説明

選択された蛋白質を分解する方法および複合化合物

【課題】癌細胞に標的を定めて薬剤を放出させるための新規なハイブリッドな癌治療薬を提供する。
【解決手段】癌細胞が生存に必要とする蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分及びアンサマイシン抗生物質が結合するhsp90のポケットに結合する、hsp−結合性部分を含有するハイブリッドな癌治療薬である。標的設定部分は、たとえば、エストラゲン、エストラジオール、タモキシフェンなどであり、hsp−結合性部分は、たとえば、アンサマイシン抗生物質である。

【発明の詳細な説明】
【技術分野】
【0001】
説明
発明の分野
本出願は、選択された蛋白質の分解に標的を定めた治療剤としてのアンサマイシン(ansamycin)抗生物質の使用およびこの使用に適する新規組成物に関する。本発明に従う選択された蛋白質の分解は、癌の処置に使用することができる。
【背景技術】
【0002】
発明の背景
癌を処置するための手段として、治療剤の標的を定めた供給は、かなりの刊行物の著者により提案されている。概念上、この考え方は、癌細胞に対して選択的に毒性物質を供給し、これにより患者に対する一般的毒性を減少させることにある。かなりのタイプの癌細胞は増加したレベルのホルモンレセプターおよび類似のレセプターを有することが見出されていることから、これは理論的には可能である。一例として、乳癌細胞は、癌細胞のホルモン−刺激増殖をもたらす、HER2レセプターまたはエストロゲンレセプターのレベルの上昇を有することがあり、一方、アンドロゲンレセプターは、多くの前立腺癌の増殖に必要であり、またこのアンドロゲンレセプターの変異はしばしば、進行した前立腺癌で生じる。
【0003】
或る種類の細胞に標的を定めた化学療法剤の直接使用を容易にする研究で、ホルモンレセプターが使用されている。すなわち、例えばLam等はヒト乳癌に対する強力な細胞毒性薬剤として、エストロゲン−ニトロソ尿素結合体を報告している(Cancer Treatment Reports,71:901〜906(1987))。一方、Brix等は、抗悪性物質転換剤(antineoplastic agents)としてアンドロゲン−結合アルキル化剤の使用にかかわる研究を報告している(Cancer Res.,116:538〜539(1990))。また、Eisenbrand等による
Acta Oncologica,28:203〜211(1989)を参照することができる。MyersおよびVillemezは、切断したジフテリア毒素に結合させた黄体形成ホルモンの利用可能性を開示している(Biochem.Biophys.Res.Commun.,163:161〜164(1989))。
【0004】
ゲルダナマイシン(geldanamycin)およびヘルビマイシン(herbimycin)Aなどのベンゾキノイドアンサマイシン抗生物質は、HER−2レセプター、インシュリンおよびインシュリン様成長因子レセプターならびにsrc−族およびrafキナーゼの一員を包含する或る種の蛋白質チロシンキナーゼの分解を誘発させることが知られている。さらにまた、ベンゾキノイド抗生物質は、インビボで、エストロゲン、アンドロゲンおよびプロゲステロンレセプターを包含するレセプターの選択的分解を誘発させることができる。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Cancer Treatment Reports,71:901〜906(1987)
【非特許文献2】Eisenbrand等によるActa Oncologica,28:203〜211(1989)
【非特許文献3】Biochem.Biophys.Res.Commun.,163:161〜164(1989)
【発明の概要】
【発明が解決しようとする課題】
【0006】
選択された蛋白質の分解に標的を定めた治療剤の使用を容易にすることが求められている。
【課題を解決するための手段】
【0007】
発明の要旨
我々はここに、蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分(targeting moiety)に結合したアンサマイシン抗生物質を含有する化合物が、蛋白質の分解および標的細胞の死滅を導くことができるアンサマイシン抗生物質の効果的な標的を定めた放出をもたらすことを見出した。これらの複合化合物は、アンサマイシン単独とは相違する特異性を有することができ、治療のより特異的なターゲティングを可能にし、またアンサマイシン単独では効果がない場合にも有効であることができる。従って、本発明は、標的設定部分の種類に応じて、種々の相違する形態の癌の処置に施用することができる全く新規な一群の標的指向化化学療法剤を提供する。このような薬剤はまた、自己免疫障害に付随する抗原およびアルツハイマー病に付随する病原性蛋白質を包含する別種の病気の病因になる蛋白質の選択的分解を促進させるために使用することもできる。
【0008】
本発明による化合物は、好ましくはスペーサーにより分離されている、標的蛋白質または細胞集団に特異的に結合する標的設定部分およびアンサマイシン抗生物質を含有する。本発明による化合物に使用することができる標的設定部分の例には、テストステロン、エストラジオールおよびタモキシフェンが包含される。好適なアンサマイシン抗生物質は、ゲルダナマイシンおよびヘルビマイシンAである。
【図面の簡単な説明】
【0009】
【図1】図1は、本発明による化合物の一般構造を示している;
【図2】図2は、ヘルビマイシンAの構造を示している;
【図3】図3、本発明によるテストステロン−ゲルダナマイシン化合物の合成を例示している;
【図4】図4は、本発明による化合物の合成に有用なアルキルアミノテストステロンの合成を示している;
【図5】図5は、本発明によるアルキルアミノエストラジオール/GM化合物の合成を示している;
【図6】図6は、スペーサー基によりGMに結合されているタモキシフェン(TMX)を製造するための合成経路を示している;
【図7A】図7Aは、本発明によるウォルトマンニン−GM化合物の合成を示している;
【図7B】図7Bは、本発明によるウォルトマンニン−GM化合物の合成を示している;
【図8A】図8Aは、ゲルダナマイシンまたはテストステロン−結合ゲルダナマイシンにさらされた後の、前立腺癌細胞中のアンドロゲンレセプターおよびErbB2のレベルを示している;
【図8B】図8Bは、ゲルダナマイシンまたはテストステロン−結合ゲルダナマイシンにさらされた後の、前立腺癌細胞中のアンドロゲンレセプターおよびErbB2のレベルを示している;
【図9A】図9Aは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9B】図9Bは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9C】図9Cは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9D】図9Dは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9E】図9Eは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9F】図9Fは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図9G】図9Gは、本発明による種々のゲルダナマイシン−エストラジオール化合物の構造を示している;
【図10】図10は、GM−4−エストラジオールハイブリッドを合成するための反応経路を示している;
【図11】図11は、ウォルトマンニン異性体の構造および本発明によるゲルダナマイシン−ウォルトマンニンハイブリッド化合物の構造を示している;
【図12】図12は、種々の化合物によるPI3キナーゼの抑制を示している。
【発明を実施するための形態】
【0010】
発明の詳細な説明
本発明による化合物は、癌細胞に標的を定めて化学療法剤を放出させるための新規手段を提供する。標的指向化化学療法にかかわる従来の化合物では、例えばDNA複製プロセスの破壊により細胞増殖を干渉する毒性物質が放出されるように一般にデザインされているが、本発明による化合物は、本発明による化合物の標的となるレセプターを包含する選択されたペプチドおよび蛋白質の正常なプロセスを破壊する抗生物質に頼るものである。
【0011】
図1に示されているように、本発明による化合物は、好ましくは当該化合物を構成する2部分の末端を相互に対して柔軟性にすることができるスペーサー架橋を経て結合している、標的設定部分とアンサマイシン抗生物質とから構成されている。図1において、抗生物質分子は、ベンゾキノイドアンサマイシン ゲルダナマイシンである。しかしながら、ヘルビマイシンA(図2)およびマクベシン(macbesin)などのその他のアンサマイシン抗生物質を使用することもできる。
【0012】
本発明による化合物に含有される標的設定部分は、蛋白質、レセプターまたはマーカーに特異的に結合するものと見做されるものである。この標的設定部分は、ホルモン、ホルモン類似物質、蛋白質レセプターまたはマーカー特異性抗体、あるいは対象の標的に特異的に結合するいずれかその他のリガンドであることができる。好適な標的設定部分は、エストロゲン、アンドロゲンおよびプロゲステロンレセプターを包含するステロイドレセプターおよび膜透過性チロシンキナーゼ、src−関連チロシンキナーゼ、rafキナーゼおよびPI−3キナーゼに結合する。特定のチロシンキナーゼには、HER−2レセプターおよび表皮成長因子(EGF)レセプター一族の他の一員、ならびにインシュリンおよびインシュリン様成長因子レセプターが包含される。標的設定部分の例には、エストロゲン、エストラジオール、プロゲスチン、テストステロン、タモキシフェンおよびウォルトマンニンが包含される。標的設定部分はまた、レセプターに特異的に結合する抗体、例えば国際特許公開番号WO96/32480、同WO96/40789および同WO97/04801(これらの特許を引用して、ここに組み入れる)に記載されているような、HER−2レセプターに結合する抗体であることもできる。その他の特異結合性ペプチドまたはホルモンもまた、標的設定部分として使用することができる。
【0013】
好ましくは、レセプターのトポロジーに適合するために、当該分子に回転自由性を付与するスペーサーが含まれる。適当なスペーサーは、2個以上の原子長さ、好ましくは4個以上の原子長さを有する直鎖のものである。例において証明されているように、この結合鎖の長さは、当該化合物の特異性および効力に影響することができる。この結合鎖を構成する鎖は、主として炭素であるが、ヘテロ原子(例えば、N、S、OまたはP)を含有していてもよい。追加の反応性が望まれる場合、スペーサー鎖を、例えば二重結合、ケト基またはアミノ基(この場合のヘテロ原子は、線状スペーサー鎖の外部に存在する)により、内部的に官能性にすることができる。図9A〜Fは、相違する結合鎖長さおよび官能性化手段を有する各種GM−エストラジオール化合物の構造を示している。
【0014】
本発明による化合物は、癌細胞が標的設定部分と相互反応し、またその生存に必要な蛋白質を発現する場合、このような癌の処置に有用である。すなわち、前立腺癌は、アンドロゲンレセプター結合性分子を含有する化合物の投与によって処置することができ、他方、エストロゲンレセプター陽性乳癌は、エストロゲン−レセプター結合性分子を含有する化合物の投与によって処置することができる。
【0015】
乳癌細胞は、非癌性細胞に比較して、エストロゲンレセプターおよびerbB2(これはまた、HER−2として知られている)を包含する種々のタイプのホルモンレセプターの増加したレベルを示すかなりの個体に見出されており、これらの蛋白質は、相当な割合の乳癌の増殖にとって重要である。エストラジオールがゲルダナマイシンに結合している化合物であるGM−E2は、これらのレセプターを選択的に破壊し、また別のタイプのレセプター(例えば、アンドロゲンレセプター、その他のチロシンキナーゼレセプターおよびraf1キナーゼ)に対する効果は、ゲルダナマイシン単独に比較して少ないことが見出された。従って、GM−E2を使用して、他のタイプの細胞に対しては小さい毒性をもって、乳癌細胞を選択的に抑制または破壊することができる。
【0016】
ウォルトマンニン−結合アンサマイシン抗生物質は、抗生物質をPI−3キナーゼに標的を定めるために使用される。PI−3キナーゼは、各種癌に見出される。PI−3キナーゼは、標的が定められていないGMにさらすことによっては分解されない。しかしながら、我々の研究によって、PI−3キナーゼに結合するが、PI−3キナーゼを阻害しないウォルトマンニンの異性体に結合させたGMは、この酵素の活性インヒビターであることが証明された。従って、アンサマイシン抗生物質をウォルトマンニンと組合わせて使用し、PI−3キナーゼ発現性癌細胞用の価値ある化学療法剤を提供することができる。さらにまた、このデータは、標的蛋白質がアンサマイシン抗生物質単独では影響されない場合でさえも、このような抗生物質を別種の標的設定部分と組合わせて使用することによって、標的蛋白質を抑制または分解することができるという結論を支持している。従って、本発明による分子は、標的蛋白質が病原性である場合、治療効果を提供する。
【0017】
特定のメカニズムに束縛されることは意図しないが、本発明によるハイブリッド化合物は、当該ハイブリッドのアンサマイシン部分とシャペロン(付き添い)蛋白質hsp90との間の相互反応の結果として動作するものと信じられる。hsp90は、アンサマイシンを堅く結合させる深い結合ポケットを有する。このポケットがアンサマイシンにより占拠されると、hsp90は蛋白質と安定なヘテロダイマーを形成し、ここにステロイドレセプターなどが結合し、これらの蛋白質を分解する。本発明により開示されたハイブリッド分子は、hsp90と標的蛋白質との間に細胞内複合体を作り出す架橋体として働き、標的設定部分を標的蛋白質に結合させ、およびアンサマイシンをhsp90に結合させる。この結果として、標的蛋白質が抑制され、またかなりの場合に、標的蛋白質が分解される。しかしながら、アンサマイシンの機能は、hsp90を伴って提供されることから、アンサマイシンが標的蛋白質の抑制または分解に直接に有効である必要はない。同様に、標的設定部分は、標的蛋白質への結合にのみ要求される。すなわち、蛋白質の抑制に要求されるものではない。
【0018】
このメカニズムを理解することによって、本発明がアンサマイシンを含有するハイブリッド化合物に制限されず、実際に、標的設定部分をhsp90の同一ポケットに結合する分子に結合させ、同一タイプの架橋を作り出す、全てのハイブリッド化合物を包含するものであることが認識されるものと見做される。アンサマイシンの代わりに使用することができる非アンサマイシンの例には、ラジシコール(Radicicol)がある。さらにまた、アンサマイシンを結合するhsp90のポケットと同一の、あるいは非常に類似した結合性ポケットを有する緊密に関連したhsp90類似シャペロン分子の一族が存在する。これらの分子に結合しているハイブリッド医薬はまた、本発明の範囲内にある。
【0019】
アンサマイシン抗生物質複合化合物を用いるPI−3キナーゼに標的を定めた抑制または分解を可能にする同一メカニズムは、蛋白質が病因に関与する別の病気の処置に適用することができる。すなわち、アルツハイマー病に付随する病原性蛋白質に結合する標的設定部分に結合させたアンサマイシン抗生物質を、アルツハイマー病の処置に使用することができる。同様に、自己免疫障害、例えば多発性硬化症に付随する抗原を、標的を定めたアンサマイシン抗生物質を用いて分解させることができる。
【0020】
本発明による化合物の合成は、標的設定部分の一級または二級アミノ誘導体を、暗所で一夜にわたりDMSO中で、アンサマイシン抗生物質と反応させることによって、容易に達成される。すなわち、図3に示されているように、テストステロン−ゲルダナマイシン生成物は、17−アルキルアミンテストステロンをゲルダナマイシンと反応させることによって得られた。17−アルキルアミンテストステロン(図4)は、モノ保護されている17−ケトテストステロンを、テトラヒドロフラン(THF)およびヘキサメチルリン酸トリアミド(HMPT)中で、8−ter−ブチルジメチルシリルオキシ−1−オクチンのリチウムアセチリドによりアルキル化することによって製造される。生成するシリルエーテル化合物を、テトラブチルアンモニウムフルオライドによる脱シリル化およびメシル化(MsCl、EtN、CHCl)による2工程で、対応するメシレート化合物に変換した。このメシレート化合物を次いで、ジメチルホルムアミド(DMF)中で室温において、ナトリウムアジド(NaN)と反応させ、対応するアジド化合物を得る。このアジド化合物を、酸加水分解させ、次いでこのアジド化合物をトリエチルホスファイト還元すると、所望の17−アミノアルキルテストステロンが良好な収率で得られた。この化合物を、室温で12時間DMSO中で、ゲルダナマイシン(GM)と反応させる、17−テストステロン−結合−17−デメトキシ−17−GMが紫色固形物として得られた。ゲルダナマイシンの代わりに、ヘルビマイシンAを用いる対応する反応は、幾分さらに遅いことを除いて同一様相で進行し、約3:4の割合で、17位置および19位置でスペーサーに結合した2種の生成物をもたらす。
【0021】
図5は、本発明によるアルキルアミノエストラジオール/GM化合物の合成を示している。この合成は実質的に、テストステロン合成と同一であるが、フェノールヒドロキシに、相違する保護基、すなわちベンジル基を使用する。
【0022】
図6は、スペーサー基によりGMに結合されているタモキシフェン(TMX)を製造するための合成経路を示している。この場合、GMをアジリジンと反応させ、新規GM類縁化合物である17−アジリジノ−17−デメトキシゲルダナマイシンを生成する。この化合物を、還流メチレンクロライド中でヨウ化シアン(ICN)と反応させ、17−(N−ヨウドエチル−N−シアノ)−17−デメトキシGMを生成する。このGM類縁化合物は、Hsp90およびGMそれ自体に結合することが見出され、放射性標識したICNの使用により、合成過程中、容易に放射性標識される。この放射性標識した化合物は、ゲルダナマイシンの代わりに、結合性実験に使用することができる。対応する17−(N−ヨウドアルキル−N−シアノ)化合物は、アジリジンの代わりに、アゼチジン(3炭素)、ピロリジン(4炭素)などを使用することによって製造することができる。さらにまた、ヘルビマイシンAを同一反応に使用することができるが、この場合、17−および19−置換生成物の混合物が生成される。
【0023】
本発明による化合物のもう一つの例には、PI−3キナーゼインヒビターであるウォルトマンニンに結合させたGMがある。この場合、一級アミンおよび二級アミンを有する非対称ジアミンリンカーをスペーサーとして使用すると好ましい。この場合、一級アミンがGMの17−位置に最も迅速に付加し、他方、二級アミンはウォルトマンニンのフラン環の21−位置と反応し、一級アミンとの反応で得られるZ配向よりも活性であることが証明されているE配向を有する生成物が生成される。
【0024】
非対称ジアミンリンカーは、図7Aに示されているように、6−ブロモ−1−ヘキサノールから出発して製造される。この臭素を、THF中でメチルアミンに置き換え、次いで二級アミンを保護すると、中間アルコール化合物が得られる。この中間化合物を、DPPA、DEADおよびPPhを用いてアジドに変換する。このアジド基およびベンジルオキシカルボニルの両方を、Pd/Cを用いて還元すると、6−炭素非対称ジアミンが得られる。
【0025】
この非対称ジアミンを、図7Bに示されているように、CHCl中でGMと組合わせ、中間GDN−ジアミン化合物を生成する。この化合物を次いで、ウォルトマンニンと反応させ、最終ウォルトマンニン−結合GMを生成する。
【0026】
これらの合成方法は、別種の標的設定部分および相違する長さおよび組成のスペーサーに容易に適合させることができることは、当業者に認識されることである。必須要件は、アルキルアミンに変換することができるか、またはアンサマイシン抗生物質に予め結合させたスペーサーの一部である一級または二級アミンと反応することができる、標的設定部分中の反応性基の存在のみにある。
【実施例】
【0027】
例1
テストステロン−GMの合成
図3に示されているように、GMを17−アルキルアミノテストステロンと反応させることによって、テストステロン−結合GMを製造した。17−アルキルアミノテストステロンは、慣用の方法で、モノ保護テストステロンジオンにオクチニル結合鎖を付加することによって製造した。後者の化合物は、刊行物に記載の方法に従い、2工程で製造した。この結合鎖は、市販の6−ブロモヘキサノールから出発して合成した。
【0028】
無水DMF 33ml中の6−ブロモヘキサノール(3g、16.6mmol)を、アルゴン雰囲気下に、イミダゾール(2.72g、40mmol)で処理し、生成する均一溶液を、0℃に冷却させ、次いでDMF 12ml中のTBSClで処理した。反応の進行を、酢酸エチル(EtOAc)−ヘキサン(Hex):1−2(v/v)を用いるシリカゲル(SiO)上での薄層クロマトグラフイ(TLC)により監視しながら、温度を徐々に室温まで上昇させた。室温(rt)で2時間後、出発物質は存在していなかった。次いで、この反応混合物を、水とEtOAcとに分配させた。デカンテーション後、水性層をEtOAcにより3回、抽出し、集めた有機層をHOで2回およびブラインで洗浄し、MgSO上で乾燥させ、次いで減圧濃縮させた。生成する帯黄色油状物を、溶離液としてEtOAc−Hex:1−4を用いる短路シリカゲルカラムクロマトグラフイにより精製し、所望のシリルエーテル化合物を無色油状物として得た(4.4g、収率:90%)。
【0029】
リチウムアセチリドエチレンジアミン複合化合物(0.65g、6mmol)を、不活性雰囲気下に、無水DMSOに少しづつ添加した。生成する完全には均一ではない暗褐色の混合物を、約5℃まで冷却させ、この温度で5分間かけて、ブロモシリルエーテル化合物を滴下して導入した。冷却浴を取り除き、反応の進行を冷たい適量のNMRにより監視した。rtで5時間後(通常、1時間で充分である)、出発物質は残留していなかった。フラスコの内容物を、氷含有エーレンメイヤーフラスコに注意して注ぎ入れた。この溶液を、EtOAcにより3回、抽出し、集めた有機層を水で3回(3X)およびブラインで1回、洗浄した。MgSO上で短時間乾燥させ、次いで揮発性物質を減圧下に除去し、黄色油状物を得た。EtOAc−Hex:1−19を用いる短路シリカゲルカラムクロマトグラフイにより精製し、所望の真性アルキン化合物を無色油状物として得た(0.88g、収率:92%)。
【0030】
このアルキン化合物(80mg、0.33mmol)のTHF 1ml中の溶液をアルゴン雰囲気下に−78℃に冷却させ、次いでヘキサン中のn−ブチルリチウムの1.6モル溶液0.22mlで処理した。これを次いで、20分間、室温まで温め、次いで−78℃に戻し、この温度で、新しく蒸留したヘキサメチルホスホルアミド(HMPA)0.2mlを添加し、次いでモノ保護17−ケトテストステロン(80mg、0.24mmol)をTHF 0.5ml中の懸濁液として添加した。室温における一夜の撹拌期間後、反応を飽和アンモニウムクロライドにより静め、デカンテーションに付し、次いでEtOAc(3X)により抽出した。有機層を集め、ブラインで洗浄し、MgSO上で乾燥させ、次いで減圧濃縮し、明るい褐色の油性固形物を得た。EtOAc−Hex:1−9を用い、短路SiOカラム上のカラムクロマトグラフイに付し、所望のアルコール化合物を無色油状物として得た(50mg、収率:36%)。
【0031】
このシリルエーテル化合物(50mg、0.088mmol)を、アルゴン雰囲気下に、無水THF 2ml中に稀釈した。生成する無色溶液を、0℃まで冷却させ、テトラブチルアンモニウムフルオライド(115マイクロリッター、1.15mmol)の1モル溶液で処理し、次いで冷却浴を取り除いた。室温で3時間後、出発物質は残留していなかった。THFを減圧で除去し、残留する褐色油状物を最低量のクロロホルム中に稀釈し、次いで短路SiOカラムに添加し、EtOAc−Hex:1−2〜1−1により溶離した。これにより、アルコール化合物34mg(収率:85%)が無色油状物として得られた。
【0032】
メチレンクロライド0.5ml中の上記ジオール化合物(34mg、0.0745mmol)を、0℃において、トリエチルアミン(22.6mg、31マイクロリッター、0.22mmol)で処理し、次いでメシルクロライド(12.8mg、8マイクロリッター、0.11mmol)で処理した。この温度で半時間後、出発物質は残留していなかった。この反応混合物を次いで、減圧で濃縮乾燥させ、無水DMF 2ml中に溶解し、次いで過剰(約5当量)のナトリウムアジドを添加し、生成する懸濁液を室温で一夜にわたり撹拌した。これを次いで、EtOAcとHOとに分配した。デカンテーション後、この水性層をEtOAc(3X)により抽出し、有機層を集め、水で、次いでブラインで洗浄し、MgSO上で乾燥させ、次いで減圧濃縮し、無色油状物を得た。所望のアジド化合物23mg(2工程の収率:64%)を、溶離液としてEtOAc−Hex:1−4を用いる短路SiOカラムにより単離した。
【0033】
メタノール2ml中の、上記アジドアセタル化合物(11mg、0.0228mmol)を、室温で3時間、1.0規定塩酸0.5mlで処理した。飽和重炭酸ナトリウムを注意して添加することにより、pHをアルカリ性(7〜8)にし、次いでメタノールを減圧で除去した。残留する白色油性固形物を、TLCがこの水性層中に有機物質の非存在を示すまで、CHClにより抽出した。有機層を集め、MgSO上で短時間乾燥させ、次いで減圧下に蒸発させ、油性固形薄膜状物を得た。この生成物を最低量のCHCl中に溶解し、次いで短いSiOプラグに添加し、EtOAc−Hex:1−4により溶離した。これにより、所望のアジドエノン化合物9mg(収率:90%)を無色薄膜状物として得た。
【0034】
無水THF 1ml中の、上記アジド化合物(33mg、0.0755mmol)を、室温で、THF中のトリエチルホスフィンの1.0モル溶液0.23ml(0.23mmol)で処理した。反応の進行を、TLC(SiO、EtOAc−Hex:1−1)により監視した。1時間以内に、反応は終了した。これを次いで、水0.23mlで処理し、次いで撹拌を、一夜にわたり継続した。この僅かに帯黄色の反応混合物を、高減圧下に蒸発乾燥させ、帯黄色薄膜状物を得た。この生成物を、pHを濃アンモニアにより塩基性にしながら、HOおよびエーテル中に取り入れた。デカンテーション後、この水性層を、エーテルにより3回抽出し、集めた有機層を次いで、1.0N HClにより3回抽出した。集めたHCl抽出液を次いで、アンモニアにより塩基性pHにし、次いでCHClにより抽出した。この水性層は、ニンヒドリン試験で陰性を示した。集めたクロロホルム層を次いで、MgSO上で短時間乾燥させ、次いで減圧下に濃縮し、帯黄色薄膜状物(24.6mg)を得た。
【0035】
テストステロン−GM生成物は、ゲルダナマイシン(5.6mg、10マイクロモル)を、室温で暗所において、無水DMSO 0.5ml中の粗製17−アルファ−(8−アミノ−1−オクチニル)−テストステロン(24.5mg、60マイクロモル)と反応させることによって得られた。12時間後、この初期に黄色の溶液は、深い紫色に変化した。この反応混合物を次いで、CHClとHOとに分配した。デカンテーション後、この水性層を、CHClにより抽出した(5X)。集めた有機層を次いで、水で洗浄し(3X)、新しく粉砕した亜硫酸ナトリウム上で乾燥させ、濾過し、次いで減圧下に蒸発させた。残留する油状物(DMSOを含有する)を、短いSiOプラグに添加し、所望の生成物を、クロロホルム中のメタノール2〜10%の勾配溶離系を用いて精製した。これにより、所望の医薬(3.4mg、収率:36%)が、紫色固形物として得られた。
例2
前立腺癌細胞系(LN−CAP)を、培養培地で、0.25μl/ml〜1μl/mlのレベルのゲルダナマイシン単独および例1に記載のとおりに合成されたテストステロン−結合GM(GM−T)にさらした。細胞は、GMにさらされた結果として分解されることが知られているErbB2チロシンキナーゼの存在にかかわり、およびまたアンドロゲンレセプターの存在にかかわり、イムノブロッテッイングにより監視した。3種の処置の全部が、経過時間にわたり、ErbB2レベルを減少させたが、最小の減少はGM−Tにより処置された細胞で見出された(図8A)。これに対して、アンドロゲンレセプターの量の最大減少は、GM−Tにより処置された細胞で見出された(図8B)。このように、GM−Tは、アンドロゲンレセプターに対して、所望の標的設定および特異性を示した。例3
エストラジオール−結合GMの合成
図5に示されているように、この合成は、テストステロン−結合GMの場合とほとんど同様であるが、現在では改良が進行中である。ターシャリイブチルジメチルシリルオキシエストロンを、−78℃において、THF中の1−ヘキシン−6−オールのジリチウムアニオンと縮合させ、対応する17−(1−ヒドロキシヘキシニル)エストラジオールを妥当な収率で得た。メシル化、アジド置き換え、フェノール系アルコールの脱保護、およびこのアジドの一級アミンへの還元により、GMと結合させるための所望の中間体を得た。これは、室温で暗所において、DMSO中で行い、新しいエストラジオールに6個の炭素で結合されたGMを得た。8個の炭素で結合された類縁化合物は、テストステロンの場合と同一の方法で得られる。
例4
二重結合を有する4−炭素結合鎖とのエストラジオール−ゲルダナマイシンハイブリッドを、図10に示されているとおりに合成した。アミン化合物(40mg、この化合物はKatzenellenbogen等によりJ.Org.Chem.(1987),52:247に開示された方法から製造される)を、DMSO 1ml中に溶解し、次いでゲルダナマイシン20mgを添加した。この混合物を、一夜にわたり撹拌し、減圧濃縮し、次いでシリカゲル上のクロマトグラフイにより精製し紫色固形物を得た。この生成物(17mg)を次いで、THF1.5ml中に溶解し、AcOH2滴を、次いでTBAF(テトラ−n−ブチルアンモニウムフルオライド、THF中の1.0M)0.02mlを添加し、この混合物を一夜にわたり撹拌した。この反応混合物を次いで、濃縮し、次いでシリカゲル上におけるクロマトグラフイにより精製し、ハイブリッド13mgを紫色薄膜状物として得た。
【0036】
図9Fおよび9Gに示されているように、この化合物の活性を、別のGM−エストラジオール化合物の活性と比較した。MCF−7乳癌細胞を、インビトロで、1μMレベルの化合物に、種々の時間にわたりさらし、次いでイムノブロッティング試験でレセプター特異性抗体を用いて、レセプターの存在にかかわり試験することによって、種々の種類のレセプターに対するこれらの化合物の効果を評価した。これらの結果を、表1にまとめて示す。この表において、GM−4−E2は、4−炭素結合鎖を有するゲルダナマイシン−エストラジオール化合物を表わす。表中の+は、レセプターがイムノブロッティングにより検出されたことを示し、そして−は、検出されなかったことを示し、そして±は、弱いまたは曖昧な結果を表わす。
【0037】
これらの結果は、結合鎖が長い化合物ほど、活性は小さいことを示しているが、この結果が、結合鎖の長さによるものであるか、またはエストラジオールにおける相違する置換位置によるものであるかを、決定するものではない。しかしながら、本発明による化合物は全部が、ゲルダナマイシン単独に比較して、エストロゲンレセプターおよびErbB2レセプターに対する増大した選択性を示す。この選択性は、GM−4−E2で最も際立っている。
【0038】
【表1】

【0039】
例5
例4のイムノブロッティング試験を、ゲルダナマイシン単独、およびGM−4−E2を用いて反復した。ただし、被験蛋白質のパネルにインシュリン様成長因子1レセプター(IGF1−R)を包含させた。これらの結果を表2にまとめて示す。同一の活性パターンが見出されるが、GM−4−E2は、ゲルダナマイシン単独に比較して、IGF1−Rに対してはほとんど阻害性ではない。
【0040】
【表2】

【0041】
例6
例4のイムノブロッティング試験を、前立腺癌細胞系、LNCaPを用いて反復し、アンドロゲンレセプターに対するGM−4−E2の作用を測定した。これらの結果を表3にまとめて示す。ゲルダナマイシン単独は、これらのレセプターを破壊するが、GM−4−E2は破壊しない。
【0042】
【表3】

【0043】
例7
図9A〜9Gの化合物を、erbB2(Her2)、raf−1およびエストロゲンレセプターに対する活性について試験した。相対活性を表4にまとめて示す。この表において、++++は最高活性を示し、そして−は最低活性を示す。
【0044】
【表4】

【0045】
例8
タモキシフェン−結合GMの合成
ハライドとの結合にかかわる潜在的存在価値(好ましくは、アミンの四級化中におけるGMの安全性を調節するために、イオン交換樹脂上で別種のハライド、Cl、Br、あるいは別種の対向イオンに随意に変換することができるヨウダイド)ばかりでなくまた、結合鎖に電荷を生じさせることによる類縁化合物の水溶性をさらに増加させるために、我々はタモキシフェンのアミノ基を使用することを決定した。このようにするためには、我々は、一級ヨウダイドを有するGM類縁化合物を必要とした。ヨウドアルキルアミンは安定ではなく、また1工程形式の戦略で使用することはできないことから、これは容易なことではなかった。通常、アミノアルコールを使用し、後で、ヨウダイドを導入しなければならない。これは、GMの存在に適合しない。我々は、環状アミンに対するホンブラウン(Von Braun)の反応が、正確にGMに結合したヨウドアルキルアミンを良好な収率で導くことができることを見出した。
【0046】
アミノGMの合成:室温において、GM(10mg、17.85マイクロモル)を、クロロホルム1mlに溶解した。生成する黄色溶液を、CHCl 1ml中のアジリジン(100mg)で処理した。これを、暗所で2時間、撹拌した。この反応混合物はオレンジ色になる。この反応混合物全体を、短路シリカゲルカラムに添加し、所望の物質(10mg、収率:98%)を、オレンジ色固形物として分離した。
【0047】
さらに長い結合鎖を製造するために、アジリジンの代わりにアゼチジンを使用することができる。アゼチジンは、刊行物に記載の方法に従い製造することができる(R.C.Schnur等によるJ.Med.Chem.,38,3806,1995)。同様に、GM5.6mg(10マイクロモル)を、クロロホルム0.5ml中のピロリジン30マイクロリッターと反応させ、室温で1時間後に、17−デメトキシ−17−ピロリジノGM 5mg(収率:83%)を、深紫色固形物として得た。
【0048】
17−N−ヨウドアルキル−N−シアノGM類縁化合物の合成:代表的実験において、17−アジリジノGM 2.5mg(4.38マイクロモル)を、無水1,2−ジクロロエタン0.25mlに溶解した。生成するオレンジ色溶液を、ヨウ化シアン(3mg、19.6マイクロモル)と反応させ、この反応バイアルをテフロン(登録商標)製キャプによりシールした。温度を次いで、暗所で12時間、65〜70℃まで高めた。この反応混合物は、明るい紫色になった。これを、短いシリカゲルプラグに添加し、クロロホルム中のメタノール5〜10%勾配溶離系を用いて、所望の物質3mg(収率:94%)を、明るい紫色の薄膜状物として分離した。
【0049】
同様に、17−ピロリドンGM 5mg(8.34マイクロモル)を、65℃で36時間、1,2−ジクロロエタン中の4当量のヨウ化シアンと反応させ、ヨウドブチル類縁化合物5mg(収率:80%)を得た。
【0050】
タモキシフェン−結合GM類縁化合物の合成:代表的実験において、17−N−ヨウドエチル−N−シアノGM 3mg(4.14マイクロモル)を、アルゴン雰囲気下に、無水アセトニトリル0.5mlに溶解した。生成する紫色溶液を、タモキシフェン1.6mg(4.14マイクロモル)で処理した。これにより、懸濁液を得た。反応バイアルをシールし、75℃にまで18時間加熱した。反応の進行を、クロロホルム中の100%メタノールを使用するTLC(SiO)により監視した。明るい紫色の反応混合物を次いで、0℃に冷却させ、次いで冷却しながら濾過した。この生成物を冷たいアセトニトリルで洗浄し、明るい紫色固形物を得た。このN−ヨウドブチル類縁化合物からの生成物は、さらに高い温度を必要とした(12時間の還流ベンゼン)。
例9
ゲルダナマイシンの代わりに、ヘルビマイシンAを用いて出発し、例7と同様に、アジリジン、アゼチジン、ピロリジンと反応させ、対応する17−および19−アミノヘルビマイシンA化合物を得た。これらの化合物は、シリカゲルクロマトグラフイにより分離した。これらの化合物にヨウ化シアンを作用させることにより、対応する17−N−シアノ−N−ヨウドアルキルアミンおよび19−N−シアノ−N−ヨウドアルキルアミンヘルビマイシンAが得られた。これらの化合物を、GMの場合と同一の条件下に、タモキシフェンと反応させると、対応するタモキシフェンのアンモニウム塩が得られる。
例10
ウォルトマンニン−結合GMの合成
一級ジアミン:CHCl 0.5ml中のゲルダナマイシン(3mg、0.0053mmol)の溶液に、暗所で1時間かけて、ヘキサメチレンジアミン6.2mg(10当量)を添加した。この反応混合物を次いで、水4x500μlで洗浄し、次いで高減圧下に30分間濃縮し、紫色固形物を得た。この生成物を、CHCl 0.25mlに溶解し、次いでウォルトマンニン2.2mg(0.0053mmol)を、暗所で室温において添加した。2時間後、褐色−オレンジ色反応混合物を、シリカゲル上のクロマトグラフイに直接に付し、CHCl中の5%MeOHにより溶離し、ゲルダナマイシン−ウォルトマンニンハイブリッド1.5mg(27%)を黄−褐色薄膜状物として得た。
【0051】
非対称一級/二級ジアミン:6−(N−メチル−N−カルボベンジルオキシアミノ)−ヘキサン−1−オールを下記のとおりにして合成した。6−ブロモ−ヘキサン−1−オール(2.0g、17.4mmol)の溶液に、THF中のメチルアミンの2.0M溶液50ml(〜10当量)を添加し、この反応混合物を、一夜にわたり撹拌した。この反応混合物をエーテル30mlにより稀釈し、濾過し、次いで濃縮した。この粗製生成物を次いで、エーテル30mlおよび飽和NaHCO溶液50ml中に稀釈した。カルボベンジルオキシクロライド(2.5g、51mmol)を次いで、添加し、この反応混合物を、2時間激しく撹拌した。この反応混合物を次いで、エーテル100mlにより稀釈し、ブラインで洗浄し、MgSO上で乾燥させ、濾過し、次いで濃縮した。シリカゲルクロマトグラフイ(10〜50%EtOAc:ヘキサン)により、生成物3.1g(76%)を、清明な油状物として得た。
【0052】
次いで、THF 20ml中のジエチルアジドジカルボキシレート(1.45g、8.3mmol)およびトリフェニルホスフィン(2.18g、8.3mmol)を用いて、上記アルコール化合物(1.52g、6.4mmol)の溶液を形成し、次いでジフェニルホスホリルアジド(1.79ml、8.3mmol)を、15分間かけて滴下して添加し、この反応混合物を一夜にわたり撹拌することによって、6−アジド−1−(N−メチル−N−カルボベンジルオキシアミノ)を合成した。この反応混合物を濃縮し、次いでシリカゲルクロマトグラフイ(10〜30%EtOAc:ヘキサン)により精製し、白−黄色固形物1.07g(75%)を得た。
【0053】
6−アミノ−1−(N−メチルヘキシルアミン)は、このアジドから下記のとおりにして合成した。MeOH 5ml中の10%Pd/C 100mgおよび上記アジド化合物750mg(2.25mmol)の溶液を、20psiのH下に45℃において48時間、水素添加した。この反応混合物を、セライトに通して濾過し、次いで濃縮し、ジアミン化合物を黄色油状物として得た。この生成物を使用し、一級ジアミンにかかわり上記した方法を用いて、ゲルダナマイシン−ウォルトマンニンハイブリッドを製造する。
例11
2種の配向のどちらかを有する開環フランのアミノ基に結合した結合鎖を有するウォルトマンニン類縁化合物を製造した。これらは、図11に示されているように、Z−類縁体およびE−類縁体で表わされる。これらの化合物をそれぞれ、ゲルダナマイシンに結合させ、本発明によるハイブリド化合物を形成した(図11参照)。これらの化合物を、PI3キナーゼ活性の抑制にかかわり試験した。これらの結果を図12にまとめて示す。当業者に知られているように、ウォルトマンニンは単独では、PI3キナーゼ活性を抑制し、E−類縁体2はそのように動作する。しかしながら、Z−類縁体は、ゲルダナマイシン単独の場合と同様に、不活性である。これに対して、驚くべきことに、両方のハイブリッド化合物は、PI3キナーゼ活性を実質的に抑制することが見出された。すなわち、2種の不活性化合物から形成されたハイブリッド化合物は、PI3キナーゼの有意の抑制を示すことができる。簡単に言えば、本発明による化合物の作用メカニズムは、分子の1成分と正常標的との単純な相互反応ではなく、ハイブリッド分子の両成分が重要な役割を演じる相乗的相互反応である。さらにまた、これらの結果は、ゲルダナマイシンにより正常では分解に付されない標的に対する、本発明による化合物の効果を証明している。
【0054】
本発明の好ましい態様は下記のようなものである。
1. 蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分、および
アンサマイシン抗生物質が結合する、hsp90のポケットに結合するhsp−結合性部分、
を含有する化学化合物。
2. 上記標的設定部分が、ホルモンレセプターに特異的に結合する、1に記載の化学化合物。
3. 上記標的設定部分が、アンドロゲンレセプターに特異的に結合する、2に記載の化学化合物。
4. 上記標的設定部分が、テストステロンである、3に記載の化学化合物。
5. 上記標的設定部分が、エストロゲンレセプターに特異的に結合する、1に記載の化学化合物。
6. 上記標的設定部分が、エストロゲン、エストラジオールおよびタモキシフェンからなる群から選択される、5に記載の化学化合物。
7. 上記標的設定部分が、erbB2(HER−2)レセプターに特異的に結合する、1に記載の化学化合物。
8. 上記標的設定部分が、ウォルトマンニンまたはその誘導体から選択される、1に記載の化学化合物。
9. 上記標的設定部分が、ウォルトマンニンのZ−類縁体である、8に記載の化学化合物。
10. hsp−結合性分子が、アンサマイシン抗生物質である、1〜9のいずれか一項に記載の化学化合物。
11. 上記アンサマイシン抗生物質が、ゲルダナマイシンである、10に記載の化学化合物。
12. 上記アンサマイシン抗生物質が、ヘルビマイシンAである、10に記載の化学化合物。
13. 上記標的設定部分と上記アンサマイシン抗生物質との間に位置するスペーサー分子をさらに含有する、10に記載の化学化合物。
14. 蛋白質、レセプターまたはマーカーを生存に必要とする癌細胞に標的を定めて分解する方法であって、蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分およびアンサマイシン抗生物質が結合する、hsp90のポケットに結合するhsp−結合性分子を含有する化学化合物を、当該細胞に投与することを包含する方法。
15. 上記化学化合物が、2〜13のいずれか一項に記載の化合物である、14に記載の方法。
16. 細胞中の蛋白質を、標的を定めて分解させる方法であって、当該蛋白質に特異的に結合する標的設定部分およびアンサマイシン抗生物質が結合する、hsp90のポケットに結合するhsp−結合性分子を含有する化学化合物を、当該細胞に投与することを包含する方法。
17. 上記化学化合物が、2〜13のいずれか一項に記載の化合物である、16に記載の方法。
18. レセプターまたはマーカーに特異的に結合する標的設定部分およびアンサマイシン抗生物質を含有する化学化合物の合成方法であって、アンサマイシン抗生物質を、標的設定部分のアルキルアミン誘導体と反応させることを包含する方法。
19. 上記アンサマイシン抗生物質が、ヘルビマイシンAである、18に記載の方法。
20. 上記アンサマイシン抗生物質が、ゲルダナマイシンである、18に記載の方法。
21. 17−(N−ヨウドアルキル−N−シアノアミノ)−17−デメトキシゲルダナマイシン。
22. 癌の処置方法であって、蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分およびアンサマイシン抗生物質が結合する、hsp90のポケットに結合するhsp−結合性分子を有する化学化合物を含有する治療組成物を、癌を有する疑いがある対象に投与することを包含する方法。
23. 上記化学化合物が、2〜13のいずれか一項に記載の化合物である、22に記載の方法。
【0055】
また、本発明の好ましい態様は下記のようなものである。
1. 下記の一般式を有する化学化合物
TM−任意のスペーサー−HSP
(式中、TMは、エストロゲン、エストラジオール、プロゲスチン、テストステロン、ウォルトマンニン、Her−2を標的とする抗体及びこれらすべての誘導体からなる群から選択される標的設定部分であって、これらはエストロゲンレセプター、アンドロゲンレセプターおよびプロゲステロンレセプターを包含するステロイドレセプター、膜透過性チロシンキナーゼ、src−関連チロシンキナーゼ、rafキナーゼおよびPI−3キナーゼからなる群から選択される蛋白質、レセプターまたはマーカーに特異的に結合し、
任意のスペーサーは、存在していてもまたは存在していなくてもよいスペーサー部分であり、
HSPは、アンサマイシン抗生物質が結合するhsp90のポケットに結合するhsp−結合性部分である)。
2. 上記標的設定部分が、ホルモンレセプターに特異的に結合する、1に記載の化学化合物。
3. 上記標的設定部分が、アンドロゲンレセプターに特異的に結合する、2に記載の化学化合物。
4. 上記標的設定部分が、テストステロンである、3に記載の化学化合物。
5. 上記標的設定部分が、エストロゲンレセプターに特異的に結合する、2に記載の化学化合物。
6. 上記標的設定部分が、エストロゲン及びエストラジオールからなる群から選択される、5に記載の化学化合物。
7. 上記標的設定部分が、erbB2(HER−2)レセプターに特異的に結合する、1に記載の化学化合物。
8. 上記標的設定部分が、ウォルトマンニンまたはその誘導体から選択される、1に記載の化学化合物。
9. 上記標的設定部分が、ウォルトマンニンのZ−類縁体である、8に記載の化学化合物。
10. hsp−結合性分子が、アンサマイシン抗生物質である、1〜9のいずれか一項に記載の化学化合物。
11. 上記アンサマイシン抗生物質が、ゲルダナマイシンである、10に記載の化学化合物。
12. スペーサーが存在する、1〜11のいずれか一項に記載の化学化合物。
13. スペーサーが、C、N、S、OまたはPから選択される2個以上の原子長さを有する直鎖を含む、12に記載の化学化合物。
14. 蛋白質、レセプターまたはマーカーを生存に必要とする癌細胞を標的を定めて分解する薬剤の処方のための1〜13のいずれか一項に記載の化学化合物の使用。
15. 10に記載の化学化合物を製造する方法であって、アンサマイシン抗生物質を、標的設定部分のアルキルアミン誘導体と反応させることを包含する方法。
16. 上記アンサマイシン抗生物質が、ゲルダナマイシンである、15に記載の方法。
17. 17−(N−ヨウドアルキル−N−シアノアミノ)−17−デメトキシゲルダナマイシン。
18. 癌を処置するための治療組成物の処方のための1〜13のいずれか一項に記載の化学化合物の使用。
【産業上の利用可能性】
【0056】
本発明によれば、治療のより特異的なターゲティングを可能にし、またアンサマイシン単独では効果がない場合にも有効であることができ、標的設定部分の種類に応じて、種々の相違する形態の癌の処置に施用することができる全く新規な一群の標的指向化化学療法剤が提供される。

【特許請求の範囲】
【請求項1】
癌細胞が生存に必要とする蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分及びアンサマイシン抗生物質が結合するhsp90のポケットに結合する、hsp−結合性部分を含有する癌治療薬。
【請求項2】
アンサマイシン抗生物質が結合するhsp90のポケットに結合する、hsp−結合性部分を含む、癌治療薬を製造する方法であって、前記方法は、癌細胞が生存に必要とする蛋白質、レセプターまたはマーカーに特異的に結合する標的設定部分を、前記hsp結合性部分に結合させる方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図9D】
image rotate

【図9E】
image rotate

【図9F】
image rotate

【図9G】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−256388(P2009−256388A)
【公開日】平成21年11月5日(2009.11.5)
【国際特許分類】
【出願番号】特願2009−186660(P2009−186660)
【出願日】平成21年8月11日(2009.8.11)
【分割の表示】特願平10−549516の分割
【原出願日】平成10年5月14日(1998.5.14)
【出願人】(500516056)スローン − ケッタリング インスティチュート フォー キャンサー リサーチ (14)
【Fターム(参考)】