説明

適応制御装置

【課題】負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現し得る適応制御装置を提供する。
【解決手段】ループゲイン調節器7、適応制御器5およびPI制御器3を有し、制御偏差e(t)を自乗する乗算器16と、乗算器16の出力を入力とする1次遅れ要素17と、を備えた適応制御器5の可変ゲイン演算部11において、制御偏差e(t)の変動傾きが負のときの1次遅れ要素17の時定数を制御偏差e(t)の変動傾きが一定または正のときの1次遅れ要素17の時定数よりも大きい値に設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は単純適応制御方式に基づく適応制御装置に係り、特に、負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現し得る適応制御装置に関するものである。
【背景技術】
【0002】
近年、プラントやサーボ系の制御対象に対し、制御系を安定化しつつ制御対象のパラメータ(の一部)を推定する適応制御を適用した制御手法が提案されている(例えば、特開平8−254136号公報参照)。特に、プロセスを制御対象とし、単純適応制御方式をベースとしてより簡易化した制御方式を提案したものとして、非特許文献1および非特許文献2がある。
【0003】
この従来の単純適応制御方式(例えば非特許文献1)は、最小限に必要とされる制御偏差のみで可変ゲインを決定するようにして、より構成を簡易化したもので、該制御偏差に関連した値の自乗積分値に基づく可変ゲインにより、制御偏差のピーク値が大きいときには大きな値のゲインの状態が持続され、積極的な制御が行われる。その結果、制御偏差のピーク値が小さくなると同時に、ゲインを元の小さな値に戻し定常状態の安定化を図っている。
【0004】
非特許文献1および非特許文献2に開示された技術においては、外乱があった直後の過渡状態や、目標値が変わった直後の過渡状態では、制御偏差の自乗積分値に基づく可変ゲインによりゲインを大きくして制御偏差を抑え込み、定常状態になればゲインを元の小さな値に戻して安定な状態を確保する。つまり、可変ゲイン演算部において、制御偏差を自乗し、その値を1次遅れ要素を介して得られたものを可変ゲインとしているが、1次遅れ要素における時定数を制御対象のプロセスの総時定数(むだ時間の値を含む)の推定値に基づく値としている。これにより、追従性に優れた過渡応答特性が得られ、制御偏差がゼロに収束すると直ちに可変ゲインも最小設定値に収束する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平8−254136号公報
【非特許文献】
【0006】
【非特許文献1】藤原敏勝他,高機能制御方式“SNAC”とその火力プラント蒸気温度制御への適用,三菱重工技報,Vol 31,No,6 (1994.11),pp.388-391
【非特許文献2】藤原敏勝,単純適応制御(SAC)とそのボイラプラント蒸気温度制御への適用,第34回計測自動制御学会学術講演会 SICE '95 in Sapporo予稿集,307 C-3 (1995),pp.867-868
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、プロセス制御では、制御量が設定値に収束して制御偏差がゼロに収束した後にも、負荷変化や制御対象であるプロセスの特性変化が起こることがしばしばある。このような負荷変化やプロセスの特性変化に対し、最小設定値に収束した可変ゲインからでは応答にそれだけ時間を要してしまうという事情があった。
【0008】
本発明は、このような事情に鑑みてなされたものであって、負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現し得る適応制御装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明は以下の手段を採用する。
本発明に係る適応制御装置は、制御対象の出力と目標値との偏差を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節手段と、当該閉ループ制御系の出力を入力として位相遅れ要素を介して前記ループゲイン調節手段の出力側に戻すフィードバック手段と、前記位相遅れ要素の出力と前記ループゲイン調節手段の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、前記ループゲイン調節手段の出力を入力としてPI制御を行うPI制御手段と、前記閉ループ制御系の出力と前記PI制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定することを特徴とする。
【0010】
本発明によれば、可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定するので、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせ、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【0011】
また、本発明は、制御対象の出力と目標値との偏差を所定係数倍する係数手段と、前記係数手段の出力を入力とする位相遅れ要素と、当該閉ループ制御系の出力を入力し位相遅れ要素を介して戻すフィードバック手段と、前記位相遅れ要素の出力と前記位相遅れ要素の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、前記偏差を入力としてPID制御を行うPID制御手段と、前記閉ループ制御系の出力と前記PID制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定することを特徴とする。
【0012】
本発明によれば、可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定するので、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせ、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【0013】
また、本発明は、上記記載の適応制御装置において、前記可変ゲイン演算手段は、前記制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定することを特徴とする。
【0014】
本発明によれば、可変ゲイン演算手段において、制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定するので、可変ゲインの最小設定値への収束時間をより長くして、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【発明の効果】
【0015】
本発明によれば、閉ループ制御系のゲインを補償する可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定することとし、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせることができるので、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができるという効果を奏する。
【図面の簡単な説明】
【0016】
【図1】本発明の第1実施形態に係る適応制御装置のブロック図であり、(a)は適応制御装置全体の概略的ブロック図、(b)は適応制御器の概略的ブロック図である。
【図2】本発明の第1実施形態の適応制御器の各種機能ブロックの詳細な構成図であり、(a)は可変ゲイン演算部における1次遅れ要素の時定数を生成する回路の構成図、(b)は可変ゲイン演算部の詳細な構成図、(c)は位相遅れ要素の詳細な構成図である。
【図3】本発明の第1実施形態のプラント出力のステップ応答を例示する説明図である。
【図4】本発明の第1実施形態のプラント入力のステップ応答を例示する説明図である。
【図5】本発明の第1実施形態の可変ゲイン演算部の可変ゲインのステップ応答を例示する説明図である。
【図6】本発明の第1実施形態の外乱応答を例示する説明図であり、(a)はプラント出力y(t)を、(b)は外乱入力を、それぞれ例示する。
【図7】本発明の第1実施形態の外乱応答を例示する説明図であり、(a)は可変ゲイン演算部の可変ゲインK(t)を、(b)はプラント入力u(t)を、それぞれ例示する。
【図8】本発明の第2実施形態に係る適応制御装置のブロック図であり、(a)は適応制御装置全体の概略的ブロック図、(b)は適応制御器の概略的ブロック図である。
【図9】本発明の第2実施形態の適応制御器の各種機能ブロックの詳細な構成図であり、(a)は可変ゲイン演算部における1次遅れ要素の時定数を生成する回路の構成図、(b)は可変ゲイン演算部の詳細な構成図、(c)は位相遅れ要素の詳細な構成図である。
【発明を実施するための形態】
【0017】
〔第1実施形態〕
以下、本発明の第1実施形態に係る適応制御装置について説明する。
図1は本発明の第1実施形態に係る適応制御装置のブロック図である。図1(a)には適応制御装置全体の概略的なブロック図を示し、図1(b)には適応制御器5の概略的なブロック図を示す。
【0018】
図1(a)において、本実施形態の適応制御装置は、大まかに、制御対象であるプラント1に対して、PI制御器3および閉ループ制御系を備えた構成である。PI制御器3は、プラント1に対する比例制御(P制御)および積分制御(I制御)に基づく制御量を生成する。また、プラント1の出力y(t)はフィードバックされており、減算器8によって目標値r(t)とプラント1の出力y(t)との偏差e(t)が求められている。
【0019】
また図1(a)において、閉ループ制御系には、ループゲイン調節器7および適応制御器5を備える。ループゲイン調節器7は、プラント1の出力y(t)と目標値r(t)との偏差e(t)を入力として当該閉ループ制御系の定常ゲインが1となるように調整する。
このループゲイン調節器7は係数器で実現されるが、その係数αは、プラント1に対する操作量u(t)が1の値だけ増えたときに当該係数器の出力e(t)が定常状態でほぼ−1の値になるように設定される。
【0020】
さらに図1(b)に示すように、閉ループ制御系の適応制御器5には、位相遅れ要素13を介して当該閉ループ制御系の出力u(t)をループゲイン調節器7の出力側に戻すフィードバック部と、位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部11と、を備えている。
【0021】
なお、参照符号20は位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を求める減算器であり、参照符号10は制御偏差e(t)と可変ゲイン演算部11の出力である可変ゲインK(t)とを掛け合わせる乗算器である。したがって、位相遅れ要素13の伝達特性をF(s)とすれば、ループゲイン調節器7の出力e(t)と閉ループ制御系の出力u(t)との間の伝達特性Gc(s)は、Gc(s)=K(s)/(1+K(s)・F(s))で表される。ここに、sはラプラス演算子である。
【0022】
また、位相遅れ要素13の伝達特性F(s)として種々の特性が考えられるが、ここでは2次微分の効果を得るため、次式で与えられるものとする。
【0023】
(s)=1/2Kmax(1/(1+τs)+1/(1+τs))) …(1)
【0024】
ここで、Kmaxはループゲイン調節器7の出力e(t)と閉ループ制御系の出力u(t)との間の定常ゲインの最大値である。
【0025】
(1)式を伝達特性Gc(s)の式に代入して、K(s)→∞にすれば、次式の関係が得られる。
【0026】
Gc(s)=Kmax(1+τs)/(1+0.5τs) …(2)
【0027】
ここで、Kmaxおよびτの値は指定値であり、適応制御器5は可変ゲインK(s)の値が無限大になっても、定常ゲインはKmaxを超えることはない。また同様に、K(s)→Kmin(Kmin≪Kmax)にすれば、Gc(s)≒Kminの関係が得られ、適応制御器5は可変ゲインK(s)の値が小さくなるに従いゲインKminの比例動作となる。なお、Kminの値は指定値である。
【0028】
次に、図1(b)において、可変ゲイン演算部11は、係数器15、乗算器16、1次遅れ要素17、係数器18および加算器19を備えている。すなわち、可変ゲインK(t)は、制御偏差e(t)に係数器15で係数γ倍し、それを乗算器16で自乗し、これを時定数μの1次遅れ要素17を介して得られた値に、係数器18の係数β/Kmaxを加えて算出される。可変ゲイン演算部11における可変ゲインK(t)の算出を式で表せば、次の通りである。
【0029】
K(t)=(μ/(μs+1))・(γe(t))+β/Kmax (3)
【0030】
ここで、d/dt|e(t)|<0のときμ=μ11
d/dt|e(t)|≧0のときμ=μ12(μ12<μ11
【0031】
(3)式に示す通り、本実施形態の適応制御装置では、可変ゲイン演算部11における1次遅れ要素17の時定数μを、制御偏差e(t)の変動傾きに応じて可変設定する点に特徴がある。すなわち、制御偏差e(t)の変動傾きd/dt|e(t)|が負のときに1次遅れ要素17の時定数をμ=μ11とし、これを制御偏差e(t)の変動傾きd/dt|e(t)|が一定または正のときの1次遅れ要素17の時定数μ12よりも大きい値に設定するものである。
【0032】
図2(a)に、可変ゲイン演算部11における1次遅れ要素17の時定数μ(1/μ)を生成する回路の構成図を示す。時定数μ11の定数器31、時定数μ12の定数器32、切替スイッチ33、微分器35、切替信号生成器36、除算器37および「1」の定数器38を備えた構成である。つまり、微分器35で制御偏差e(t)の変動傾きd/dt|e(t)|を求め、切替信号生成器36により負または正、ゼロを判定して切替信号を生成し、該切替信号に基づき時定数μ11の定数器31または時定数μ12の定数器32の何れかの出力を選択するものである。なお、後述のように、1次遅れ要素17に1/μを用いた構成としているので、除算器37により1/μを求めている。
【0033】
また、図2(b)に、可変ゲイン演算部11の詳細な構成図を示す。図2(b)では、1次遅れ要素17を積分器21、ゲイン(係数)1/μを持つ係数器22および減算器23により構成している。また図2(b)では、可変ゲイン演算部11と加算器19の間に加算器24を設けて、他の制御系統の信号(可変ゲイン)Ke(t)を加える構成としている。ここで、他の制御系統は、制御対象が2変数系以上からなる場合の他の制御系統であり、このような構成とすることで多変数制御系への適用が可能となる。
【0034】
なお、ゲインγを持つ係数器15は、ゲイン(係数)γを次のようにして求めるのが望ましい。すなわち、ループゲイン調節器7の出力e(t)の最大偏差推定値e(t)maxの逆数を、時定数σを持つ1次遅れ要素(1/(1+σs))を介して得た値である。ここで、時定数σはμ12の値にほぼ等しい。
【0035】
さらに、図2(c)に、上述した位相遅れ要素13の詳細な構成図を示す。位相遅れ要素13は、係数器41、第1の1次遅れ要素42、第2の1次遅れ要素43および加算器44を備えた構成である。乗算器10の出力u(t)を係数器41で1/2Kmax倍し、その出力を第1の1次遅れ要素42に入力し、さらにその出力を第2の1次遅れ要素43に入力する。そして、第1の1次遅れ要素42と第2の1次遅れ要素43の出力を加算器44によって加算し、その加算結果が位相遅れ要素13の出力y(t)となる。なお、第1の1次遅れ要素43および第2の1次遅れ要素44における時定数τは、外部から指定でき(例えばτ=0.2μ12に設定され)る。
【0036】
次に、本実施形態の適応制御装置によるステップ応答および外乱応答のシミュレーション実験結果を図3〜図6に例示して、本発明の効果を検証する。ここで、図3は本実施形態のプラント出力y(t)のステップ応答を例示する説明図であり、図4はプラント入力u(t)のステップ応答を例示する説明図であり、図5は可変ゲイン演算部11の可変ゲインK(t)のステップ応答を例示する説明図である。また図6および図7は本実施形態の外乱応答を例示する説明図であり、図6(a)はプラント出力y(t)を、図6(b)は外乱入力を、図7(a)は可変ゲイン演算部11の可変ゲインK(t)を、図7(b)はプラント入力u(t)を、それぞれ示す。
【0037】
まず、ステップ応答については、図3に示すように、目標値r(t)をあるタイミングで「1」にするステップ入力に対して行った。従来例では、可変ゲイン演算部11における1次遅れ要素17の時定数μは、制御偏差e(t)の変動傾きに関わらずμ=μ12で一定である。これに対して、本発明では、プラント出力y(t)が目標値r(t)に最初に到達するまでの間は、制御偏差e(t)の変動傾きは負となって、時定数μはより大きいμ=μ11に設定され、その後オーバーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、…と、目標値r(t)への到達点およびオーバーシュートまたはアンダーシュートのピーク点を境にして、1次遅れ要素の時定数が切り替わることとなる。
【0038】
可変ゲイン演算部11の可変ゲインK(t)は、図5に示すように、従来よりも大きく設定されると共に、偏差e(t)の収束に伴って(従来と比較して)ゆっくりと最小設定値に収束していっている。その結果として、プラント出力y(t)およびプラント入力u(t)のステップ応答について、目標値r(t)変化により速く応答でき、しかもオーバーシュートも抑制され且つ整定時間もより短くなっている。これにより、従来よりも優れたステップ応答特性を実現し得ることが確認できた。
【0039】
また、外乱応答については、図6(b)に示すように、あるタイミングでマイナス方向に振れ、その後収束しながらもプラス方向に振れていく振動性を持つ外乱入力に対して行った。従来例では、可変ゲイン演算部11における1次遅れ要素17の時定数μは、制御偏差e(t)の変動傾きに関わらずμ=μ12で一定である。これに対して、本発明では、プラント出力y(t)(図6(a)参照)がマイナス方向に振れてアンダーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、その後、目標値r(t)に到達するまでの間は、制御偏差e(t)の変動傾きは負となって、時定数μはより大きいμ=μ11に設定され、その後、オーバーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、…と、目標値r(t)への到達点およびオーバーシュートまたはアンダーシュートのピーク点を境にして、1次遅れ要素の時定数が切り替わることとなる。
【0040】
可変ゲイン演算部11の可変ゲインK(t)は、図7(a)に示すように、従来よりも大きく設定されると共に、偏差e(t)の収束に伴って(従来と比較して)ゆっくりと最小設定値に収束していっている。その結果として、プラント出力y(t)およびプラント入力u(t)のステップ応答について、外乱変化により速く応答でき、しかもアンダーシュートおよびオーバーシュートも抑制され且つ整定時間もより短くなっている。これにより、従来よりも優れた外乱応答特性を実現し得ることが確認できた。
【0041】
以上説明したように、本実施形態の適応制御装置は、プラント1の出力y(t)と目標値r(t)との偏差e(t)を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節器7と、当該閉ループ制御系の出力を入力として位相遅れ要素13を介してループゲイン調節器7の出力側に戻すフィードバック部と、位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部11と、を備える閉ループ制御系と、ループゲイン調節器7の出力を入力としてPI制御を行うPI制御器3と、閉ループ制御系の出力u(t)とPI制御器3の出力とを加算してプラント1に操作量u(t)として与える加算器9と、を有する適応制御装置であって、可変ゲイン演算部11は、制御偏差e(t)を自乗する乗算器16と、乗算器16の出力を入力とする1次遅れ要素17と、を備え、1次遅れ要素17の時定数を制御偏差e(t)の変動傾きに応じて可変設定する。
【0042】
このように本実施形態の適応制御装置では、可変ゲイン演算部11において、1次遅れ要素17の時定数を制御偏差e(t)の変動傾きに応じて可変設定するので、1次遅れ要素17の時定数をより大きな値として可変ゲインK(t)の最小設定値への収束を遅らせ、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【0043】
また本実施形態の適応制御装置では、可変ゲイン演算部11において、制御偏差e(t)の変動傾きが負のときの1次遅れ要素17の時定数を制御偏差e(t)の変動傾きが一定または正のときの1次遅れ要素17の時定数よりも大きい値に設定するので、可変ゲインK(t)の最小設定値への収束時間をより長くして、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【0044】
〔第2実施形態〕
次に、図8は本発明の第2実施形態に係る適応制御装置のブロック図である。図8(a)には適応制御装置全体の概略的なブロック図を示し、図8(b)には適応制御器105の概略的なブロック図を示す。
【0045】
図8(a)において、本実施形態の適応制御装置は、大まかに、制御対象であるプラント101に対して、PID制御器103および閉ループ制御系を備えた構成である。PID制御器103は、プラント101に対する比例制御(P制御)、積分制御(I制御)および微分制御(D制御)に基づく制御量を生成する。また、プラント101の出力y(t)はフィードバックされており、減算器108によって目標値r(t)とプラント101の出力y(t)との偏差e(t)が求められている。
【0046】
また、閉ループ制御系には適応制御器105を備える。図8(b)に示すように、閉ループ制御系の適応制御器105には、目標値r(t)とプラント101の出力y(t)との偏差e(t)をk倍する係数器107と、係数器107の出力を入力とする位相進み要素112,114および119と、位相遅れ要素113を介して当該閉ループ制御系の出力u(t)を戻すフィードバック部と、位相遅れ要素113の出力y(t)と位相進み要素112,114および119の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部111と、を備えている。
【0047】
なお、位相進み要素は、ゲインλの係数器112、時定数τを持つ微分器114、並びに加算器119を備えた構成であり、伝達特性(λ+τs)を持つ。また、参照符号120は位相遅れ要素113の出力y(t)と位相進み要素の出力e(t)との制御偏差e(t)を求める減算器であり、参照符号110は制御偏差e(t)と可変ゲイン演算部111の出力である可変ゲインK(t)とを掛け合わせる乗算器である。したがって、位相遅れ要素13の伝達特性をF(s)とすれば、偏差e(t)と閉ループ制御系の出力u(t)との間の伝達特性Gc(s)は、Gc(s)=k・(λ+τs)・K(s)/(1+K(s)・F(s))で表される。
【0048】
また、位相遅れ要素113の伝達特性F(s)として種々の特性が考えられるが、ここでは2次微分の効果を得るため、次式で与えられるものとする。
【0049】
12(s)=1/2(1/(1+τs)+1/(1+τs))) (4)
【0050】
(4)式を伝達特性Gc(s)の式に代入して、K(s)→∞にすれば、次式の関係が得られる。
【0051】
Gc(s)=k・(λ+τs)・(1+τs)/(1+0.5τs) (5)
【0052】
ここで、k、λおよびτの値は指定値であり、適応制御器105は可変ゲインK(s)の値が無限大になっても、定常ゲインはkλを超えることはない。また同様に、K(s)→小にすれば、Gc(s)≒k・(λ+τs)・K(s)の関係が得られ、適応制御器105は可変ゲインK(s)の値が小さくなるに従い1次微分動作となる。
【0053】
次に、図8(b)において、可変ゲイン演算部111は、係数器115、乗算器116および1次遅れ要素117を備えている。すなわち、可変ゲインK(t)は、制御偏差e(t)に係数器115で係数γ倍し、それを乗算器116で自乗し、これを時定数μの1次遅れ要素117を介して得られた値として算出される。可変ゲイン演算部111における可変ゲインK(t)の算出を式で表せば、次の通りである。
【0054】
K(t)=(μ/(μs+1))・(γe(t)) (6)
【0055】
ここで、d/dt|e(t)|<0のときμ=μ21
d/dt|e(t)|≧0のときμ=μ22(μ22<μ21
【0056】
(6)式に示す通り、本実施形態の適応制御装置では、可変ゲイン演算部111における1次遅れ要素117の時定数μを、制御偏差e(t)の変動傾きに応じて可変設定する点に特徴がある。すなわち、制御偏差e(t)の変動傾きd/dt|e(t)|が負のときに1次遅れ要素117の時定数をμ=μ21とし、これを制御偏差e(t)の変動傾きd/dt|e(t)|が一定または正のときの1次遅れ要素117の時定数μ22よりも大きい値に設定するものである。
【0057】
図9(a)に、可変ゲイン演算部111における1次遅れ要素117の時定数μ(1/μ)を生成する回路の構成図を示す。時定数μ21の定数器131、時定数μ22の定数器132、切替スイッチ133、微分器135、切替信号生成器136、除算器137および「1」の定数器138を備えた構成である。つまり、微分器135で制御偏差e(t)の変動傾きd/dt|e(t)|を求め、切替信号生成器136により負または正、ゼロを判定して切替信号を生成し、該切替信号に基づき時定数μ21の定数器131または時定数μ22の定数器132の何れかの出力を選択するものである。なお、後述のように、1次遅れ要素117に1/μを用いた構成としているので、除算器137により1/μを求めている。
【0058】
また、図9(b)に、可変ゲイン演算部111の詳細な構成図を示す。図9(b)では、1次遅れ要素117を積分器121、ゲイン(係数)1/μを持つ係数器122および減算器123により構成している。また図9(b)では、可変ゲイン演算部111の後段に加算器124を設けて、他の制御系統の信号(可変ゲイン)Ke(t)を加える構成としている。ここで、他の制御系統は、制御対象が2変数系以上からなる場合の他の制御系統であり、このような構成とすることで多変数制御系への適用が可能となる。
【0059】
なお、ゲインγを持つ係数器115は、ゲイン(係数)γを次のようにして求めるのが望ましい。すなわち、位相進み要素112,114および119の出力e(t)の最大偏差推定値e(t)maxの逆数を、時定数σを持つ1次遅れ要素(1/(1+σs))を介して得た値である。ここで、時定数σはμ22の値にほぼ等しい。
【0060】
さらに、図9(c)に、上述した位相遅れ要素113の詳細な構成図を示す。位相遅れ要素13は、係数器141、第1の1次遅れ要素142、第2の1次遅れ要素143および加算器144を備えた構成である。乗算器110の出力u(t)を係数器141で1/2倍し、その出力を第1の1次遅れ要素142に入力し、さらにその出力を第2の1次遅れ要素143に入力する。そして、第1の1次遅れ要素142と第2の1次遅れ要素143の出力を加算器144によって加算し、その加算結果が位相遅れ要素113の出力y(t)となる。なお、第1の1次遅れ要素143および第2の1次遅れ要素144における時定数τは、外部から指定でき(例えばτ=0.0833μ22に設定され)る。
【0061】
以上説明したように、本実施形態の適応制御装置は、目標値r(t)とプラント101の出力y(t)との偏差e(t)をk倍する係数器107と、係数器107の出力を入力とする位相進み要素112,114および119と、当該閉ループ制御系の出力を入力し位相遅れ要素113を介して戻すフィードバック部と、位相遅れ要素113の出力y(t)と位相進み要素112,114および119の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部111と、を備える閉ループ制御系と、偏差e(t)を入力としてPID制御を行うPID制御器103と、閉ループ制御系の出力とPID制御器103の出力とを加算してプラント101にu(t)として与える加算器109と、を有する適応制御装置であって、可変ゲイン演算部111は、制御偏差e(t)を自乗する乗算器116と、乗算器116の出力を入力とする1次遅れ要素117と、を備え、1次遅れ要素117の時定数を制御偏差e(t)の変動傾きに応じて可変設定する。
【0062】
このように本実施形態の適応制御装置では、可変ゲイン演算部111において、1次遅れ要素117の時定数を制御偏差e(t)の変動傾きに応じて可変設定するので、1次遅れ要素117の時定数をより大きな値として可変ゲインK(t)の最小設定値への収束を遅らせ、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【0063】
また本実施形態の適応制御装置では、可変ゲイン演算部111において、制御偏差e(t)の変動傾きが負のときの1次遅れ要素117の時定数を制御偏差e(t)の変動傾きが一定または正のときの1次遅れ要素117の時定数よりも大きい値に設定するので、可変ゲインK(t)の最小設定値への収束時間をより長くして、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。
【符号の説明】
【0064】
1,101 プラント(制御対象)
3 PI制御器
5,105 適応制御器
7 ループゲイン調節器
8,20,23,108,120,123 減算器
9,19,24,109,119,124 加算器
10,16,110,116 乗算器
11,111 可変ゲイン演算部
13,113 位相遅れ要素
15,18,22,41,107,112,115,122,141 係数器
17,117 1次遅れ要素
21,121 積分器
31,32,38,131,132,138 定数器
33,133 切替スイッチ
35,114,135 微分器
36,136 切替信号生成器
37,137 除算器
42,142 第1の1次遅れ要素
43,143 第2の1次遅れ要素
103 PID制御器

【特許請求の範囲】
【請求項1】
制御対象の出力と目標値との偏差を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節手段と、当該閉ループ制御系の出力を入力として位相遅れ要素を介して前記ループゲイン調節手段の出力側に戻すフィードバック手段と、前記位相遅れ要素の出力と前記ループゲイン調節手段の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、
前記ループゲイン調節手段の出力を入力としてPI制御を行うPI制御手段と、
前記閉ループ制御系の出力と前記PI制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、
前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定する適応制御装置。
【請求項2】
制御対象の出力と目標値との偏差を所定係数倍する係数手段と、前記係数手段の出力を入力とする位相遅れ要素と、当該閉ループ制御系の出力を入力し位相遅れ要素を介して戻すフィードバック手段と、前記位相遅れ要素の出力と前記位相遅れ要素の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、
前記偏差を入力としてPID制御を行うPID制御手段と、
前記閉ループ制御系の出力と前記PID制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、
前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定する適応制御装置。
【請求項3】
前記可変ゲイン演算手段は、前記制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定する請求項1または請求項2に記載の適応制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−138200(P2011−138200A)
【公開日】平成23年7月14日(2011.7.14)
【国際特許分類】
【出願番号】特願2009−296148(P2009−296148)
【出願日】平成21年12月25日(2009.12.25)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】