説明

非接触給電装置

【課題】受電側機器の出力電圧制御を行うことにより、また、給電部の供給電圧が不安定であっても出力電圧を高精度に制御する非接触給電装置を提供する。
【解決手段】給電側コアと受電側コアが分割可能で、かつ給電側コアに補助巻線を有する絶縁トランスと、前記給電側コアに巻回された給電側コイルに高周波電力を供給する高周波駆動回路と、前記給電側コアに設けられ、受電側の情報を機構的に認識する機構認識部と、前記補助巻線の出力電圧を検出する補助巻線電圧検出部とを備える。前記補助巻線電圧検出部の検出出力と、機構認識部の認識情報によって、高周波駆動回路の出力制御を行う制御部とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、給電側コアに補助巻線を有する非接触給電装置に関する。
【背景技術】
【0002】
近年、太陽電池などの分散電源装置が普及し始めている。しかし、現状では分散電源装置で発電した直流電力を交流に変換し、その交流電力を消費する機器が再度直流に変換し使用している。このように、直流―交流変換及び交流―直流変換をするたびに、変換効率分の損失を生じる。そこで、分散電源が発電する直流電力を交流に変換することなく、直流電力のまま送電して機器で使用することにより、電力変換損失を低減させる提案がなされている。
しかし、直流送電の場合、課題としてコンセントの安全性が挙げられる。交流電力は一定周波数の正弦波であり、電圧、電流がゼロになる瞬間が定期的に存在するため、コンセントの抜き差しにおける安全性は高い。しかし、直流電力は電圧、電流が一定であり、ゼロになる瞬間が存在しないため、コンセントの抜き差し時にアークが発生する等問題が起こることが知られている。
【0003】
このような問題を解決する技術として、特許文献1が存在する。特許文献1は、絶縁トランスの給電側と受電側を分離可能とし、その絶縁トランスの給電側部分をコンセントボディとして構成し、絶縁トランスの受電側をコンセントキャップとして、直流通電時でも安全に着脱可能なコンセントを提供する。また、本発明に類する発明も多数存在し、直流でも安全なコンセントを提供可能である。(以下、本技術を「非接触コンセント技術」と呼ぶ)
また、このような非接触コンセント技術において、絶縁トランスの給電側と受電側が分離可能であるため、その分離面に埃などが付着することがある。絶縁トランスの給電側と受電側の分離面に埃などが付着すると、受電側の出力電圧を検出しその出力電圧を目標値と一致するように駆動回路を制御するフィードバック制御を行う場合、高速、高精度な通信が阻害される可能性がある。
【0004】
上記の問題を解決するため、フィードバック制御を行うことなく出力電圧を安定化する発明として、次のような3つの特許文献がある。
特許文献2は、受電側に接続される機器を何種類か想定し、機器が受電側に接続された場合に、機器固有のID認証信号を出力することにより、給電側がどのような種類の機器が接続されたかを判別し、それに応じてあらかじめ定められたデューティ比で駆動回路が動作する(無制御)ものである。
特許文献3は、各機器がID認証等の通信を全く行うことなく、受電側機器の出力電圧安定化を行うものである。この特許文献3では、受電側からのフィードバック信号により給電側の駆動回路のデューティ比を制御するのではなく、駆動回路のデューティ比を固定(無制御)で動作させている。本構成では、負荷電流が大きくなるほど出力電圧が下がっていくという課題が存在するが、電力伝達経路におけるインダクタンス成分を、キャパシタンス成分で整合することにより電力伝達経路のインピーダンス成分を減らし、受電側電圧を概ね一定付近に保つことが可能となる。
特許文献4は、給電側と受電側が通信を行うことなく出力電圧安定化を行うものであり、給電側絶縁トランスコアに補助巻線を設け、補助巻線の出力電圧情報から受電側機器の出力電圧を推定し、制御するものである。このように制御することにより、受電側との通信を必要とせず受電側機器の出力電圧安定化が可能となる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平3−212134号公報
【特許文献2】特開2008−206233号公報
【特許文献3】特開2001−119930号公報
【特許文献4】米国特許第6972969号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
例えば、各家庭のコンセントが非接触給電に置き換えられた場合を考えると、給電側ソケットは家の壁側に設置され、受電側プラグは電気機器に設置されるため、給電側と受電側の製造者が異なるケースが想定される。そのため、給電側と受電側で通信を成立させるためには、両者の規格を統一化しなければならない。しかし、現実的には両者の規格は統一されていないので、給電側と受電側が通信を行うことは好ましくなく、特許文献2の技術を用いることが困難である。また、特許文献2では、機器のID認証を行った後、駆動回路は定められたデューティ比で動作するため、機器側の負荷量変動に応じてデューティ比を制御することができない。よって軽負荷時にデューティ比を小さくする等の動作ができないため、その場面で電力伝達効率が悪くなるという課題を有する。また、機器のID認証を行うにあたり、機器側は初期に電源(電力)を持っていないケースが少なくなく、コンセントが接続された最初にどのようにして機器側ID認証情報を給電側に伝達するかを解決しなければならない。また、デューティ比制御を行っていないため、直流給電電圧が変動した場合に、その影響を受けて機器の出力電圧も変動してしまう。
【0007】
特許文献3に関しては、ソケットとプラグを装着する場合に若干のズレにより電力伝達経路のインダクタンス成分が変化するため、完全に負荷整合を行うことは困難である。また、経路の電気抵抗を完全に除去することは不可能であり、いずれにしても負荷電流増加に伴う出力電圧低下は避けられない。また、駆動回路は定められたデューティ比で動作するため、機器側の負荷量変動に応じてデューティ比を制御することができない。よって軽負荷時にデューティ比を小さくする等の動作ができないため、その場面で電力伝達効率が悪くなるという課題を有する。また、デューティ比制御を行っていないため、直流給電電圧が変動した場合に、その影響を受けて機器の出力電圧も変動してしまう。
特許文献4に関しては、受電側機器の出力電圧指令値を事前に認知していることを条件とした上での制御方法であり、受電側機器に複数種類接続される可能性があり、かつ機器の目標電圧が機器によって変更されるような場合においては受電側機器の出力電圧制御は不可能である。
【0008】
本発明は、上記課題に鑑みて、受電側機器の出力電圧制御を行うことが可能な非接触給電装置を提供することを目的とする。これにより、高精度で出力電圧制御を可能にするものである。また、給電部の供給電圧が不安定であっても高精度で出力電圧制御を可能にするものである。また、本発明は受電側が存在しない場合も認識可能な非接触給電装置を提供することを目的とする。これにより、受電側が存在しない場合においては、高周波駆動回路の動作を完全停止することで消費電力の削減を可能にするものである。
【課題を解決するための手段】
【0009】
本発明の非接触給電装置は、上記のような課題を解決するものであり、そのため、給電側コアと受電側コアが分割可能で、かつ給電側コアに補助巻線を有する絶縁トランスと、前記給電側コアに巻回された給電側コイルに高周波電力を供給する高周波駆動回路と、前記給電側コアに設けられ、受電側の情報を機構的に認識する機構認識部と、前記補助巻線の出力電圧を検出する補助巻線電圧検出部と、前記補助巻線電圧検出部の検出出力と、機構認識部の認識情報によって、高周波駆動回路の出力制御を行う制御部とを備えることを特徴とする。
【0010】
上記絶縁トランスは、給電側コイルを巻回した給電側コアと、受電側コイルを巻回した受電側コアが分離可能に構成され、給電側コアと受電側コアが電磁結合することにより、給電側コイルから受電側コイルへ交流電力が伝達される。
補助巻線は、給電側コアに巻回され、給電側コアと受電側コアの電磁結合を検出する。また、機構認識部は、受電側機器の動作電圧に対応して形状の異なる機構部を備える。機構認識部は、給電側コアと受電側コアが電磁結合するように接触されたとき、機構部の形状を認識する。この機構認識部によって受電側コイルに接続される負荷の情報を取得し、補助巻線の検出出力と、機構認識部の情報に基づいて制御部が高周波駆動回路の出力制御を行う。例えば、制御部は補助巻線の検出出力と、機構認識部の認識情報に基づいて、高周波駆動回路をデューティ比制御し、出力電圧を制御する。
【発明の効果】
【0011】
本発明により、あらゆる受電側機器が接続される可能性がある非接触コンセントにおいて、受電側機器との通信を行うことなく受電側機器の出力電圧制御を行うことが可能となり、高精度で出力電圧制御が可能となる。また、それは特に直流給電部の供給電圧が不安定であっても高精度で出力電圧を制御可能である。また、本発明では受電側が存在しない場合も認識可能であり、その場合においては高周波駆動回路の動作を完全停止することで消費電力の削減が可能となる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施形態の回路図を示す。
【図2】本発明に使用されるプラブの回路図を示す。
【図3】本発明に使用される別のプラグの回路図を示す。
【発明を実施するための形態】
【0013】
図1は本発明の実施形態の回路図を示す。
直流給電部1は、例えば出力電圧が400Vの直流電源である。このような直流電源部1は太陽光発電装置によって構成される。特に、400Vの直流電源としては、薄膜太陽電池が最適である。このような直流給電部は一例であり、例えば、燃料電池、風力発電機、動力発電機、あるいはその他の直流給電部を使用することが可能である。
【0014】
直流給電部1の出力電力は、非接触給電部2を通して、直流負荷3へ供給される。
上記非接触給電部2は、ソケット21とプラグ31とから構成され、ソケット21とプラグ31は分離可能であり、ソケット21は、例えば建物の壁面などに設置され、プラグ31は電気機器または電気機器から延長されたコード先端に備えられる。
ソケット21は給電側絶縁トランスコア22と、この給電側絶縁トランスコア22に巻き付けられた給電側コイル23と補助巻線24を有する。給電側コイル23は、コの字形給電側絶縁トランスコア22の中央部に巻きつけられる。補助巻線24は一方のコア先端部分に巻き付けられ、3次側補助巻線の電圧を検出し、補助巻線電圧検出部26を介して制御部41へ電圧情報を伝達する。給電側コイル23の巻線数は30ターンであり、補助巻線24は3ターンである。これら各部分を備えるソケット21は、樹脂モールドにより一体化される。
ソケット21は、壁4の平面に対して、同一面となるように、ソケット21の外側面は平面状に形成される。
【0015】
直流電源部1の出力端子11、12は、交流―直流変換部5に接続される。交流―直流変換部5は、スイッチングトランジスタのようなスイッチ素子51と、制御部52から構成され、交流―直流変換部5の出力は、給電側コイル23に供給される。制御部52はスイッチ素子51を商用交流電源周波数より高周波で動作するよう制御する。例えば、数kHz〜150kHzの領域でスイッチング動作させる。
【0016】
上記補助巻線24は3次側補助巻線の電圧を検出し、補助巻線電圧検出部26を介して制御部52へ電圧情報を伝達する。制御部52は、補助巻線24が検出した電圧に基づきスイッチ素子51のスイッチング動作を制御する。このスイッチング動作の制御については後述する。
【0017】
また、ソケット21は、壁面から奥行き方向に延びた複数の機構スイッチ(3つ)a、b、cで構成されるプラグ側機構認識部61を備える。ここでは、機構スイッチは3つ備えるとして説明するが、機構スイッチは、2つであってもよいし、3つ以上であってもよい。プラグ側機構認識部61は、プラグ接続時にプラグに一体形成された凸部の形状により1つないし3つのスイッチが機構的にオンする構成になっている。機構スイッチをオンする個数は、直流負荷の目標電圧に応じた凸部の長さよって変化する。従って、機構スイッチがオンする個数は、直流負荷の目標電圧情報を保持しており、スイッチが1つオンされる場合は、例えば、目標電圧20V、スイッチが2つオンされる場合は、例えば目標電圧50V、スイッチが3つオンされる場合は、例えば目標電圧100Vである。
【0018】
プラグ側負荷として、例えば、20V直流電圧で動作する液晶テレビと、100V直流電圧で動作するエアコンの2種類が存在するとする。
図2は、負荷が液晶テレビである場合のプラグ31aを示し、プラグ接続時にプラグ側機構認識部61のスイッチaを1つオンする長さを持つ凸部32aを有する。このプラグ31aの絶縁トランスコア33aに巻き付けられる受電側コイル34aの巻線数は6ターンである。凸部32a、絶縁トランスコア33a及び受電側コイル34aは、樹脂モールド35aにより一体化される。
受電側コイル34aの出力は、整流回路35a及び平滑回路36aを通して、液晶テレビ3aに供給される。整流回路35aは、例えばダイオード1つにより構成される。平滑回路36aは、コンデンサにより構成される。
【0019】
図3は、負荷がエアコンである場合のプラグ31bを示し、プラグ接続時にプラグ側機構認識部61のスイッチa、b、cを3つオンする長さを持つ凸部32bを有する。このプラグ31bの絶縁トランスコア33bに巻き付けられる受電側コイル34bの巻線数は18ターンである。受電側コイル34bの出力は、整流回路35a及び平滑回路36aを通して、エアコン3bに供給される。
この実施形態では、スイッチング素子のデューティ制御を行うため、1次側コイルと2次側コイルの巻線比は、直流給電部の電圧と直流負荷の電圧比に等しくならない。
【0020】
次に、フライバックコンバータについて説明する。フライバックコンバータは給電側と受電側とで形成され、昇降圧コンバータとして動作する。即ち、スイッチ素子51がオン時にはトランスコア部23とトランスコア部33にエネルギーが蓄積され、スイッチ素子51がオフ時にはトランスコア部23とトランスコア部33に蓄積されたエネルギーを直流負荷へ放出する。なお、この実施形態ではフライバックコンバータを使用したが、他の形式のコンバータも使用可能である。
ここで、本発明の非接触給電装置は、補助巻線24によって検出した直流負荷部の電圧V3と、プラグの凸部形状によって認識した直流負荷電圧目標値とを制御部52によって比較し、両者が一致するようにスイッチ素子51のデューティ制御を行う。
【0021】
次に、補助巻線24による直流負荷電圧検出について説明する。プラグ側機構認識部61によって取得した直流負荷3の動作電圧をV2、プラグ31と直流負荷3との間の配線抵抗による電圧降下および整流回路36、平滑回路37による電圧降下の合計をΔV、補助巻線24の検出電圧をV3、プラグ側絶縁トランスコア33に巻いた受電側コイル34の巻線数をN2、1次側補助巻線24の巻線数をN3とすると、スイッチ素子51がオフ時(トランスコア部に蓄積されたエネルギーを負荷側へ伝達する間)の検出電圧V3は次式(1)にて求められる。
V3=N3/N2×(V2+ΔV) ・・・ (1)
(1)式において、N3及びN2は既知であり、また、ΔVはプラグ側の設計により既
知であるため、検出電圧V3を制御部52で検出することにより、直流負荷3の動作電圧V2が導出可能となる。また検出電圧V3の検出は、スイッチ素子51のオフ時(トランスコア部に蓄積されたエネルギーを負荷側へ伝達する間)に行わなければならないため、制御部52はスイッチ素子51のオフ命令時に検出電圧V3を検出するように制御しなければならない。
【0022】
次に、本発明の実施形態の動作について説明する。
プラグ31が未接続時は、プラグ側機構認識部61のスイッチが1つもオンされていない状態であるので、スイッチ素子51は常にオフである。このため、スイッチ素子51の動作を完全停止することができ、待機電力を削減できる。
【0023】
次に、プラグ31aが接続された場合を説明する。プラグ31aが接続されると、プラグ側機構認識部61のスイッチaが1つオンになる。それにより制御部52は、プラグ側に20Vで給電すべき機器(液晶テレビ)が接続されたことを認識する(直流負荷電圧目標値の認識)。ここで、ΔV=2とすると、N3=3、N2=6、V2の目標値は20であることから、(1)式によりV3は11Vを求めることができる。よって、スイッチ素子51がオフ時(トランスコア部に蓄積されたエネルギーを負荷側へ伝達する間)に毎回導出されるV3が11Vになるように、制御部52はスイッチ素子51のデューティ比を制御する。
【0024】
次に、プラグ31bが接続された場合を説明する。プラグ31bが接続されると、プラグ側機構認識部61のスイッチa、b、cの3つがオンになる。それにより、制御部52は、プラグ側に100Vで給電すべき機器(エアコン)が接続されたことを認識する(直流負荷電圧目標値の認識)。ここで、ΔV=2とすると、N3=3、N2=18、V2の目標値は100であることから、(1)式によりV3は17Vを求めることができる。よって、スイッチ素子51のオフ時(トランスコア部に蓄積されたエネルギーを負荷側へ伝達する間)に毎回導出されるV3が17Vになるように、制御部52はスイッチ素子51のデューティ比を制御する。
【0025】
以上に説明した実施形態では、補助巻線の検出電圧が所定電圧になるように、スイッチ素子のデューティ比制御を行ったが、補助巻線を用いず、給電側コイルの出力電圧を用いてデューティ比制御を行ってもよい。給電側コイルの出力電圧を使用して、デューティ比制御した場合でもスイッチオフ時には(1)式の関係で同様に直流負荷電圧を測定できる。そうすることにより補助巻線を無くすことが可能となるが、上記実施形態のように給電側コイルの巻数が30ターンである場合、補助巻線が3ターンであると、検出電圧は10倍になる。そのため、制御部を高耐圧にしたり、制御部へ検出電圧を入力する前にDC/DCコンバータ等で一旦降圧したりする必要がある。
このような問題をなくすため、給電側コイル23の巻線が30ターンである場合、そのうちの任意の連続した3ターンのみをタップ方式で電圧を抜き出し、その電圧を用いて上記実施形態のようにデューティ比制御を実現してもよい。
【0026】
また、本実施の形態では直流給電部1の電圧を400Vとしたが、例えば直流給電部1の出力電圧が300〜400V等大きく変動しても、制御部52によってスイッチ素子51をデューティ比制御しているので、直流負荷への安定した電圧供給が可能となる。このように、本発明によれば、直流給電部1の出力電圧が大きく変動しても直流負荷への安定した電圧供給が可能となる。
【符号の説明】
【0027】
1 直流給電部
2 非接触給電部
3 負荷
5 交流―直流変換部
21 ソケット
22 給電側コア
23 給電側コイル
24 補助巻線
31 プラグ
32 凸部
33 受電側コア
34 受電側コイル
36 整流回路
37 平滑回路
51 スイッチ素子
52 制御部
61 プラグ側機構認識部

【特許請求の範囲】
【請求項1】
給電側コアと受電側コアが分割可能で、かつ給電側コアに補助巻線を有する絶縁トランスと、
前記給電側コアに巻回された給電側コイルに高周波電力を供給する高周波駆動回路と、
前記給電側コアに設けられ、受電側の情報を機構的に認識する機構認識部と、
前記補助巻線の出力電圧を検出する補助巻線電圧検出部と、
前記補助巻線電圧検出部の検出出力と、機構認識部の認識情報によって、高周波駆動回路の出力制御を行う制御部と
を備えることを特徴とする非接触給電装置。
【請求項2】
前記機構認識部は、受電側出力電圧の目標値情報を取得することを特徴とする請求項1に記載の非接触給電装置。
【請求項3】
前記機構認識部は、受電側プラグの奥行き長さを認識することを特徴とする請求項1または2に記載の非接触給電装置。
【請求項4】
前記受電側コアに巻回されたコイルの巻線数をN2、前記補助巻線の巻線数をN3、前記受電側コイルと負荷との間の配線抵抗を含む電圧降下の合計をΔV、前記負荷の動作電圧V2とすると、前記補助巻線の検出電圧V3を次式にて求め、制御部は検出電圧V3を検出するようにスイッチ素子を制御することを特徴とする請求項1に記載の非接触給電装置。
V3=N3/N2×(V2+ΔV) ・・・ (1)
【請求項5】
前記制御部はスイッチ素子のオフ命令時に検出電圧V3を検出するように制御することを特徴とする請求項4に記載の非接触給電装置。
【請求項6】
前記給電側コイルのうちの任意の一部の巻線からタップ方式で電圧を抜き出して、検出電圧を得ることを特徴とする請求項4に記載の非接触給電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−78266(P2011−78266A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−229593(P2009−229593)
【出願日】平成21年10月1日(2009.10.1)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】