに、制御ステップS121では、これらの合算値に対して車速Vvの低下に伴って小さくなる係数を積算した値、および、圧縮機11の耐久性から決定される最大回転数(本実施形態では、10000rpm)のうち、小さい方の値を上限値IVOmaxとすればよい。
【0239】
(2)上述の実施形態にて目標蒸発温度決定手段を構成する制御ステップS111では、目標吹出温度TAOの低下に伴って、目標蒸発温度TEOを低下させるように決定した例を説明したが、目標蒸発温度決定手段における目標蒸発温度TEOの決定はこれに限定されない。例えば、目標蒸発温度TEOは、乗員の空調フィーリングを悪化させない範囲で車室内の冷房を充分に実現可能な温度に決定されれば、TAOに基づいて決定されなくてもよい。
【0240】
(3)上述の実施形態では、制御ステップS115が車室内の目標温度に基づく上限値決定手段とし、制御ステップS116〜S120をステップS115にて決定された上限値を補正する上限値補正手段として用いた例を説明したが、上限値決定手段を構成する制御ステップS115〜S121はこれに限定されない。
【0241】
例えば、目標吹出温度TAO、日射量Ts、外気温Tam、外気導入率FRSr、設定温度Tsetのうち少なくとも2つ以上のパラメータを参照して、予め空調制御装置50の記憶回路に記憶されている制御マップを参照して圧縮機11の冷媒吐出能力の上限値IVOmaxを決定するようになっていてもよい。
【0242】
(4)上述の実施形態では、本発明の車両用空調装置1を、プラグインハイブリッド車両の車両走行用の駆動力について詳細を述べていないが、本発明の車両用空調装置1は、エンジンEGおよび走行用電動モータの双方から直接駆動力を得て走行可能な、いわゆるパラレル型のハイブリッド車両に適用してもよいし、エンジンEGを発電機80の駆動源として用い、発電された電力をバッテリ81に蓄え、さらに、バッテリ81に蓄えられた電力を供給されることによって作動する走行用電動モータから駆動力を得て走行する、いわゆるシリアル型のハイブリッド車両に適用してもよい。
【0243】
また、本発明の車両用空調装置1を、エンジンEGを備えることなく車両走行用の駆動力を走行用電動モータのみから得る電気自動車に適用してもよい。
【符号の説明】
【0244】
10 冷凍サイクル
11 圧縮機
26 室内蒸発器
31a 内外気切替装置
S5 目標温度決定手段
S111 目標蒸発温度決定手段
S113…S121 上限値決定手段

【特許請求の範囲】
【請求項1】
冷媒を圧縮して吐出する圧縮機(11)および前記圧縮機(11)へ吸入される冷媒を蒸発させる蒸発器(26)を有し、前記蒸発器(26)にて冷媒が蒸発する際の吸熱作用によって車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル(10)と、
前記送風空気の目標温度(TAO)を決定する目標温度決定手段(S5)と、
前記蒸発器(26)における冷媒の目標蒸発温度(TEO)を決定する目標蒸発温度決定手段(S111)と、
前記圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を決定する上限値決定手段(S113…S121)とを備え、
前記上限値決定手段(S115)は、前記目標温度(TAO)の低下に伴って前記上限値(IVOmax)を上昇させるように決定することを特徴とする車両用空調装置。
【請求項2】
前記上限値決定手段(S115)は、前記目標温度(TAO)が予め定めた所定温度低下した際に、前記上限値(IVOmax)を予め定めた所定量増加させるように決定することを特徴とする請求項1に記載の車両用空調装置。
【請求項3】
前記送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)を備え、
さらに、前記上限値決定手段(S118)は、前記送風空気における前記車室外空気の割合である外気導入率(FRSr)の減少に伴って前記上限値(IVOmax)を低下させるように決定することを特徴とする請求項1または2に記載の車両用空調装置。
【請求項4】
冷媒を圧縮して吐出する圧縮機(11)を有し、車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル(10)と、
前記送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)と、
前記圧縮機(11)の冷媒吐出能力の上限値(IVOmax)を決定する上限値決定手段(S113…S121)とを備え、
前記上限値決定手段(S113、S118、S1181)は、車両の車速(Vv)の低下に伴って前記上限値(IVOmax)を低下させるように決定するとともに、前記送風空気における前記車室外空気の割合である外気導入率(FRSr)の減少に伴って前記上限値(IVOmax)を低下させるように決定することを特徴とする車両用空調装置。
【請求項5】
前記上限値決定手段(S118)は、前記外気導入率(FRSr)が予め定めた所定量減少した際に、前記上限値(IVOmax)を予め定めた所定量低下させることを特徴とする請求項4に記載の車両用空調装置。
【請求項6】
さらに、前記上限値決定手段(S116)は、日射量(Ts)の増加に伴って前記上限値(IVOmax)を上昇させるように決定することを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
【請求項7】
さらに、前記上限値決定手段(S117)は、外気温(Tam)の上昇に伴って前記上限値(IVOmax)を上昇させるように決定することを特徴とする請求項1ないし6のいずれか1つに記載の車両用空調装置。
【請求項8】
乗員の操作によって車室内の設定温度(Tset)を設定する車室内温度設定手段とを備え、
さらに、前記上限値決定手段(S119)は、前記設定温度(Tset)の低下に伴って前記上限値(IVOmax)を上昇させるように決定することを特徴とする請求項1ないし7のいずれか1つに記載の車両用空調装置。
【請求項9】
前記送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)と、
前記送風空気の目標温度(TAO)を決定する目標温度決定手段(S5)とを備え、
前記上限値決定手段(S120)は、前記目標温度(TAO)が予め定めた基準目標温度(KTAO)以上となり、かつ、前記送風空気における前記車室外空気の割合である外気導入率(FRSr)が予め定めた基準外気導入率(KFRSr)以下となった際に、前記上限値(IVOmax)を上昇させるように決定することを特徴とする請求項1ないし8のいずれか1つに記載の車両用空調装置。
【請求項10】
前記送風空気における車室外空気と車室内空気との割合を調整する内外気割合調整手段(31a)を備え、
前記上限値決定手段(S120)は、外気温(Tam)が予め定めた基準外気温(KTam)以下となり、かつ、前記送風空気における前記車室外空気の割合である外気導入率(FRSr)が予め定めた基準外気導入率(KRFSr)以下となった際に、前記上限値(IVOmax)を上昇させるように決定することを特徴とする請求項1ないし9のいずれか1つに記載の車両用空調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−56624(P2013−56624A)
【公開日】平成25年3月28日(2013.3.28)
【国際特許分類】
【出願番号】特願2011−196117(P2011−196117)
【出願日】平成23年9月8日(2011.9.8)
【出願人】(000004260)株式会社デンソー (27,639)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】