説明

電極、電池および電極の製造方法

【課題】電極の膨張があっても内部短絡時の短絡電流を抑制し得る電極を提供する。
【解決手段】集電体(4)に複数に分割した活物質層(22,23)を形成した電極(3)であって、隣り合う2つの分割された活物質層(22,23)の間に、活物質層(22,23)より電気抵抗が高くイオン透過性を有する高抵抗部材(27)を含む。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は電極、電池および電極の製造方法、特に電池用電極に関する。
【背景技術】
【0002】
集電体に形成する活物質層を分割する電池用電極が開示されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−53088号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記特許文献1の技術では、活物質層内部で内部短絡が生じた場合、活物質層が複数に分割されているため分割された1つの活物質層の集電面積が小さくなり、短絡部位への電流集中は抑制される。
【0005】
しかしながら、充放電に伴う電極の膨張によって隣り合う2つの分割された活物質層どうしが接触することが考えられ、この場合に短絡部位への電流集中が再び生じる恐れがある。
【0006】
そこで本発明は、電極の膨張があっても内部短絡時の短絡電流を抑制し得る電極及び電極の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の電極は、集電体に複数に分割した活物質層を形成した電極である。そして、隣り合う2つの分割された活物質層の間に、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を含む。
【発明の効果】
【0008】
本発明によれば、電極が膨張した場合においても、高抵抗部材により分割された電極間の電気抵抗が高く維持できるので、内部短絡時の短絡電流を抑制できる。
【図面の簡単な説明】
【0009】
【図1】本発明の第1実施形態の積層型電池の概略平面図である。
【図2】第1実施形態の1つの双極型電極の概略平面図である。
【図3】図2のA−A線断面図である。
【図4】第2実施形態の1つの双極型電極の概略平面図である。
【図5】図4のA−A線断面図である。
【図6】第3実施形態の1つの双極型電極の概略平面図である。
【図7】図6のA−A線断面図である。
【図8】第3実施形態の2つの双極型電極の概略断面図である。
【図9】第4実施形態の1つの双極型電極の概略平面図である。
【図10】図9のA−A線断面図である。
【図11】第4実施形態の2つの双極型電極の概略断面図である。
【図12】第5実施形態の1つの双極型電極の概略平面図である。
【図13】図12のA−A線断面図である。
【図14】第6実施形態の1つの双極型電極の概略平面図である。
【図15】図14のA−A線断面図である。
【図16】第7実施形態の1つの双極型電極の概略平面図である。
【図17】図16のA−A線断面図である。
【図18】第8実施形態の1つの双極型電極の概略平面図である。
【図19】図18のA−A線断面図である。
【図20】比較例の1つの双極型電極の概略平面図である。
【図21】図20のA−A線断面図である。
【図22】第9実施形態の1つの双極型電極の概略平面図である。
【図23】図22のA−A線断面図である。
【図24】第10実施形態の1つの双極型電極の概略平面図である。
【図25】図24のA−A線断面図である。
【図26】第10実施形態の変形例の概略断面図である。
【図27】第11実施形態の1つの双極型電極の概略平面図である。
【図28】図27のA−A線断面図である。
【図29】図27のB−B線断面図である。
【図30】第12実施形態の1つの双極型電極の概略平面図である。
【図31】図30のA−A線断面図である。
【図32】第13実施形態の1つの双極型電極の概略平面図である。
【図33】図32のA−A線断面図である。
【図34】第14実施形態の1つの双極型電極の概略平面図である。
【図35】図34のA−A線断面図である。
【図36】図34のB−B線断面図である。
【図37】電極製造装置の概略構成図である。
【図38】実施例1〜4の場合に第2のプレス装置及び第2の塗布装置で行われる処理を示す説明図である。
【図39】実施例5、6の場合に第2のプレス装置及び第2の塗布装置で行われる処理を示す説明図である。
【図40】多孔質粒子の集まりを示すモデル図である。
【図41】粒子の集まりを示すモデル図である。
【図42】フィラーの集まりを示すモデル図である。
【図43】第8実施形態のスタックの概略縦断面図である。
【発明を実施するための形態】
【0010】
以下図面に基づいて実施形態を説明する。以下の図面では、発明の理解を容易にするため、積層型電池を構成する要素などの各層の厚さや形状を誇張して示しているところがある。
【0011】
(第1実施形態)
図1は本発明の第1実施形態のスタック1の概略縦断面図を示している。なお、負極活物質層、正極活物質層については分割しない状態で示している。
【0012】
まずスタック1について概説する。スタック1は積層型二次電池を構成する一単位である。図1において上方が鉛直上方、下方が鉛直下方であり、上下方向に直交する方向が水平方向であるとする。
【0013】
スタック1は後述するように樹脂−金属複合ラミネートフィルムを外装材として用い、その内部に発電要素2を収納している。発電要素2は、集電体の一方の面に正極活物質層を他方の面に負極活物質層を形成した双極型電極と、その内部をイオンが移動する電解質とを、隣り合う当該双極型電極の正極活物質層と負極活物質層とが当該電解質を介して向き合うように積層することにより複数の単電池層を積層したものである。以下、発電要素2について概説する。
【0014】
短辺側と長辺側とを有する扁平な長方形状の集電体4は、導電性高分子材料に、または非導電性高分子材料に導電性フィラーが添加された樹脂で形成されている。この樹脂製の集電体4によれば、集電体4の面内方向の内部抵抗が、金属製の集電体より相対的に大きくなる。
【0015】
スタック1は、図1において水平方向に置かれた集電体4の鉛直下面に正極活物質層5(正極)が、集電体4の鉛直上面に負極活物質層6(負極)がそれぞれ形成された双極型電極3を5つ(複数)有している。なお、負極活物質層6のほうが正極活物質層5より表面積が広くされている。各双極型電極3は、鉛直方向に電解質層7を介して積層されて(直列に接続されて)1つのスタック1を形成している。
【0016】
ここで、上下方向に隣り合う2つの双極型電極をそれぞれ上段双極型電極、下段双極型電極としたとき、下段双極型電極の上面に位置する負極活物質層6と、上段双極型電極の下面に位置する正極活物質層5とが電解質層7を介して互いに向き合うように、下段、上段の各双極型電極が配置されている。
【0017】
正極、負極の2つの電極活物質層5、6の水平方向の外周は、集電体4の水平方向の外周よりも一回り狭く形成されている。この2つの電極活物質層5、6の設けられていない集電体4の周縁部(水平方向の全周)に、所定幅を有するシール材11を挟むことで、正極活物質層5と負極活物質層6とを絶縁すると共に、図1で上下方向に対向する2つの電極活物質層5、6の間に所定の空間8が生じるようにしている。また、シール材11は、2つの各活物質層5、6の水平方向の端部よりも余裕を持って外側に配置されている。
【0018】
上記の空間8には、液体またはゲル状、もしくは固体の電解質9が充填されることで、電解質層7を形成している。
【0019】
電解質9が充填されている空間8には、多孔質膜で形成されるセパレータ12が設けられ、このセパレータ12によっても対向する2つの電極活物質層5、6が電気的に接触するのが防止されている。液体またはゲル状の電解質9ではこのセパレータ12を通過し得る。また、固体の電解質9の場合には、セパレータ12は設けない。
【0020】
発電要素2の積層方向の両端に位置する集電体には発電要素2を充放電させるための強電タブ16、17が接続される。すなわち、最上段の負極活物質層6に一方の強電タブ16が、最下段の正極活物質層5に他方の強電タブ17がそれぞれ接続される。双極型二次電池の充電後にプラス端子として機能するのが一方の強電タブ17、充電後にマイナス端子として機能するのが他方の強電タブ16である。
【0021】
電解質層7を挟んだ正極活物質層5及び負極活物質層6から一つの単電池層15(単電池)を構成している。したがって、スタック1は、4つの単電池層15を直列に接続した構成ともなっている。
【0022】
図示しないが、強電タブ16、17を含む発電要素2の全体は樹脂−金属複合ラミネートフィルムを外装材として用いて、その周辺部を熱融着にて接合することにより、発電要素2を収納し真空にして密封している。樹脂−金属複合ラミネートフィルムの外には、強電タブ16、17と、図示しない5つの電圧検出用端子とが出されている。
【0023】
単電池層15を直列に接続した数は図1では4つであるが、単電池層15を直列に接続する数や後述するスタックを直列に接続する数は実際には所望する電圧に応じて調節すればよい。これで、スタック1の概説を終了する。
【0024】
さて、樹脂製の集電体4を使用することで、集電体4の面内方向の電流の流れを抑制し、局部発熱、微小短絡時による長期信頼性が向上した。しかしながら、電池の高容量化に伴い、容量増加、活物質層の厚塗り化により集電体4の面内方向の内部抵抗が低減し、微小短絡時に電流集中が起こりやすく、再度長期信頼性が低下するという課題が生じた。これは、負極活物質層6、正極活物質層5がひとかたまりで集電体4の各面に形成されているためである。ひとかたまりの活物質層6、5の一部に微小短絡が発生すると、活物質層6、5全体から微小短絡部に電流が集中し、自己放電が促進され、電池寿命が短くなるおそれがあるのである。
【0025】
この課題に対して、電極活物質層を複数に分割することによって電極活物質層に生じる電流集中を抑制するようにしているものがある。
【0026】
しかしながら、このような双極型電極においても、双極型電極に作用する応力、例えば、充放電や温度変化による膨張・収縮や外部からの振動等で発生する応力による膨張・収縮などが生じる。この膨張・収縮により、隣り合う2つの分割された電極活物質層どうしが接触することが考えられ、この場合に短絡部位への電流集中が生じる恐れがある。
【0027】
そこで本実施形態では、隣り合う2つの分割された電極活物質層の間に、電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける。以下詳述する。
【0028】
図2は第1実施形態の1つの双極型電極3の概略平面図、図3は図2のA−A線断面図である。ただし、図3では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。ここで、「電極活物質層」とは、正極活物質層または負極活物質層のいずれか一方のことである。さらに述べると、集電体4の一方の面、例えば上面に形成される電極活物質層21が負極活物質層であるとき、集電体4の他方の面(下面)に形成される電極活物質層(図示しない)は正極活物質層となる。一方、集電体4の一方の面、例えば上面に形成される電極活物質層21が正極活物質層であるとき、集電体4の他方の面(下面)に形成される電極活物質層(図示しない)は負極活物質層となる。
【0029】
第1実施形態では、ひとかたまりである電極活物質層21を2つに分割(等分)する場合を示している。このため、2つの分割された電極活物質層(この分割された各電極活物質層を以下「分割電極活物質層」という。)22、23は所定の隙間25を空けて並んでいる。分割によって生じたこの隙間25を、以下「分割部位」という。分割電極活物質層22、23は、互いに対向する長辺側側面22a、23a、互いに対向しない長辺側側面22b、23b、集電体4と接触する側の平面(図3で下面)22c、23c、集電体4と接触しない側の平面(図3で上面)22d、23dを有している。分割電極活物質層22、23の断面は、図3に示したように、ほぼ長方形となっている。
【0030】
分割する数を最低の2つとしたのは、簡単化のためである。従って、3つに分割してもかまわない(3つに分割する場合は第8実施形態で説明する)。分割する数は2つや3つに限られず、複数であればかまわない。分割方法にも限定されない。一方向に分割してもかまわないし、格子状に分割してもかまわない。一方向に分割した場合には、図2や後述する図18に示したように、分割電極活物質層が一列に整列し、格子状に分割した場合には、分割電極活物質層がマトリックス状に整列する。
【0031】
そして、分割部位25の一部、ここでは分割部位25の中央にだけ、電極活物質層21より電気抵抗が高くイオン透過性を有する高抵抗部材27を設ける。ここで、電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を以下、「イオン透過性を有する高抵抗部材」あるいは単に「高抵抗部材」ということがある。図3に示したように、高抵抗部材27の断面も長方形である。
【0032】
電極活物質層より電気抵抗が高い高抵抗部材にイオン透過性をも有させるのは、イオン透過性を有さない高抵抗部材を分割部位25に設けただけだと、この高抵抗部材が介在する部分に電解液が浸透してゆかず、電極特性が低下することが考えられるためである。ここで、イオン透過性は、イオン伝導性とも言われる。また、イオン透過性を有することは、多孔質であることとほぼ同義である。
【0033】
イオン透過性を有する高抵抗部材を設ける位置は、分割部位25の中央位置に限られない。分割部位25のいずれかの位置に設ければよい。
【0034】
イオン透過性を有する高抵抗部材27の材料としては、アルミナなどの絶縁性のセラミックやポリエチレンオキシド(PEO)などの高抵抗有機物などがある。これらの粒子は、図40に示したように多孔質な粒子71となるので、イオン透過性を有する。
【0035】
なお、イオン透過性を有する高抵抗部材の材料としては、もともと多孔質の材料にかぎられない。材料そのものが多孔質でなくてもかまわない。例えば、図41に示したように高抵抗の粒子ではあるが孔を有していない粒子72が集まった形状とすることによって、粒子72と粒子72の間に空隙(空孔)73を作ってやれば、全体として多孔質の粒子の集まりと同じ働きをすることになる。同様に、図42に示したように高抵抗の粒子ではあるが孔を有していないフィラー74が集まった形状とすることによって、フィラー74とフィラー74の間に空隙(空孔)75を作ってやれば、全体として多孔質の粒子の集まりと同じ働きをすることになる。
【0036】
このように、第1実施形態によれば、集電体4の各面に2つに分割した電極活物質層21を形成した双極型電極3(電極)であって、隣り合う2つの分割電極活物質層22、23の間である分割部位25に、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材27を設けたので、振動や熱による双極型電極3の膨張や収縮などによって集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材27に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを抑制できる。
【0037】
これによって、一方の分割電極活物質層22内に微小な内部短絡が生じたとしても、他方の分割電極活物質層23からの電流集中を回避できる。すなわち、いずれかの分割電極活物質層22、23内に微小な内部短絡があった場合にも自己放電による電池容量の低下を最小限にできる。
【0038】
分割電極活物質層22、23はもともとイオン透過性を有している。分割電極活物質層22、23や高抵抗部材27にイオン透過性を有するということは、分割電極活物質層22、23や高抵抗部材27に多数の空孔を有することと等価である。この場合に、第1実施形態では、高抵抗部材27の平均空孔径を分割電極活物質層22、23の平均空孔径とほぼ等しくしている。このため、高抵抗部材27は電池反応に寄与するイオン(例えばLiイオン)を透過する。これによって、集電体4に近い分割電極活物質層22、23にもLiイオンが供給されやすくなる。
【0039】
(第2実施形態)
図4は第2実施形態の1つの双極型電極3の概略平面図で、第1実施形態の図2と置き換わるものである。図5は図4のA−A線断面図である。図4、図5において図2、図3と同一部分には同一番号を付している。
【0040】
第2実施形態の分割電極活物質層22、23及びイオン透過性を有する高抵抗部材27’の外形寸法は第1実施形態の分割電極活物質層22、23及びイオン透過性を有する高抵抗部材27の外形寸法と同じである。第2実施形態は、イオン透過性を有する高抵抗部材27’の平均空孔径を分割電極活物質層22、23の平均空孔径よりも大きくするものである。
【0041】
ここで、イオン透過性を有する高抵抗部材27’の材料としては、第1実施形態で説明したイオン透過性を有する高抵抗部材27の中から平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きくなるものを選択してやればよい。あるいは、平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きくなるように図41、図42に示した粒子形状やフィラー形状を作成してやればよい。
【0042】
また、イオン透過性を有する高抵抗部材27’の材料の平均粒径は、分割電極活物質層22、23を構成する活物質粒子の平均粒径よりも大きいことが望ましい。
【0043】
第2実施形態によれば、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材27’の平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きいので、電解液が第1実施形態のイオン透過性を有する高抵抗部材27より浸透しやすくなり、第1実施形態の場合より電極特性を向上できる。
【0044】
図6、図9、図12、図14、図16は第3、第4、第5、第6、第7の実施形態の1つの双極型電極3の概略平面図で、第1実施形態の図2と置き換わるものである。図7、図10、図13、図15、図17は図6、図9、図12、図14、図16のA−A線断面図である。図6〜図17において図2、図3と同一部分には同一番号を付している。ただし、第1実施形態と同様に、図7、図10、図13、図15、図17では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。
【0045】
(第3実施形態)
まず図6、図7に示す第3実施形態は、2つの分割電極活物質層22、23の全て及び分割部位25の全てを、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材28で被覆したものである。このため、イオン透過性を有する高抵抗部材28の断面は、図7に示したようにEの字を伏せたような形状になっている。
【0046】
第3実施形態では、2つの双極型電極3が上下方向に積層されるとき、図8に示したように互いの高抵抗部材28が対向する。この場合、鉛直上方に位置する一方の双極型電極3の分割電極活物質層22、23が正極活物質層であれば、鉛直下方に位置する他方の双極型電極3の分割電極活物質層22、23は負極活物質層となる。
【0047】
第3実施形態によれば、隣り合う2つの分割電極活物質層22、23の間である分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材28を設けたので、集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材28に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを第1実施形態よりもさらに抑制できる。
【0048】
また、第3実施形態によれば、積層方向に隣り合う2つの双極型電極3の対向面の全面に高抵抗部材28が配置されるので、積層方向に隣り合う一方の双極型電極3の分割電極活物質層22、23と、積層方向に隣り合う他方の双極型電極3の分割電極活物質層22、23との間での内部短絡の発生確率を低下させることができる。
【0049】
また、第3実施形態によれば、積層方向に隣り合う一方の双極型電極3の分割電極活物質層22、23と、積層方向に隣り合う他方の双極型電極3の分割電極活物質層22、23との間の積層方向距離を一定にすることができるので、電池の反応が均一に進みやすくなる。一方、積層方向に隣り合う2つの双極型電極3の間で積層方向に対向する2つの分割電極活物質層の間の距離が異なることは、分割電極活物質層内で抵抗が異なる(イオンの移動距離が変わるため、抵抗が変わる)ことを意味する。すると、分割電極活物質層内で反応の起こりやすさが変わり、分割電極活物質層内で反応の不均一を生じることになる。
【0050】
さて、図8に示したように、イオン透過性を有する高抵抗部材28を、集電体4と接触しない側の平面22d、23dを被覆する集電体4に平行な第1の部位28aと、分割部位25に設けられる第2の部位28bと、長辺側側面22a、23aと反対側の長辺側側面22b、23bに沿って設けられる第3の部位28c、28dとに分ける。このとき、第1の部位28aは第2の部位よりも薄いことが望ましい。これは、第1の部位28aを第2の部位より薄くすることで、電池の容量密度をあまり減らさずに済むためである。
【0051】
(第4実施形態)
図9、図10に示す第4実施形態は、分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材29を設けると共に、分割電極活物質層22、23のうち分割部位25のある側と反対側の長辺側側面22b、23bにも分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材30、31を沿わせて設けたものである。
【0052】
第4実施形態では、2つの双極型電極3が上下方向に積層されるとき、図11に示したようになる。この場合、鉛直上方に位置する一方の双極型電極3の分割電極活物質層22、23が正極活物質層であるとすれば、鉛直下方に位置する他方の双極型電極3の分割電極活物質層22、23は負極活物質層となる。
【0053】
図11を第3実施形態の図8と比較すれば分かるように、第4実施形態は、第3実施形態のイオン透過性を有する高抵抗部材28から第1の部位28aを取り去ったものに相当する。つまり、第4実施形態のイオン透過性を有する高抵抗部材29は、第3実施形態でいう分割部位25に設けられる第2の部位に相当する。第4実施形態のイオン透過性を有する高抵抗部材30、31は第3実施形態でいう分割部位25のある側と反対側の長辺側側面22b、23bに沿って設けられる第3の部位に相当する。
【0054】
第4実施形態によれば、隣り合う2つの分割電極活物質層22、23の間である分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材29を第3実施形態と同じに設けたので、集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材29に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを第1実施形態よりもさらに防止できる。
【0055】
また、第4実施形態によれば、分割電極活物質層22、23の長辺側側面22a、22b、23a、23bの全てに高抵抗部材29、30、31を設けている。言い換えると、分割電極活物質層22、23の集電体4と接触しない側の平面22d、23dには高抵抗部材を設けていないので、その分、電池の容量密度を上げることができる。
【0056】
(第5実施形態)
図12、図13に示す第5実施形態は、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(つまり分割部位25の中央位置)に空隙部34を設けたものである。
【0057】
ここで、空隙部34の水平方向幅W1(空隙部の距離)は、分割電極活物質層22、23の平均空孔径とほぼ同じに設定する。
【0058】
ここでの高抵抗部材32、33の材料としては、熱可塑性樹脂、熱硬化性樹脂、電池電極用バインダーを用いることができる。熱可塑性樹脂、熱硬化性樹脂、電池電極用バインダーなどを用いて多孔質構造を形成させれば(図41、図42参照)、熱可塑性樹脂、熱硬化性樹脂のように材料自体にイオン透過性がなくても、イオン透過性を有することとなる。
【0059】
第5実施形態によれば、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(分割部位25の中央位置)に空隙部34を設けるので、空隙部34の分だけ、第4実施形態の場合より電解液を拡散させることができる。これによって、分割部位25に隣接する集電体4近くの分割電極活物質層22、23にも電解液が浸透性しやすくなるため、電極特性を向上させることができる。
【0060】
また、第5実施形態によれば、空隙部34の存在によって、分割電極活物質層22、23の熱膨張時や収縮時に隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和しやすくなる。
【0061】
(第6実施形態)
図14、図15に示す第6実施形態は、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(分割部位25の中央位置)に空隙部34’を設けている点で第5実施形態と同じである。
【0062】
第6実施形態において第5実施形態と相違するのは、空隙部34’の水平方向幅W2(空隙部の距離)を、分割電極活物質層22、23の平均空孔径よりも大きくしている点である。
【0063】
第6実施形態によれば、空隙部34’の水平方向幅W2(空隙部の距離)を、分割電極活物質層22、23の平均空孔径よりも大きくするので、電解液が分割部位25に隣接する集電体4側にも浸透性しやすくなるため、電極特性を向上させることができる。
【0064】
(第7実施形態)
図16、図17に示す第7実施形態は、分割電極活物質層22、23の集電体4と接触する側の平面(図17で下面)22c、23cの面積を、第1実施形態の分割電極活物質層22、23の集電体4と接触する側の平面(図3で下面)22c、23cの面積より大きくすると共に、分割電極活物質層22、23の集電体4と接触しない側の平面(図17で上面)22d、23dの面積を、第1実施形態の分割電極活物質層22、23の集電体4と接触しない側の平面(図3で上面)22c、23cの面積より小さくし、かつ分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材35を設けたものである。このため、図17に示したように分割電極活物質層22、23の断面は等脚台形状となり、イオン透過性を有する高抵抗部材35の断面は逆台形状となっている。
【0065】
第7実施形態によれば、分割電極活物質層22、23と集電体4との接触面積が第1実施形態より大きいので、集電体4と分割電極活物質層22、23との密着力を強くすることができる。
【0066】
また、第7実施形態によれば、分割部位25の水平方向幅が、集電体4から鉛直上方に離れるほど大きくなるので、集電体4から離れた分割部位25の部分で分割電極活物質層22、23の熱膨張時や収縮時に隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和できる。さらに述べると、分割電極活物質層22、23が膨張している時に接触するとお互いに押し合うために、応力が発生する。単純に考えると、初めから接触している場合に発生する応力は、接触していない状態からの膨張量×弾性率で決まる。隣り合う2つの分割電極活物質層22、23同士が接触するまでに、自由に膨張できる隙間があった方が隣り合う2つの分割電極活物質層22、23の間に発生する応力を少なくすることができる。言い換えると、集電体4から鉛直上方に離れるほど分割部位25の水平方向幅が広がり、隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和できる。
【0067】
(第8実施形態)
図18は第8実施形態の1つの双極型電極3の概略平面図、図19は図18のA−A線断面図である。
【0068】
第8実施形態は、集電体4の各面に形成される負極活物質層41と正極活物質層45とを同数(ここでは3つ)で分割(等分)し、分割された負極活物質層(この分割された負極活物質層を以下「分割負極活物質層」という。)42、43、44と、分割された正極活物質層(この分割された正極活物質層を以下「分割正極活物質層」という。)46、47、48とを集電体4を挟んで互いに対向させると共に、分割負極活物質層42、43、44側の分割部位49、50の水平方向幅を、分割正極活物質層46、47、48側の分割部位51、52の水平方向幅より小さくし、かつ分割負極活物質層42、43、44の側の分割部位49、50に分割負極活物質層42、43、44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54を、分割正極活物質層46、47、48の側の分割部位51、52に分割正極活物質層46、47、48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けたものである。ここで、3つの各分割負極活物質層42、43、44の水平方向幅W3は、3つの各分割正極活物質層46、47、48の水平方向幅W4より大きくなっている。
【0069】
さらに説明する。いま、同じ外形寸法である3つの分割負極活物質層42、43、44を、第1分割負極活物質層42、第2分割負極活物質層43、第3分割負極活物質層44で区別する。また、同じ外形寸法である3つの分割正極活物質層46、47、48を、第1分割正極活物質層46、第2分割正極活物質層47、第3分割正極活物質層48で区別する。このとき、第1分割負極活物質層42の長手方向中心線C1と第1分割正極活物質層46の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。同様にして、第2分割負極活物質層43の長手方向中心線C2と第2分割正極活物質層47の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。同様にして、第3分割負極活物質層44の長手方向中心線C3と第3分割正極活物質層48の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。
【0070】
これによって、図19に示したように、分割負極活物質層42、43、44が、集電体4を挟んでそれぞれ分割正極活物質層46、47、48を包含することとなる。
【0071】
なお、分割負極活物質層42、43、44は、互いに対向する長辺側側面42a、43a、43b、44b、互いに対向しない長辺側側面42b、44a、集電体4と接触する側の平面(図19で下面)42c、43c、44c、集電体4と接触しない側の平面(図19で上面)42d、43d、44dを有している。同様に、分割正極活物質層46、47、48は、互いに対向する長辺側側面46a、47a、47b、48b、互いに対向しない長辺側側面46b、48a、集電体4と接触する側の平面(図19で上面)46c、47c、48c、集電体4と接触しない側の平面(図19で下面)46d、47d、48dを有している。分割負極活物質層42、43、44、分割正極活物質層46、47、48の各断面は、図19に示したように、ほぼ長方形となっている。
【0072】
そして、分割負極活物質層42〜44側の分割部位49、50の一部、ここでも分割部位49、50の中央にだけ分割負極活物質層42〜44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54を設けている。また、分割正極活物質層46〜48側の分割部位51、52の一部、ここでも分割部位51、52の中央にだけ分割正極活物質層46〜48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けている。高抵抗部材53、54、55、56の断面も長方形である。
【0073】
第8実施形態によれば、集電体の各面形成される負極活物質層41と正極活物質層45とを同数で分割し、分割負極活物質層42〜44と、分割正極活物質層46〜48とを集電体4を挟んで互いに対向させると共に、分割負極活物質層42〜44側の分割部位49、50の水平方向幅を、分割正極活物質層46〜48側の分割部位51、52の水平方向幅より小さくし、かつ分割負極活物質層42〜44の側の分割部位49、50に分割負極活物質層42〜44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54、55、56を、分割正極活物質層46〜48の側の分割部位51、52に分割正極活物質層46〜48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けたので、図43に示したように積層方向に隣り合う2つの双極型電極3を考えたとき、積層方向に隣り合う一方の双極型電極3の分割正極活物質層46、47、48が、積層方向に隣り合う他方の双極型電極3の分割負極活物質層42、43、44内に包含される。これによって、積層型二次電池の充電時には、積層方向に隣り合う一方の双極型電極3の分割正極活物質層46のLiイオンを電解質(電解液)を介して、積層方向に隣り合う他方の双極型電極3の分割負極活物質層42に受け入れることができることから、充放電効率を向上できる。第1〜第7の実施形態に比べ耐久時の容量劣化を抑制することができる。ここで、図43は第8実施形態の双極型電極3を鉛直方向に3つ積層したスタック1の概略縦断面図である。なお、双極型電極3を3つ積層する場合に限定されるものでない。
【0074】
さらに説明する。積層方向に隣り合う一方の双極型電極3の分割正極活物質層と対向していない部分であって、積層方向に隣り合う他方の双極型電極3の分割負極活物質層は、積層方向に隣り合う一方の双極型電極3の分割正極活物質層のLiイオンをほとんど受け入れることができない。積層方向に隣り合う一方の双極型電極3の分割正極活物質層の対向部に、積層方向に隣り合う他方の双極型電極3の分割負極活物質層がないと、積層方向に隣り合う一方の双極型電極3の分割正極活物質層からでたLiイオンは、違うところにリチウム(Li)として析出したりする恐れがある。そこで、第8実施形態では、積層方向に隣り合う他方の双極型電極3の分割負極活物質層の水平方向幅W3を、積層方向に隣り合う一方の双極型電極3の分割正極活物質層の水平方向幅W4よりも大きめにして、積層方向に隣り合う一方の双極型電極3の分割正極活物質層から出たLiイオンを確実に積層方向に隣り合う他方の双極型電極3の分割負極活物質層に取り込むようにしている。
【0075】
この意味で、第1〜第7の実施形態においても、積層方向に隣り合う2つの双極型電極3を考えたとき、隣り合う一方の双極型電極3に設けられる高抵抗部材と、隣り合う他方の双極型電極3に設けられる高抵抗部材とが集電体(あるいはセパレータ)を挟んで対向していることが好ましい。
【0076】
(比較例)
図20は比較例の1つの双極型電極3の概略平面図、図21は図20のA−A線断面図である。図20、図21において第8実施形態の図18、図19と同一部分には同一番号を付している。比較例は、図18、図19に示した第8実施形態の双極型電極3から高抵抗部材を除いたものである。つまり、比較例には高抵抗部材は設けられていない。
【0077】
図22、図24、図27、図30、図32、図34は第9、第10、第11、第12、第13、第14の実施形態の1つの双極型電極3の概略平面図である。図23は図22のA−A線断面図、図25は図24のA−A線断面図、図28、図29は図27のA−A線断面図、B−B線断面図である。図31は図30のA−A線断面図、図33は図32のA−A線断面図、図35、図36は図34のA−A線断面図、B−B線断面図である。第1実施形態の図2、図3と同一部分には同一番号を付している。ただし、第1実施形態の図3と同様に、図23、図25、図26、図28、図29、図31、図33、図35、図36では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。第9〜第14の実施形態は、イオン透過性を有する高抵抗部材の形状や配置が第1〜第8の実施形態と相違するものである。
【0078】
(第9実施形態)
まず図22、図23に示す第9実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材61の下面61aを集電体4上に固定して設けるものである。この場合に、分割電極活物質層22、23の長辺側側面22a、23aに対向する高抵抗部材61の両側面61b、61cは分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。
【0079】
(第10実施形態)
図24、図25に示す第10実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材62の両側面62b、62cを分割電極活物質層22、23の互いに対向する長辺側側面22a、23aに固定するものである。
【0080】
図26は第10実施形態の変形例で、図25と置き換わるものである。この変形例では、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材62の側面62b、62cの一方(ここでは側面62b)を、分割電極活物質層22、23の互いに対向する長辺側側面22a、23aの一方(ここでは長辺側側面22a)に固定するものである。
【0081】
(第11実施形態)
図22、図23で前述したように第9実施形態では、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材61の下面61aを、分割部位25の中央の一箇所で集電体4上に固定した。一方、図27〜図29に示す第11実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材63、64の下面63a、64aを、分割部位25の端部の二箇所で集電体4上に固定するものである。つまり、第11実施形態では、イオン透過性を有する2つの高抵抗部材63、64からなり、一方の高抵抗部材63は分割部位25の一方の端に固定され、他方の高抵抗部材64は分割部位25の他方の端に固定されている。第11実施形態でも、分割電極活物質層22、23の長辺側側面22a、23aに対向する高抵抗部材63、64の両側面63b、63c、64b、64cは分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。
【0082】
(第12実施形態)
図30、図31に示す第12実施形態では、電極活物質層21を3つに分割(等分)している。このため、これら3つの分割された電極活物質層(この分割された電極活物質層を以下「分割電極活物質層」という。)22、23、24は所定の隙間25を空けて並んでいる。この分割によって生じた隙間25、26も以下「分割部位」という。
【0083】
図22、図23に示した第9実施形態、図27〜図29に示した第11実施形態では、イオン透過性を有する高抵抗部材61、63、64の側面61b、61c、63b、63c、64b、64cを分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。一方、図30、図31に示す第12実施形態は、分割電極活物質層22、23、24より電気抵抗が高くイオン透過性を有する高抵抗部材65、66の下面65a、66aを集電体4上に固定すると共に、高抵抗部材65、66の一方の側面65c、66cを分割電極活物質23、24の一方の長辺側側面23a、24aに当接させたものである。
【0084】
(第13実施形態)
図32、図33に示す第13実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材67の断面を、三角形状として、集電体4上に固定して設けたものである。
【0085】
(第14実施形態)
図34〜図36に示す第14実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材68、69の下面68a、69aを、分割部位25の二箇所で集電体4上に固定すると共に、一方の高抵抗部材68の一方の側面68cを分割電極活物質層23の一方の長辺側側面23aのみに、他方の高抵抗部材69の一方の側面69bを分割電極活物質層22の一方の長辺側側面22aのみに当接させたものである。
【実施例】
【0086】
上記第1〜第7の実施形態及び比較例に対して、それぞれ実施例1〜7及び比較例を作製した。この実施例1〜7及び比較例について次に説明する。ここでは、7つの各実施例及び比較例に共通する事項を先に述べ、その後に7つの各実施例及び比較例について共通事項と異なる点を個別に説明する。
【0087】
<正極スラリーの調整>
正極活物質としてリチウムマンガン酸化物(LiMn24)を85wt%、導電助剤としてアセチレンブラックを5wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の割合で混合して正極スラリーを調整した。スラリー粘度調整溶媒としてはN−メチル−ピロリドン(NMP)を用いた。
【0088】
<負極スラリーの調整>
負極活物質としてハードカーボンを90wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の割合で混合して負極スラリーを調整した。スラリー粘度調整溶媒としてはN−メチル−ピロリドン(NMP)を用いた。
【0089】
<集電体の作製>
導電性を有する層としてポリエチレン(PE)樹脂にカーボン材料を分散させた導電性高分子材料を延伸によって、厚さ100μmのフィルム状に成型して、導電性を有する樹脂層を含む集電体を作製した。
【0090】
<双極型電極の作製>
上記の負極スラリーを上記集電体の一方の面に塗布し乾燥させて負極活物質層を形成した。負極活物質層の厚みは50μmになるようにプレスを行った。
【0091】
続いて上記の正極スラリーを上記の集電体の他方の面に塗布し乾燥させて正極活物質層を形成した。正極活物質層の厚みは60μmになるようにプレスを行った。
【0092】
これによって、集電体の一方の面に負極活物質層が、他方の面に正極活物質層が形成された双極型電極が完成した。
【0093】
双極型電極を140mm×90mmに切断し、電極の周辺部10mmはあらかじめ電極(正負ともに)を塗布していない部分のあるものを作成し、これにより120mm×70mmの電極部と周辺部に10mmのシール代ができた双極型電極を作製した。
【0094】
<高抵抗部材の作製>
絶縁体材料とバインダー材料を混合してスラリーを作製した。絶縁体材料としてアルミナを用いた。バインダーとしてカルボキシメチルセルロース(CMC)を2wt%の割合で用いた。溶媒としてN−メチル−ピロリドン(NMP)を用いた。
【0095】
<電解液の作製>
エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を、EC:DEC=1:1(体積比)の割合で混合した非水溶媒に、電解質塩としての六フッ化リン酸リチウム(LiPF6)を濃度が1mol/lとなるように溶解させて、非水電解液を作製した。
【0096】
<積層型二次電池の作製>
上記得られた双極型電極を6つ用意し、正極活物質層、負極活物質層の周囲にポリエチレン(PE)製フィルムからなるシール部材を配置した。さらに、隣り合う一方の双極型電極の正極活物質層と、隣り合う他方の双極型電極の負極活物質層とが対向するように、かつこれら隣り合う2つの双極型電極の間に厚み35μmのポリエチレン(PE)からなるセパレータを配置して積層した。次いで、各層の注液部以外のシール部三辺を上下からプレス(プレス圧力:0.2MPa、プレス温度:140℃、プレス時間:5秒間)し、各層のシール部材を融嫡し、各層をシールして、各層の注液部のみが開口された袋状とした。
【0097】
さらに、各層の注液部のみが開口された部位に、作製した電解液を注液し、シール材部を真空密封した。
【0098】
その後、発電要素の投影面全体を覆うことのできる縦130mm×横80mm×厚み100μmのアルミニウム板の一部が電池要素投影面外部まで延びている部分がある強電端子で発電要素を挟み込み、これらを覆うようにアルミニウムラミネートフィルムで真空密封し、上下の両面から発電要素全体を大気圧で押すことにより、強電端子と発電要素間の接触を高めた。これにより、図1に示すような積層型二次電池が得られた。これで7つの各実施例及び比較例に共通する事項の説明を終える。
【0099】
(実施例1)
前述の共通する事項と同様にして積層型二次電池を作製した(図2、図3参照)。
【0100】
次に、前述の共通する事項で述べなかった分割電極活物質層の作製方法について述べる。すなわち、高固形分の負極スラリーを塗布し負極活物質層を形成する負極活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、パターン型をプレスし負極活物質層を複数に分割する負極活物質分割工程と、負極活物質層が分割された部分に負極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程とを追加した。同様に、高固形分の正極スラリーを塗布し正極活物質層を形成する正極活物質層形成工程と、形成した正極活物質層を乾燥させる乾燥工程の間に、パターン型をプレスし正極活物質層を複数に分割する正極活物質分割工程と、正極活物質層が分割された部分に正極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程とを追加した。
【0101】
詳述すると、上記の活物質分割工程でプレス型を用いて、集電体上に形成した負極活物質層、正極活物質層をそれぞれプレスすることにより、負極活物質層、正極活物質層を2つに分割した。分割負極活物質層、分割正極活物質層はいずれも36mm×70mmの大きさとなった。この場合、分割負極活物質層側の分割部位と、分割正極活物質層側の分割部位とが集電体を挟んで対向するようにした。
【0102】
上記の高抵抗部材設置工程では、分割部位の中央位置に、カルボキシメチルセルロース(CMC)を2wt%とアルミナ98wt%と粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×20mmの高抵抗部材を作製した。
【0103】
(実施例2)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図4、図5参照)。
【0104】
分割部位に高抵抗部材を設けるため、カルボキシメチルセルロース(CMC)を2wt%と平均粒径30μmのアルミナ98wt%と粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×20mmの高抵抗部材を作製した。
【0105】
(実施例3)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図6、図7、図8参照)。
【0106】
分割負極活物質の全面及び分割正極活物質層の全面に、カルボキシメチルセルロース(CMC)を2wt%、アルミナを98wt%、粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、高抵抗部材を作製した。
【0107】
(実施例4)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図9、図10、図11参照)。
【0108】
分割負極活物質層の集電体と接触しない側の平面に高抵抗部材が作製されないように、分割負極活物質層の集電体と接触しない側の平面にマスキングテープを貼り、分割部位及び分割部位のある側と反対側の長辺側側面に高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×70mmの高抵抗部材を作製した。同様に、分割正極活物質層の集電体と接触しない側の平面に高抵抗部材が作製されないように、分割正極活物質層の集電体と接触しない側の平面にマスキングテープを貼り、分割部位及び分割部位のある側と反対側の長辺側側面に高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×70mmの高抵抗部材を作製した。
【0109】
(実施例5)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図12、図13参照)。
【0110】
高固形分の負極スラリーを塗布し活物質層を形成する活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、活物質層の分割及び高抵抗部材の転写を共に行う工程を追加した。同様に、高固形分の正極スラリーを塗布し活物質層を形成する活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、活物質層の分割及び高抵抗部材の転写を共に行う工程を追加した。
【0111】
この工程では、高抵抗部材の前駆体溶液をプレス型の表面に予め塗布し、乾燥させておき、このプレス型を用いてプレスすることにより、負極活物質層、正極活物質層の各分割と25μm×70mmの高抵抗部材の転写とを同時に行った。
【0112】
(実施例6)
実施例5と同様にして負極活物質層、正極活物質層の各分割と高抵抗部材の転写とを同時に行うことにより、10μm×70mmの高抵抗部材の作製を行った。その後に、前述の共通する事項と同様にして積層型二次電池を作製した(図14、図15参照)。
【0113】
(実施例7)
実施例4と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図16、図17参照)。
【0114】
ただし、プレスには三角山型のプレス型を用いた。
【0115】
(比較例)
実施例8と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図20、図21参照)。
【0116】
ただし、実施例8と相違して、高抵抗部材は設けなかった。
【0117】
[性能評価]
上記実施例1〜7及び比較例の積層型二次電池について、0.5Cで5時間初回充電放電を行った(各層の上限電圧4.2V)。その後、45℃の充放電サイクル試験を100サイクル行い、保存後の容量測定を0.5Cの充放電測定で測定した。得られた結果を表1にまとめた。
【0118】
【表1】

【0119】
表中の「レート特性」とは、4.2V、1Cで2.5時間、CCCV(Constant Current Constant Voltage)充電した後、3Cで2.5VまでCC(Constant Current)放電した際の放電容量を、比較例の電池での放電容量を100とする相対値で表したものである。
【0120】
表1に示したように、実施例1では、サイクル試験後の容量劣化が比較例に比べて改善している。これは、高温で充放電を繰り返した際に膨張・収縮に伴い発生する可能性のある分割電極活物質層同士の電気的接触を防止できるためである。また、実施形態1では高抵抗部材を分割部位の一部にしか設けていないため電解液の浸透性が良く、比較例に対してレート特性の低下は小さいものとなっている。
【0121】
実施例2では、高抵抗部材内の平均空孔径が分割電極活物質層の平均空孔径よりも大きいことにより、電解液が高抵抗部材内を浸透性しやすくなるため、表1に示したように、レート特性の低下が実施例1より小さくなっている(実施例1より電極特性が向上する)。
【0122】
実施例3では、分割負極活物質層、分割正極活物質層の各全面に高抵抗部材が配置されているため、積層方向に隣り合う一方の双極型電極の分割電極活物質層と、積層方向に隣り合う他方の双極型電極の分割電極活物質層との間での内部短絡の発生確率が低下する。また、積層方向に隣り合う一方の双極型電極の分割負極活物質層と、積層方向に隣り合う他方の双極型電極の分割正極活物質層との間の積層方向距離を一定にすることができるので、活物質層内の反応が均一に進みやすくなる。この結果、表1のように実施例1、2よりもサイクル試験後の容量維持率が向上している。
【0123】
実施例4では、積層方向に隣り合う一方の双極型電極の分割負極活物質層と、積層方向に隣り合う他方の双極型電極の分割正極活物質層との間に高抵抗部材がないため、電池の容量密度を上げることができる。この結果、表1のようにサイクル試験後の容量維持率は実施例3と同様となっている。
【0124】
実施例5では、空隙部を電解液が拡散することができるため、集電体近くの分割負極活物質層や分割正極活物質層にも電解液が浸透性しやすくなるため、電極特性が向上する。この結果、実施例1、2ほどではないにせよ、表1のようにレート特性の低下は小さいものとなっている。
【0125】
実施例6では、空隙部の水平方向幅を分割負極活物質層や分割正極活物質層の平均空孔径よりも大きくすることにより、電解液が空隙部を介して集電体側にも浸透性しやすくなるため、電極特性が向上する。この結果、表1のように実施例5よりはレート特性の低下を小さくすることができている。
【0126】
次に、双極型電極の製造方法について説明する。ここでは、先に比較的高固形の電極混練物(負極スラリーまたは正極スラリー)を用いる双極型電極の製造方法を先に説明し、その後に、本発明の双極型電極の製造方法について説明する。
【0127】
双極型電極の製造方法の第1実施形態では、比較的高固形の電極混練物を集電体に塗布することで、乾燥工程に要する時間を短縮するとともに、乾燥工程前に溶媒を含有する電極混練物を押圧するプレス工程を実施する。
【0128】
図37は、積層型二次電池の電極製造時に使用する電極製造装置100の概略構成図である。電極製造装置100は、搬送装置110と、混練装置120と、塗布装置130と、プレス装置140と、乾燥装置150とを備える。電極製造装置100は、搬送装置110によって搬送される集電体4の表面に、混練装置120で混練した電極混練物121を塗布装置130によって塗布し、プレス装置140によって電極混練物121の嵩密度を調整した後、乾燥装置150によって乾燥させて電極を製造する装置である。
【0129】
以下、電極製造装置100を構成する各装置について詳述する。搬送装置110は、引取ロール111と、巻取ロール112と、サポートロール113とを備える。搬送装置110は、ロールトゥロール方式によって薄い膜状の集電体4を引取ロール111から巻取ロール112へと搬送する。
【0130】
引取ロール111には、集電体4が巻かれる。引取ロール111は制動機構115を備えており、この制動機構115によって引取ロール111の回転が適宜規制され、集電体4に所定の張力が付与される。巻取ロール112は、駆動モータ116によって回転駆動され、引取ロール111から引き取った集電体4を巻き取る。サポートロール113は、引取ロール111と巻取ロール112との間の集電体搬送経路に複数設けられ、搬送中の集電体4の下面を保持する。
【0131】
混練装置120は二軸混練機であり、電極材を溶媒中で均一に分散させて、せん断速度(シアレート)[1/sec]において、所定の粘度[Pa・s]に調整されたスラリー状の電極混練物121を製造する装置である。混練装置120は、製造された電極混練物121の温度が40[℃]〜60[℃]となるように、加温しつつ電極材を溶媒中で均一に分散させている。混練装置120は二軸混練機に限られるものではなく、例えば遊星式ミキサやニーダを用いても良い。ここで、電極混練物121が高固形の混練物となるように溶媒の量を調節している。具体的には、溶媒の重量パーセント(wt%)が、電極材に対して10[wt%]〜30[wt%]となるように調節している。
【0132】
このように、集電体4に塗布する電極混練物121を高固形とすることで、乾燥前に電極混練物121をプレスすることを可能としている。また、高固形とすることで、電極混練物中の溶媒量が相対的に少なくなるので、乾燥時間も短くすることができる。
【0133】
一般的に電極は、電極材と溶媒とを混練させた比較的低固形のスラリー状の電極混練物を集電体に塗布し、その後に電極混練物中の溶媒を揮発させて電極材を形成する乾燥工程、及び電極材を圧縮してその嵩密度(厚さ)を調整するプレス工程を経て製造される。しかしながら、乾燥工程の後にプレス工程を実施すると、電極混練物中の溶媒を全て揮発させた後の電極材を押圧することになる。そのため、溶媒がない分、電極材を構成する電極活物質粒子の流動性が低下するので、電極材を押圧しても電極材中に比較的大きな空隙が残ってしまい、電池性能が低下してしまう。また、比較的低固形の電極混練物を集電体に塗布するのでは、電極混練物中の溶媒量が相対的に多くなり、乾燥工程に要する時間が長くなる。乾燥工程に要する時間が長くなるほど、乾燥炉長を長くする必要があり、設備投資額が増加する。そこで、電極混練物121が高固形の混練物となるように溶媒の量を調節したのである。
【0134】
なお、本実施形態でいう高固形の混練物とは、せん断速度が50[1/sec]から4000[1/sec]の範囲における粘度が、10[Pa・s]から1000[Pa・s]の範囲にあるものをいう。この中でも、せん断速度が200[1/sec]から4000[1/sec]の範囲における粘度が、10[Pa・s]から1000[Pa・s]の範囲にあることが好ましい。
【0135】
電極混練物としての正極スラリーを製造する場合は、混練装置120に電極材としての正極活物質、導電助剤、及びバインダ(結着剤)が投入され、これらが溶媒中で均一に分散させられる。電極混練物としての負極スラリーを製造する場合は、混練装置120に電極材としての負極活物質、導電助剤、及びバインダが投入され、これらが溶媒中で均一に分散させられる。
【0136】
塗布装置130は、混練装置120で製造された電極混練物121を金属箔114の表面に塗布する装置であって、ギヤポンプ131と、スリットダイ132とを備える。ギヤポンプ131は、混練装置120とスリットダイ132との間に設けられ、混練装置120で製造された電極混練物121を加圧してスリットダイ132へ送り込む。スリットダイ132は、先端部に形成されたスリット132aを介して電極混練物121を吐出し、搬送途中の集電体4の表面に電極混練物121を塗布する。スリットダイ132は、集電体4の搬送方向に所定の間隔を空けて電極混練物121を塗布する。
【0137】
プレス装置140は、塗布装置130よりも下流側の金属箔搬送経路に設けられて、電極混練物121を押圧する装置であり、ローラプレス141と、バキュームポンプ142と、を備える。ローラプレス141は、集電体4の表面側から電極混練物121を直接押圧する第1ローラ141aと、集電体4の裏面側から集電体4を介して電極混練物121を押圧する第2ローラ141bとを備える。ローラプレス141は、電極混練物121を第1ローラ141aと第2ローラ141bとで挟みこんで圧縮する。このとき、電極混練物121が第1ローラ141aのローラ面143に付着しないようにローラ面143を所定温度に保持しつつ、圧縮時に電極混練物121から染み出した溶媒をローラ面143を介して吸い取ることで、電極混練物121が所定の嵩密度となるように調整している。そのために、第1ローラ141aには、負圧室144と、連通孔145と、ヒータ146と、が設けられる。
【0138】
負圧室144は、第1ローラ141aの内部に形成された所定の容積を持つ空間である。負圧室144はバキュームポンプ142に接続されており、バキュームポンプ142によって減圧される。
【0139】
連通孔145は、負圧室144と第1ローラ141aのローラ面143とを連通する通路である。連通孔145を介して電極混練物121から染み出した溶媒が減圧された負圧室144へと吸い取られ、除去される(減圧除去)。
【0140】
ヒータ146は、第1ローラ141aの内部に設けられ、第1ローラ141aのローラ面143を加熱する。ローラ面143の温度が25[℃]から60[℃]の範囲に収まるように、ヒータ146によってローラ面143を加熱している。
【0141】
乾燥装置150は熱風乾燥炉であり、プレス装置140よりも下流側の集電体搬送経路に設けられる。乾燥装置150は、電極混練物121に熱風を吹き付けて電極混練物中の溶媒を揮発除去し、電極混練物121を乾燥させる装置である。
【0142】
これで、比較的高固形の電極混練物を用いる電極の製造方法の説明を終了する。
【0143】
さて、双極型電極3の製造方法の第1実施形態では、図37に示したように、プレス装置140と乾燥装置150との間に第2のプレス装置160(活物質分割工程)と第2の塗布装置170(高抵抗部材設置工程)とを追加している。ここで、第2のプレス装置160は、実施例1〜6を対象として電極活物質層を分割するための装置、第2の塗布装置170は実施例1〜6を対象として分割部位に高抵抗部材を設けるための装置である。
【0144】
第2のプレス装置160及び第2の塗布装置170で行われる処理は、実施例1〜4と実施例5、6とで異なるため、まず実施例1〜4の場合に第2のプレス装置160及び第2の塗布装置170で行われる処理を図38を参照して説明する。ただし、ここでは、実施例3の場合で代表させる。
【0145】
図38(a)、(b)に示すプレス工程では、プレス型81を用いて、集電体4上に形成した電極活物質層21をプレスすることにより、電極活物質層21を2つに分割する。プレス型81には分割部位25を形成するための突起82が形成されており、この突起82が電極活物質層21の一部を押しのけることで分割電極活物質層22、23及び分割部位25が形成される。ここで、図38(a)はプレス型81でプレスする前の状態を、図38(b)はプレス型81でプレスした後の状態を示している。
【0146】
図38(c)に示す塗工工程では、プレスにより生じた分割部位25に分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体溶液を塗布することにより、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材28を作製する。図38(c)では、集電体4と接触しない側の平面22d、23dにも高抵抗部材28が設けられている。実施例4のように、当該平面22d、23dに高抵抗部材28が設けられないようにするには、当該平面22d、23dにマスキングを行えばよい。
【0147】
次に、実施例5、6の場合に第2のプレス装置160及び第2の塗布装置170で行われる処理を図39を参照して説明する。ただし、ここでは実施例5の場合で代表させる。
【0148】
図39(a)、(b)に示すプレス・塗工工程では、プレス工程と塗工工程とを同時に行う。すなわち、図39(a)は分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体溶液をプレス型81の突起82の外周表面に予め塗布し乾燥させて、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体83を形成している状態を示している。
【0149】
図39(b)は、この前駆体83を形成しているプレス型81を用いてプレスした後の状態を示しており、プレス型81が引き抜かれた後に分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33が分割電極活物質層22、23の端面に形成されると共に、2つの高抵抗部材32、33の間の全てに空隙部34が生じている。
【0150】
実施形態では、分割電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材の厚さを分割電極活物質層の厚さと同等で記載しているが、分割電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材の厚さは分割電極活物質層の厚さより薄いことが好ましい。高抵抗部材にはイオン透過性がある、言い換えると多孔質であるとはいえ、イオンの移動の邪魔になるので、高抵抗部材の厚さが薄いほうがイオンの拡散性が高くなるためである。
【符号の説明】
【0151】
1 スタック(積層型電池)
3 双極型電極
4 集電体
21 電極活物質層
22、23 分割電極活物質層
25 分割部位
27、27’ 高抵抗部材
28、29、32、33 高抵抗部材
34、34’ 空隙部
35 高抵抗部材
41 負極活物質層
42、43、44 分割負極活物質層
45 正極活物質層
46、47、48 分割正極活物質層
49、50、51、52 分割部位
53、54、55、56 高抵抗部材
100 電極製造装置
120 混練装置
130 塗布装置
140 プレス装置
150 乾燥装置
160 第2のプレス装置
170 第2の塗布装置

【特許請求の範囲】
【請求項1】
集電体に複数に分割した活物質層を形成した電極であって、
隣り合う2つの分割された活物質層の間に、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を含むことを特徴とする電極。
【請求項2】
前記高抵抗部材内の平均空孔径は前記活物質層の平均空孔径より大きいことを特徴とする請求項1に記載の電極。
【請求項3】
前記隣り合う2つの分割された活物質層の間の全てに前記高抵抗部材を設けることを特徴とする請求項1または2に記載の電極。
【請求項4】
前記隣り合う2つの分割された活物質層の端面の全てに前記高抵抗部材をそれぞれ配置し、
それぞれ配置した高抵抗部材の間に空隙部を設けることを特徴とする請求項1または2に記載の電極。
【請求項5】
前記空隙部の距離は前記活物質層の平均空孔径よりも大きいことを特徴とする請求項4に記載の電極。
【請求項6】
前記電極は集電体の一方の面に負極活物質層を、他方の面に正極活物質層を形成する双極型電極であり、
前記負極活物質層と正極活物質層の分割される数は同数であり、
分割された負極活物質層と、分割された正極活物質層とが電解質を挟んで互いに対向すると共に、
隣り合う2つの分割された負極活物質の間の間隔が、隣り合う2つの分割された正極活物質層の間の間隔より小さいことを特徴とする請求項1または2に記載の電極。
【請求項7】
請求項1から6までのいずれか一つに記載の電極を用いた電池。
【請求項8】
集電体に高固形分のスラリーを塗布し活物質層を形成する活物質層形成工程と、
この形成された活物質層にパターン型をプレスし活物質層を複数に分割する活物質分割工程と、
活物質層が分割された部分に活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程と
を含むことを特徴とする電極の製造方法。
【請求項9】
前記高抵抗部材設置工程は、前記高抵抗部材を含む溶液を前記活物質層が分割された部分に塗布することを特徴とする請求項8に記載の電極の製造方法。
【請求項10】
前記活物質分割工程及び前記高抵抗部材設置工程は、前記高抵抗部材を表面に形成したパターン型を前記活物質層にプレスすることにより、活物質層の分割及び高抵抗部材の転写を共に行うことを特徴とする請求項8に記載の電極の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate


【公開番号】特開2012−104274(P2012−104274A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−249942(P2010−249942)
【出願日】平成22年11月8日(2010.11.8)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】