説明

顆粒球コロニー刺激因子(G−CSF)の変異型およびその化学的に抱合されたポリペプチド

特異的な化学抱合用に設計したヒト顆粒球コロニー刺激因子(G−CSF)の変異型、およびがん治療におけるアジュバンドとしての使用されるその化学抱合体を提供する。本発明は、配列番号1で同定されるアミノ酸配列を含むG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換されたG−CSF変異型を提供する。加えて、本発明は、システイン(Cys)残基がG−CSFの位置135のグリシン(Gly)残基と位置136のアラニン(Ala)残基間に挿入されるG−CSF変異型を提供する。さらに、本発明は、ポリエチレングリコール(PEG)のごとき生体適合性重合体がシステイン残基に結合した化学的に抱合された変異型G−CSFを提供し、該重合体は置換または挿入変異によって導入され、生体適合性重合体との抱合によってインビボの生物学的活性を減少することなくインビボの保持時間を増加させ、それにより最終的にインビボの生物学的活性を延長する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抗がん薬物が投与される際に骨髄細胞から好中性顆粒球コロニーの形成を刺激し、骨髄細胞の分化を最終段階に導くことにより白血球減少症を抑制するがん治療におけるアドジュバントとしてのヒト顆粒球コロニー刺激因子(G−CSF)の変異型およびその化学抱合体、特に、G−CSFの特異的な部位のアミノ酸置換または挿入により修飾されたヒト顆粒球コロニー刺激因子(G−CSF)の変異型、およびポリエチレングリコール(PEG)のごとき非タンパク質重合体を有するその化学抱合体に関する。
【背景技術】
【0002】
ヒトの造血活性は最初に骨髄で行われ、様々な種類の血球細胞が多くの複雑な経路を介して産生される。造血活性は特異的な糖タンパク質によって制御され、それらは一般的にコロニー刺激因子(CSF)と称される。CSFはそれらの活性によって同定され、区別されてきた。すわなち、CSFは、血球細胞が半液体培地で培養される際には成長因子として供給され、単球、顆粒球またはその他の血球細胞のクローン形成を刺激する。例えば、顆粒球−CSF(G−CSF)およびマクロファージ−CSF(M−CSF)は、それぞれ好中性顆粒球およびマクロファージコロニーのインビトロ形成を刺激する一方で、インターロイキン−3として知られる多能性CSFはまた、顆粒球、マクロファージ、巨核球、赤血球、またはその類似物のごとき多種類型の血球および組織細胞のクローン増殖を刺激する。
【0003】
特に、G−CSFは、骨髄の外側にある延髄内幹細胞と白血球細胞の分裂と分化を指令するサイトカインの1つであり、好中性の前駆体細胞の分化および/または増殖を刺激し、成熟型好中球を活性化することにより好中球の食作用活性、ならびに化学走化性因子に対する反応性を促進することが知られている((Metcalf, Blood) 67:257 (1986); (Yan, et al., Blood) 84(3): 795-799 (1994); (Bensinger, et al., Blood) 81(11):3158-3163(1993); (Roberts, et al., Expt'l Hematology) 22:1156-1163 (1994); (Neben, et al., Blood) 81(7): 1960-1967 (1993))。
【0004】
悪性腫瘍の治療は、一般的には放射性治療および/または化学治療によって行われ、それらは望ましくない白血球の顕著な減少を生じ、白血球の減少に付随して免疫力が低下する。それゆえ、放射性治療および/または化学治療が長期間にわたって行われる場合には、著しい不利益を引き起こすことになる。G−CSFは、患者の免疫力を活性化することにより効果的にがんを治療することができるアドジュバントとして最初に報告され(Lopez et al., J. Immunol. 131(6):2983-2988, 1983; Platzer et al., J. Exp.Med. 162:1788-1801, 1985)、現在では多種のがんおよび難治性白血病の治療に効果的に用いられている。
【0005】
G−CSFの研究は、初めに、顆粒球−CSF物質が、ヒトがんCHU−2細胞株(Nomura et al, EMBO J. 8(5):871-876, 1986)またはヒト膀胱がん細胞株5637(Welte et al., Proc. Narl. Acad. Sci. USA82:1526-1530, 1985; Strige et al., Blood69(5):1508-1523, 1987)の培養培地に存在することが見出され、顆粒球コロニー刺激因活性を示す18から19kDaの分子量を有するタンパク質が精製された(Nomura et al., EMBO J. 5(5):871-876, 1986)ことで開始した。
【0006】
G−CSFのcDNAは、最初に、L.M. Souzaら(Science, 232 : 61-65(1986))によってヒト膀胱がん細胞株5673から単離され(韓国特許公報番号1998-77885を参照)、次いで、扁平上皮がん細胞株および末梢血マクロファージ(S. Nagata et al., Nature, 319: 415-417 (1986); S. Nagata et al., EMBO J., 5: 575-581 (1986); Y. Komatsu et al., Jpn. J. Cancer Res., 78: 1179-1181 (1987))のcDNAライブラリーからクローン化された。
【0007】
遺伝子組み換え技術の登場に伴い、G−CSFは大腸菌に由来する大量のG−CSFを発現する過程において不溶性封入体として産生され、リフォールディング(refolding)によって活性型G−CSFに変換されることが明らかになった。大腸菌から産生される組み換え体G−CSF(rG−CSF)は、配列番号2(175個のアミノ酸)で同定されるタンパク質、すなわち、配列番号1で同定される天然型G−CSF(174個のアミノ酸)とN末端のメチオニンを含み、約19kDaの分子量を有する。
【0008】
加えて、天然型G−CSFは位置番号133のアミノ酸スレオニン(Thr)にO−糖鎖付加部位を有する一方、大腸菌に由来するrG−CSFは糖鎖付加部位を有さない。しかしながら、糖鎖付加部位の存在もしくは非存在および/またはN末端のメチオニンは、生物学的活性に全く効果がないことが知られている(Souza et al.: Science 232, 1986, 61)。
【0009】
G−CSFのごとき生物学的タンパク質の治療剤が有利に高い選択性および低い毒性を示す一方、インビボの保持時間が短く、不安定である。このような欠点を克服するために、生物学的タンパク質(ポリペプチド)、例えば、G−CSFまたはインターフェロンに対して生体適合性重合体、例えば、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)またはポリビニルピロリドンを抱合する方法が開発されてきた。かかるPEG抱合は、効果的にプロテアーゼを阻害することにより生物学的タンパク質の分解を妨げ、腎臓からの生物学的タンパク質治療剤の早急な分泌を阻止することにより生物学的タンパク質治療剤の安定性および半減期を増加させ、免疫原性を減少させる(Sada et al. J. Fermentation Bioengineering 71: 137-139(1991))。
【0010】
特に、ペグ化タンパク質治療剤の例は、複合免疫不全の治療剤として開発されたアデノシンジアミナーゼのペグ化製剤;肝炎の治療剤として開発されたインターフェロンのペグ化製剤;グルコセレブロシダーゼおよびヘモグロビンのペグ化製剤などを含む。
【0011】
PEGに加えて、エチレングリコール/プロピレングリコール共重合体、カルボキシメチルセルロース、デキシトラン、ポリビニルアルコール、ポリビニルピロリドン、ポリ1,3−ジオキソラン、ポリ−1,3,6−トリオキサン、エチレン/無水マレイン酸共重合体、ポリアミノ酸(ホモ重合体またはランダム共重合体のどちらか一方)が、一般的にタンパク質治療剤の化学的カップリングに用いられる。
【0012】
PEGは、一般式:HO−(−CHCHO−)n−Hを有する重合体化合物であり、高い親水性を有するため、医学的に用いられるタンパク質に結合し、それによって溶解性を高める。タンパク質に結合するPEGは、約1000および約100000の範囲の分子量を有する。PEGの分子量が1000を超えると、PEGは著しく低い毒性を示す。約1000および約6000の範囲の分子量を有するPEGは全身に提示され、腎臓により代謝される。特に、約40000の分子量を有する分岐PEGは血液、肝臓、またはその類似する臓器のごとき器官に提示され、腎臓により代謝される。
【0013】
米国特許番号4179337号は、500から20000ダルトンの分子量を有するポリエチレングリコール(PEG)またはポリプロプロピレングリコール(PPG)にカップルしたポリペプチドを有する生理学的に活性な非免疫原性水溶性ポリペプチド組成物を開示する。ポリペプチドにPEGをカップルするために、活性化PEGが一般的に用いられる。活性化PEGは、PEGの一末端のヒドロキシ基をメチルエーテル基に、他方末端のヒドロキシ基を求電子基に変換し、それにより求電子基を介してポリペプチドにPEGをカップルすることによって調製される。しかしながら、かかる化学カップリング反応が非特異的であることから、タンパク質、すなわち、ポリペプチドの活性化部位へのペグ化は、望ましくないタンパク質活性の減少を生じる。その例としては、RocheとScheringによって開発されたペグ化インターフェロン−αに見られる。RocheとScheringによって開発されたインターフェロン−αのPEG抱合体は、PEG分子がインターフェロン−αに結合している抱合体である。PEG抱合はペグ化インターフェロン−αのインビボ半減期を増加させるが、PEGはインターフェロン−αの様々な部位にカップルし、それにより生物学的活性を大きく減少させる。
【0014】
一般的に用いられる活性化PEGの例は、(a)PEGジクロロトリアジン、(b)PEGトレシレート(tresylate)、(c)PEGサクシニミジルカルボン酸、(d)PEGベンゾトリアゾールカルボン酸、(e)PEGp−ニトロフェニルカルボン酸、(f)PEGトリクロロフェニルカルボン酸、(h)PEGサクシニミジルコハク酸、およびその類似物を含む(M.J. Roberts, M.D. Bentley, J.M. Harris, Chemistry for peptide and protein PEG conjugation, Advanced Drug Delivery Reviews 54 (2002) 459-476)。化学カップリング反応が非特異的であるため、それに結合する複数のPEGを有する多量体、またはその異なる部位に結合するPEGを有する異性体が産生されうる。その多量体および異性体はペグ化生成物の生物学的活性を減少させ、正確な薬学動態学的測定およびPEG抱合の精製工程を困難にする。
【0015】
これらの問題を克服するために、米国特許第5766897号およびWO00/42175は、PEGマレイミドを用いてタンパク質のシステイン(Cys)残基にPEGを選択的にカップルする方法を開示する。ジスルフィド結合に関連しない遊離システインが、システイン特異的なPEG抱合を介してタンパク質にPEGをカップルするのに必須である。5個のシステインを含むG−CSFにおいて、ジスルフィド結合が(天然型G−CSFに基づいた)位置36と42のシステイン間および(天然型G−CSFに基づいた)位置64と74のシステイン間で形成される一方、位置17のシステインは遊離システインである。位置36のシステインと位置42のシステイン間および位置64のシステインと位置74のシステイン間の2つのジスルフィド結合の形成は、天然型G−CSFの構築およびG−CSFの生物学的活性の維持に極めて重要である。G−CSFの生物学的活性が位置17のシステインのセリンへの置換により大きく影響を受けないことから、天然型G−CSFの構築およびG−CSFの生物学的活性は、位置17のシステインのセリンへの置換によって影響されることはない(Winfield et al.: Biochem. J. 256, 1988, 213)。しかしながら、Pigetらは、位置17のシステインが反応条件によっては分子間ジスルフィド結合または分子内ジスルフィド結合を形成し、それによりリフォールディングを妨害し、G−CSFの生物学的活性および安定性を低下させると報告した(Proc. Natl. Acad. Sci. U.S.A., 83, 1986, 7643)。
【0016】
その一方で、G−CSFに存在する唯一の遊離システインであるG−CSF位置17のシステイン(Kyowa Hakko, Tokyo, Japan)のセリンへの置換は、G−CSFの生物学的活性にほとんど変化を引き起こさないと報告されている(韓国特許登録第10−0114369号を参照)。
【0017】
変異型G−CSFを用いて開発された典型的な治療剤の1つは、日本、東京の協和発酵で製造されるNeu−up(登録商標)(成分名:ナルトグラスチム)である。報告によれば、変異型G−CSFは、天然型G−CSFと比較して顕著に高い活性およびより長いインビボ半減期を示した。しかしながら、変異型G−CSFの臨床的有用性はまだ報告されていない。
【0018】
G−CSFとPEG間のN−末端特異的な抱合のペグ化産物はPEG−G−CSFと称され、アムジェン(Amgen)社(Neulasta(登録商標)、ペグフィルグラスチム)により市販された。
【0019】
化学抱合用の変異型G−CSFの開発はマキシジェン(Maxygen)社によって掲示されている。(PCT/DK2001/00011)。しかしながら、掲示公報によると、そこで産生された変異型G−CSFとPEG−G−CSFの特性がほとんど記載されていない。前記変異型は様々な方法で製造されうる。すなわち、変異の位置、変異型(挿入、置換、欠失)、変異の程度(1−2残基〜断片)、およびそれらの組み合わせの選択によると数千から数万の可能な変異型が存在し、各ケースにおける生物学的特性および物理化学的特性は異なるであろう。明らかに、変異型から産生された化学的抱合体は異なるであろう。
【0020】
一般的には、化学結合を形成する変異型の製造はそれらの構造の知見に基づいて設計される。Osslundら(米国特許第5581476号)によると、結合部位は受容可能な残基に基づいて選択され、化学結合に妨害されない結合部位は、G−CSF分子がG−CSF受容体に結合する構造から選択されて標的変異型の数が制限され、それにより、実際に化学結合を形成しやすい変異型を選択した。しかしながら、かかる様式における構造の知見によって変異の位置を選択することは、当業者にとって容易に想到されうるであろう。
【0021】
付加と挿入が変異に関連する場合、付加および挿入される残基数および変異の性質(すなわち、変異する残基型)は、変異型の生物学的活性に著しく影響する。疎水性残基と親水性残基の交換または多数の残基と少数の残基の交換は、変異型の構造に実質的な効果をもたらす。当業者は、かかる構造の効果がG−CSFの生物学的活性および安定性に著しい変化を招くであろうことを容易に推測できる。特に、G−CSFへの遊離システインの誘導は、Freeman MLらにより提示されるように、タンパク質の安定性に多大な効果を発揮する(Destabilization and denaturation of cellular protein by glutathione depletion, Cell Stress Chaperones. 1997 Sep; 2 (3):191-8)。
【発明の開示】
【発明が解決しようとする課題】
【0022】
上記課題を解消するために、G−CSFの特異的な部位にシステインを導入することによりポリエチレングリコール(PEG)のごとき生体適合性重合体との特異的な抱合を促進し、生体適合性重合体との抱合のためにインビボ生物学的活性を減少させることなくインビボ保持時間を増加させ、それによりインビボ生物学的活性を著しく延長する、システインを導入したヒト顆粒球コロニー刺激因子(G−CSF)の変異型、ならびにその生体適合性抱合ポリペプチドを提供することが本発明の目的である。
【課題を解決するための手段】
【0023】
本発明によるG−CSFの変異型およびその化学的抱合体についてより詳細に説明する。
【0024】
本発明では、自然に生じるG−CSFが配列番号1によって発現され、組み換え体G−CSF(rG−CSF)が配列番号2によって発現される。別段の特定がない限り、本発明で用いられる用語G−CSFは、天然型G−CSFと組み換え型G−CSFの両方を含む。
【0025】
本発明の目的を達成するために、配列番号3で同定されるアミノ酸配列を含むヒト顆粒球コロニー刺激因子(G−CSF)の変異型であって、配列番号1で同定されるアミノ酸配列を含むG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換される変異型が提供される。
【0026】
加えて、本発明は、G−CSFの変異型であって、配列番号1で同定されるアミノ酸配列を含むG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換され、置換されたCys残基に非タンパク質化合物が修飾される変異型を提供する。
【0027】
本発明はまた、配列番号4で同定されるアミノ酸配列を含むG−CSFの抱合変異型であって、前記配列番号4は、配列番号1で同定されるG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換されるアミノ酸配列を示し、配列番号1の位置17のシステイン(Cys)残基がセリン(Ser)に置換され、位置133の置換されたシステイン残基に非タンパク質化合物が修飾される変異型を提供する。
【0028】
非タンパク質化合物は、位置133のシステインのチオール基と化学的に抱合される活性化生体適合性重合体であり、好ましくは、マレイミド、ビニルスルホン、ヨードアセトアミドおよびオルトピリジルジスルフィドからなる群から選択される1種類と結合する、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリカルボキシル酸およびポリビニルピロリドンからなる群から選択される1種類の化合物である。より好ましくは、非タンパク質化合物がPEG−マレイミドの生体適合性重合体である。
【0029】
加えて、非タンパク質化合物は、好ましくは約2から約100kDaまでの範囲、より好ましくは約5から約100kDaまでの範囲の分子量を有する。
【0030】
別の態様では、配列番号5で同定されるアミノ酸配列を含むヒト顆粒球コロニー刺激因子(G−CSF)の変異型であって、システイン(Cys)残基が、配列番号1で同定されるアミノ酸配列を有するG−CSFの位置135のグリシン(Gly)残基と位置136のアラニン(Ala)残基間に挿入される変異型が提供される。
【0031】
本発明はまた、配列番号5で同定されるアミノ酸配列を含むG−CSFの抱合された変異型であって、システイン(Cys)が、配列番号1で同定されるアミノ酸配列を有するG−CSFの位置135のグリシン(Gly)残基と位置136のアラニン(Ala)残基間に挿入され、挿入されたシステイン残基に非タンパク質化合物が修飾される変異型を提供する。
【0032】
本発明はまた、配列番号6で同定されるアミノ酸配列を含むG−CSFの抱合された変異型であって、システイン(Cys)残基が、配列番号1で同定されるアミノ酸配列を含むG−CSFの位置135のグリシン(Gly)残基と位置136のアラニン(Ala)間に挿入され、位置17のシステイン残基がセリン(Ser)残基に置換され、挿入された位置136のシステイン(Cys)残基に非タンパク質化合物が修飾される変異型を提供する。
【0033】
非タンパク質化合物は、位置133のシステインのチオール基と化学的に抱合される活性化生体適合性重合体であり、好ましくは、マレイミド、ビニルスルホン、ヨードアセトアミドおよびオルトピリジルジスルフィドからなる群から選択される1種類と結合する、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリカルボン酸およびポリビニルピロリドンからなる群から選択される1種類の化合物である。より好ましくは、非タンパク質化合物はPEG−マレイミドの生体適合性重合体である。
【0034】
加えて、非タンパク質化合物は、好ましくは約2から約100kDaまでの範囲、より好ましくは約5から約60kDaまでの範囲の分子量を有する。
【0035】
本発明の実施に有用なG−CSFの変異型は、哺乳類生物から単離された形態、代替的には、化学合成法、あるいはゲノムもしくはcDNAクローニングまたはDNA合成によって得られた外因性DNA配列の原核生物もしくは真核生物の宿主発現の産物であってよい。適する真核生物の宿主は種々の細菌(例、大腸菌)を含み;適する真核生物の宿主は酵母(例、出芽酵母)および哺乳類細胞(例、チャイニーズハムスター卵母細胞、サル細胞)を含む。用いられる宿主に依存して、G−CSF発現産物は糖鎖付加されてもよく、されなくてもよい。G−CSF発現産物はまた、最初のメチオニンアミノ酸残基を含んでよい。G−CSFの変異型はトランスジェニック哺乳類生物から産生されてもよく、ウシ、ヒツジ、ブタ、ラビット、ヤギ、および様々な哺乳類動物の乳、血液または尿から得られてもよい。
【0036】
導入した遊離システインにPEGを結合させるため、ペグ化が容易に行われ、PEGの結合後でも生物学的活性が維持される位置に遊離システインを有するG−CSFの変異型を調製することが必要である。この目的を達成するため、本発明の発明者らは、置換または挿入によって構造的に可擣性のあるCD−ループ領域に遊離システインを導入し、導入した遊離システインにPEGを抱合して変異型G−CSFを作成した。次いで、彼らは、ペグ化の過程において、生物学的活性および構造的な安定性を維持するPEG−G−CSF抱合体の変異型をスクリーンした。
【0037】
G−CSFのX線回折構造(PDB番号、1bgc)において、CDループ領域は大きな可擣性を有し、G−CSFの構造全体に大きな効果を及ぼさないと考えられている。したがって、本発明者らは、配列番号2で同定されたrG−CSFのCDループ(Gly126−Ser143)に導入されたシステインを有する変異型を調製した。数個のX線結晶構造(PDB番号、1bgc)から見られるように、CDループ領域は、ペグ化によって構造的変化が抑制されうるために、構造的に流動性と可擣性があることが期待された。加えて、本発明者らは、CDループ領域は、化学修飾を行うのに十分外側の部位であるため、重合体物質が容易に受容可能な領域であろうと予測しえた。さらに、CDループ領域は、受容体と重複する領域のない受容体結合構造を有し、それにより化学結合を形成するのに有利である。
【0038】
かかる方法において、本発明の発明者は、CDループ領域(126−Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser−143:配列番号2)に導入されたシステインを有する変異型を調製し、次いで、ペグ化中のPEG−G−CSF変異型をスクリーンした。得られたシステイン導入変異型は、導入位置によって安定性およびPEG抱合の性質において顕著な相違を示した。いくつかの変異型は、PEGの抱合効率が低い一方で、高い安定性および発現と精製効率の高いレベルを示した。すなわち、このことは、立体障害または近隣残基の効果によって変異が生じる微少環境下においてPEGの抱合は容易に起きないことを示唆する。加えて、不安定性を示すいくつかの変異型は、発現および精製することが非常に困難であり、精製段階で沈殿物の形成を生じた。
【0039】
システイン導入変異型G−CSFのPEG抱合により期待される利点の1つは、PEG抱合の正確性である。タンパク質のリシンまたはN−末端アミンに対するPEG抱合は、(a)PEGジクロロトリアジン、(b)PEGトレシレート(tresylate)、(c)PEGサクシニミジルカルボン酸、(d)PEGベンゾトリアゾールカルボン酸、(e)PEGp−ニトロフェニルカルボン酸、(f)PEGトリクロロフェニルカルボン酸、(g)PEGカルボニルイミダゾール、および(h)PEGサクシニミジルコハク酸を介して行われる。上記PEG抱合は非特異的であり、二重以上の等価なPEGがタンパク質のリシンまたはN−末端アミンに抱合される。同一の等価なPEGが抱合されても、領域異性体は、ランダム位置に抱合されて産生される。それゆえ、これらの方法は、産生した抱合体を削除するのに時間と費用がかかる(M.J. Roberts et al., Chemistry for peptide and protein PEG conjugation, Advanced Drug Delivery Reviews 54 (2002), 459-476)。PEG抱合の別の利点は、必要に応じてPEG結合部位を選択することである。PEG結合部位は、リシン、アスパラギン酸、グルタミン酸、アルファ−アミン、カルボキシル、等を含み、広範囲である。したがって、PEG結合部位が活性に影響する構造的に重要な部分である場合、PEG抱合は活性を顕著に減少させてしまうかもしれない。この点から、システイン導入による特異的なペグ化は、生物学的活性を維持するPEG抱合の開発に有利に用いられるだろう。
【0040】
遊離のチオール基は非常に反応性が高いため、容易に酸化される(Rigo A et al., Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation, J Inorg Biochem. 2004, 98(9), 1495-501)。しかしながら、いくつかの場合では、遊離のチオール残基はジスルフィド結合を形成しうる。化学修飾を引き起こすため、タンパク質表面に導入される遊離のチオール基は分子間ジスルフィド結合を形成し、二次的沈降または酸化を生じ、それにより化学修飾が無効となる(Crow MK,et.al., Protein aggregation mediated by cysteine oxidation during the stacking phase of discontinuous buffer SDS-PAGE, Biotechniques 2001, 30(2), 311-6)。かかる望ましくない現象は、導入システイン残基の部位が外側に露出される時に顕著となる。構造の知見のみに基づいた特異的な化学修飾によるシステイン導入部位の選択は、深刻な問題、例えば、遊離システインによるタンパク質の不安定性に直面するかもしれない(Grzegorz Bulaj, Formation of disulfide bonds in proteins and peptides, Biotechnology Advances 23 (2005) 87-92)。
【0041】
本発明で調製されるシステイン導入変異型G−CSFの大半は、低い発現と精製効率を示した。遊離システイン残基を有するタンパク質の非安定性の問題を解決するため、COX G.N.らは、WO00/42175に記載されるように、特に、システイン導入変異型の調製における非安定性の問題の克服のために考え出した方法を用いた。かかる試みられた方法は、遊離システイン導入変異型の内因性の非安定性を緩和するが、実際の製造過程に適用することは非常に困難である。例えば、WO00/42175に記載されるように、タンパク質の細胞内発現は、システイン導入変異型の安定性を達成する場合に有利である。しかし、システイン導入変異型を精製するためには、システイン導入変異型が細胞外空間に分泌されなくてはならない。WO00/42175に記載される発明の原理では、細胞外の安定性が、酸化還元カップリング剤などを用いて酸化還元電位のレベルを一定に保つことにより維持されることとされる。しかし、酸化還元電位を長期間、特に精製段階にわたり一定レベルに保つことは非常に困難である。しかしながら、本発明では、一般的なフォールディングおよび精製段階に適合性のあるシステイン導入変異型が選択的に調製され、本発明によるシステイン導入変異型は、遊離システイン残基を有するとしても構造の安定性を維持することが立証された。本発明で選択されたシステイン導入変異型G−CSFは、封入体として大腸菌で発現され、一般的なリフォールディング技術によって活性な変異型G−CSFに形質転換される。一般的なリフォールディング技術は、尿素またはグアニジウム塩中に封入体を可溶化し、希釈または除去によって尿素またはグアニジウム塩を取り除くことにより、生物学的活性が提供される。タンパク質中のジスルフィド結合の存在または非存在によって、酸化還元カップリング剤(グルタチオンまたはシステインの酸化または還元された形態のどちらか一方)がリフォールディング段階で添加されてもよい(Ronald W et al., Disulphide bond formation in food protein aggregation and gelation, Biotechnology Advances 23 (2005) 75-80)。本発明では、リフォールディングは以下の様式で行われる。すわなち、システイン導入変異型G−CSFの封入体は、好ましくは6−8Mの尿素に溶解され、グルタチオンの存在下で2−4Mの尿素に希釈されてリフォールディングされる。
【0042】
抱合に用いられるPEG重合体は、分子量に特に制限はないが、好ましくは約2kDaから100kDaまでの範囲の分子量であり、より好ましくは約10kDaから60kDaまでの範囲の分子量である。システイン導入G−CSFの導入されたシステイン−チオール残基に、生体適合性重合体としてPEG−マレイミドをカップリングする方法が本発明で用いられる。すなわち、G−CSFが20kDaまたは30kDaのPEG−マレイミドと反応されることにより、20kDaまたは30kDaのPEG−G−CSF抱合体が調製された。
【0043】
システイン導入G−CSFのチオール残基に対する生体適合性重合体のPEG抱合反応において、PEGのG−CSFに対するモル比は、好ましくは2:1から200:1の比であり、反応温度は、好ましくは約0から約60℃の範囲である。反応は、好ましくは約5.0から約7.7のpHで行われ、反応時間は、好ましくは約5分から約24時間の範囲であった。
【0044】
本明細書に記載の方法におけるペグ化を行った後、PEGと変異型G−CSF間の抱合がSDS−PAGE解析によって同定された。抱合された反応物からモノ−PEG−G−CSF抱合体を得るために、モノ−PEG−G−CSF誘導体が陽イオン交換クロマトグラフィーを用いて単離された。陽イオン交換クロマトグラフィーを用いて単離された誘導体をさらにサイズ排除クロマトグラフィーにかけることにより、微量の未反応G−CSFを取り除いたモノ−PEG−G−CSF抱合体のみを単離した。
【0045】
本発明のモノ−PEG−G−CSFの生物学的活性を測定するために、様々な文献に記載される公知の方法(Baldwin et al., Acta Endocrinologica., 119:326, 1988; Clark et al., J. Biol. Chem., 271(36):21969, 1996; and Bozzola et al., J. endocrinol. Invest., 21:768, 1998)が用いられた。測定結果は、本発明によるPEG−G−CSF抱合体がインビボ保持時間を増加させた上で、高レベルの生物学的活性を維持することを示した。
【0046】
N−末端にモノペグ化したフィルグラスチムは、報告によると、フィルグラスチムの68%のインビトロ生物学的活性を有する(米国特許第5824784)。対照的に、本発明によるPEG−G−CSF抱合体の各々は、フィルグラスチムの約2.1ないし約3.5倍のインビトロ生物学的活性(すなわち、250〜300%)であった。加えて、本発明によるPEG−G−CSF抱合体各々のインビトロ半減期は、フィルグラスチムの少なくとも約5倍であった。さらに、好中球活性の生物活性においてもフィルグラスチムより優れていた。前記の理由はおそらく以下の通りである。すなわち、G−CSFの生物活性および安定性は導入システインの選択される位置によって影響されず、選択される位置はG−CSFのペグ化による構造変化が可擣的に抑えられ得る位置であるからである。
【発明の効果】
【0047】
上記に記載されるように、本発明は、G−CSFの特異的な部位にシステインを導入することによってポリエチレングリコール(PEG)のごとき生体適合性重合体との特異的な抱合を促進し、その生体適合性重合体との抱合によりインビボの生物学的活性を減少させることなくインビボ保持時間を増加させ、それによりインビボ生物学的活性を大幅に延長するシステイン導入顆粒球コロニー刺激因子(G−CSF)の変異型、ならびにその生体適合的に抱合されたポリペプチドを提供しうる。加えて、本発明によるPEG−G−CSF抱合体は、4.2−5.1倍長いインビボ半減期という薬物動態プロファイルに照らして、フィルグラスチムより高い膜安定性を示すことから、活性および延長した治療効果を維持する。さらに、好中球活性の効果は、薬物動力学において、フィルグラスチムより優れる。
【0048】
(図面の簡単な説明)
図1は、PEG−G−CSF抱合反応の模式図である。
【0049】
図2は、本発明によるG−CSFとPEG抱合体の精製した変異型のSDS PAGE(ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動)解析の結果を示す。
【0050】
図3は、本発明によるG−CSF−PEG抱合反応物のSDS PAGE解析の結果を示す。
【0051】
図4は、本発明によるG−CSF−PEG抱合体のインビボ薬物動態の測定結果を示す。
【0052】
図5は、G−CSF−PEG抱合体間の好中球活性のインビボ活性を比較する薬物動態の測定結果を示すグラフ表示である。
【発明を実施するための最良の形態】
【0053】
以下に、本発明は、下記の実施例を参照にしてより詳細に記載されている。下記の実施例は例示するためのものであって、本発明を限定することを目的としていない。
【0054】
実施例1〜11.配列番号2で同定されたG−CSFのCDループ(Gly126−Ser143)におけるアミノ酸のシステイン置換による抱合された変異型G−CSFの調製
A.組み換え体G−CSF(rG−CSF)の調製
本発明で用いられる組み換え体G−CSF(rG−CSF)を、本発明の出願人による韓国特許第230579号に記載される株(KFCC−10961)を用いて発現させた。それゆえ、調製した組み換え体G−CSFはフィルグラスチムのごとく大腸菌に由来し、配列番号2で同定したアミノ酸配列を有する。
【0055】
これらの実施例では、組み換え体G−CSFをG−CSFとして用いることとし、調製した組み換え体G−CSFに配列番号2で同定したアミノ酸配列に基づいてアミノ酸番号を割り当てる。
【0056】
B.組み換え体G−CSFのシステイン導入変異型の調製
システイン導入変異型G−CSFを、韓国特許第230579号に記載されるG−CSF発現株(KFCC−10961)から調製した。G−CSF発現株をLB培養培地中で撹拌させながら12時間培養し、次いでキアゲン(Quiagen)社製のプラスミド調製キットを用いてG−CSF発現ベクター(pGW2)を単離した。表1にリストされるシステイン導入遺伝子(30−40塩基対の大きさの相補的ポリヌクレオチド二本鎖)を含む相補的変異プライマーを用いて鋳型として単離したG−CSF発現ベクター(pGW2)上においてポリメラーゼ鎖反応(PCR)を行った。次いで、PCRでクローン化したG−CSF発現ベクターをDPN1酵素で処理して鋳型を取り除き、続いてルビジウムにより処理したMC 1061大腸菌に形質導入した。形質導入株をスクリーニングするために形質導入した宿主をアンピシリン培養培地で培養した。変異と鋳型除去のためのPCR産物の酵素処理を、部位特異的変異キット(ストラタジーン社のQuickChange Site-Directed Mutagenesis Kit)で利用可能なpfuTurboDNAポリメラーゼとDPN1酵素各々を用いて使用説明書に従って行った。変異をプライマー(5’−GCGGATCCTGCCTGA−3’)を用いるPCRによる塩基配列決定の解析により確認した。
【0057】
C.システイン導入変異型G−CSFの発現
システイン導入変異型G−CSF発現株を5μg/ml アンピシリンを添加した5ml LB培養培地で12時間培養し、次いで5μg/ml アンピシリンを添加した500ml LB培地に移して撹拌しながら培養した。この株の吸光度(OD)が0.5に達したら、最終濃度1%(w/v)でアラビノースを各培養培地に添加し、約7時間撹拌しながら培養してシステイン導入変異型G−CSFを過剰発現させた。
【0058】
D.システイン導入変異型G−CSFのリフォールディング
過剰発現させたシステイン導入変異型G−CSF発現株を遠心分離し、Tris 20mMと150mM NaClで懸濁し、懸濁した株をソニケーターを用いて破壊した。破壊した株を遠心分離し、2%(w/v)のデオキシコール酸ナトリウムで洗浄して封入体に回復させた。システイン導入変異型の封入体をpH8.8の7M 尿素、20mM Tris、および100mM NaClに溶解させ、pH8.8の3.3M 尿素、5mM Tris、2mM 還元型グルタチオン、および0.2M 酸化型グルタチオンで10倍希釈した。リフォールディングの段階を4℃で18時間撹拌しながら行った。
【0059】
E−1.ペグ化システイン導入変異型G−CSFの調製
リフォールディングサンプルとしてのシステイン導入変異型G−CSFをHClによる滴定でpH4.5にした後、生じた沈殿物を遠心分離により除去した。活性を有するシステイン導入変異型G−CSFを精製するため、20mM リン酸ナトリウムをpH4.0で平衡化したSP−セファロースファーストフロー(fast flow)カラムに注入し、平衡化緩衝液を用いて洗浄し、塩濃度100〜5000mM NaClの勾配で溶離した。
【0060】
溶離したシステイン導入変異型G−CSFサンプルのpHを6.8に調整し、約20kDaまたは約30kDaの平均分子量を有するメトキシ−PEG−マレイミド(アメリカのシェアウォーター(Shearwater)社)を生じた溶液に添加してシステイン導入変異型G−CSF:メトキシ−PEG−マレイミドのモル比が1:2になるようにした。次いで、ゆっくり撹拌しながら4℃で約18時間反応させた。
【0061】
E−2.ビニルスルホン−ペグ化システイン導入変異型G−CSFの調製
セクションE−1の記載と同一の方法により単離したシステイン導入変異型G−CSFのSP−セファロース流出液サンプルのpHをpH7.5に調整した後、生じた溶液に約20kDaの平均分子量を有するメトキシ−PEG−ビニルスルホンを添加してシステイン導入変異型G−CSF:メトキシ−PEG−マレイミドのモル比が1:5になるようにした。次に、ゆっくり撹拌しながら4℃で約18時間反応させた。
【0062】
E−3.ヨードアセトアミドーペグ化システイン導入変異型G−CSFの調製
セクションE−1の記載と同一の方法により単離したシステイン導入変異型G−CSFのSP−セファロース流出液サンプルのpHをpH7.0に調整した後、生じた溶液に約20kDaの平均分子量を有するメトキシ−PEG−ヨードアセトアミドを添加してシステイン導入変異型G−CSF:メトキシ−PEG−ヨードアセトアミドのモル比が1:2になるようにした。次に、ゆっくり撹拌しながら4℃の暗室で約48時間反応させた。
【0063】
F.モノ−PEG−G−CSF誘導体の融合体の単離
調製したペグ化システイン導入変異型G−CSFのpHをpH4.0に調整した後、生じた生成物を緩衝溶液(20mM 第一NaHPO、pH4.8)で3倍に希釈し、平衡化緩衝液と同一の緩衝液、すなわち20mM 第一NaHPO、pH4.8を含む平衡化緩衝液を用いて平衡化したSP−セファロースファーストフローカラムに注入した。次いで、生じた生成物を緩衝溶液(20mM 第一NaHPO、50mM NaCl、pH4.8)で洗浄し、塩濃度50〜500mM NaClの勾配で溶離した。システイン導入変異型G−CSFから未反応のG−CSFを除去するために、SP−セファロースカラムから溶離したペグ化システイン導入変異型G−CSFにサイズ除外クロマトグラフィーを行った。SP−セファロース流出液を濃縮し、緩衝溶液(20mM 第一NaHPO、100mM NaCl(pH4.0))で平衡化したSuperdex 200(2.5X50cm、ファルマシア(Pharmacia))に注入し、1ml/分の溶離速度において同一の緩衝溶液で溶離した。単離したペグ化システイン導入変異型G−CSFの精製度をSDS−PAGE解析により調べた。
【0064】
表1は、実施例1から11で調製した各ペグ化システイン導入変異型の回収と抱合の実施をパーセンタイルで示す。
(表1)
【0065】
【表1】

【0066】
本発明の表おいて、変異部位の欄に示す表示方法は、例えば、「Ala 128 Cys」は、アミノ酸番号128、すなわちAlaがCysに置換していることを意味し、この表示方法は同一の様式で他の例に適用される。
【0067】
変異型回収は、PEG−変異型抱合に対して行ったリフォールディングと精製を通しての変異型の収率、すなわち、精製変異型G−CSF数の封入体発現変異型G−CSFの全カウント数に対する割合を意味する。
【0068】
PEG抱合の実施は、PEG抱合G−CSF数のPEG抱合変異型G−CSFの合計数に対する割合を意味する。
【0069】
実施例12〜22.CDループ(Gly126−Ser143)におけるG−CSFアミノ酸のシステイン置換および位置18のシステインのセリン置換による抱合された変異型G−CSF抱合体の調製
アミノ酸におけるセリンによるシステイン(Cys)の置換とCDループ(Gly126−Ser143)におけるセリンによる位置18のシステインの置換を包含することにより変異型を調製するために、システイン導入変異をCys 18 Ser置換変異型の株を用いて行い、システイン導入変異を上記に記載と同一の方法で行ったことを除いて、対象の変異型を実施例1から11と同一の方法で調製した。本発明者らは、配列番号2で同定されるrG−CSFのCDループに導入されたシステインを有する変異型を調製した。
【0070】
表2は、パーセンタイル(%)で示した実施例12から22で調製した各ペグ化システイン導入変異型の回収および抱合の実施を示す。
(表2)
【0071】
【表2】

【0072】
(実施例23〜28.G−CSFのCDループ(Gly126−Ser143)におけるシステイン(Cys)の挿入によるG−CSF抱合体の変異型の調製)
CDループ(Gly126−Ser143)へのシステイン(Cys)の挿入によって変異型を調製するために、表3に記載したシステイン導入遺伝子を含む相補的変異プライマー(30−40塩基対の大きさを有する相補的ポリヌクレオチド二本鎖)を用いて鋳型として単離したG−CSF発現ベクター(pGW2)上でポリメラーゼ鎖反応(PCR)を行ったことを除いて、対象の変異型を実施例1から11と同一の方法で調製した。
【0073】
表3は、パーセンタイル(%)で示した実施例23から28で調製した各ペグ化システイン導入変異型の回収および抱合の実施を示す。
(表3)
【0074】
【表3】

【0075】
本発明の表において、変異部位の欄に示す表示方法は、例えば、「130 Cys 131」は、アミノ酸システインが130と131と番号付けられたアミノ酸の間に挿入されることを意味し、この表示方法は同一の様式で他の実施例に適用される。
【0076】
実施例29〜34.G−CSFのCDループ(Gly126−Ser143)におけるシステイン(Cys)の挿入および位置18システインのセリン置換によるG−CSF抱合体の変異型の調製
アミノ酸におけるシステイン(Cys)の挿入およびCDループ(Gly126−Ser143)におけるセリンと位置18システインの置換の両方を包含することにより変異型を調製するために、Cys 18 Serにより置換された変異型株を用いてシステイン導入変異を行い、システイン導入変異を上記の記載と同一の様式で行うことを除いて、実施例23から28と同一の様式で対象の変異型を調製した。
【0077】
表4は、パーセンタイル(%)で示した実施例29から34で調製した各ペグ化システイン導入変異型の回収および抱合の実施を示す。
(表4)
【0078】
【表4】

【0079】
図2は、実施例33(M2_S)で調製した変異型G−CSFの精製PEG抱合体のSDS PAGE解析の結果を示す。実施例33では、Cys 18がSerに置換され、Cysが位置136のGlyと位置137のAlaの間に挿入される。20kDa PEG−マレイミドまたは30kDa PEG−マレイミドに抱合され、精製されることによよって得られた精製PEG抱合体は、単一のバンドを示す。
【0080】
図3は、実施例33(M2_S)で調製した変異型G−CSFの20kDa PEG抱合体のSDS PAGE解析の結果を示す。実施例33では、Cys 18がSerに置換され、Cysが位置136のGlyと位置137のAlaの間に挿入される。
【0081】
図3に示すように、システイン導入変異型G−CSFのPEG−マレイミド抱合反応は導入されるシステインに対して非特異的であるので、モノ−PEG−G−CSFはオリゴマーまたはポリゴマーを形成することなく得られうる。
【0082】
実験的実施例(Experimental Example)1.インビトロ活性の測定
実施例1から34で調製したシステイン導入変異型G−CSF PEG抱合体の生物学的活性を測定し、フィルグラスチン(大腸菌由来のG−CSF)の活性と比較した。マウス骨髄性白血病細胞株NFS−60(ATCC X65622)の細胞増殖を介して活性測定を行った。NFS−60細胞を10%(v/v)FBS(ウシ胎児血清)と5% WEHI−1640細胞株培地溶液を含むRPMI1640培地で培養し、10%(v/v)FBSを含むRPMI培地中で懸濁して約2X10細胞/mlの濃度にした。懸濁した細胞懸濁液各50μlを添加して96ウェルマイクロタイタープレートの各ウェルに約1X10細胞を含むようにした。
【0083】
フィルグラスチムと実施例で調製したシステイン導入変異型のPEG抱合体を、10%(v/v)FBSを含有するRPMI 1640培地で希釈してBCA(ビシンコニン酸)タンパク質アッセイを用いて15ng/mlにした。12段階における10%(v/v)FBSを含むRPMI 1640培地でさらに3倍希釈を行う。調製したサンプルの各100μlを、NFS−60細胞を培養する各ウェルに添加することにより、培養培地のサンプル濃度を、最終サンプル濃度が10000から0.05pg/mlの範囲に達するまで連続的に減少させた。37℃のインキュベーターで48時間インキュベートした後、細胞の増殖をCellTiter96(登録商標)(カタログ番号G3580)(プロメガ(Promega))を用いて確認した。
【0084】
表5は、実施例1から34で調製したペグ化システイン導入変異型の回収および抱合の実施の全データを示す。
【0085】
変異型回収は、封入体に由来する精製変異型G−CSF数の変異型G−CSFの合計数に対する収率を示す。比較的高い回収率を有する変異型は比較的高い安定性を有するシステイン導入変異型であることがわかる。一方で、PEG抱合の実施は、PEGを抱合したG−CSF数のPEG抱合体に結合した変異型G−CSFの合計数に対する割合を示す。より高いPEG実施率は、PEGが容易に導入システインにカップルできることを意味する。NFS60活性は、フィルグラスチムのインビトロ生物学的活性を100%とした時のPEG抱合体のインビトロ生物学的活性を示す。
【0086】
(表5)
【0087】
【表5】

【0088】
【表6】

【0089】
表1に示すように、実施例1、10、11、12、21および22で調製したシステイン導入変異型は容易に発現および精製されなかった。容易に発現および精製されるシステイン導入変異型間では、Cys18がセリンに置換する変異型の生物学的活性は、位置18のシステインを維持する変異型の生物学的活性と大きく変化しなかった。しかしながら、位置18にシステインを維持するシステイン導入変異型はペグ化後の生物学的活性のわずかな減少を示した。この知見は、Parkらの報告(韓国特許出願第10−2003−0017606号)に一致する。PEG抱合が位置18のシステインで行われたと考えられる。
【0090】
スクリーニングの段階後、PEG抱合、すなわちペグ化を生じさせるために、最終的なスクリーニング段階を行うことにより、G−CSFのThr 134がシステインに置換される変異型G−CSF(M1)、CysがGly 136とAla 137の間に挿入される変異型G−CSF(M2)、位置18のCysがSerに置換し、CysがGly 136とAla 137の間に挿入された変異型G−CSF(M2_S)を調べた。ペグ化されたM1、M1_S、M2、およびM2_S変異型を各々、20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sと名付けた。
【0091】
実験的実施例2.薬物動態測定
実験的実施例1で調べた各20kDa PEG抱合システイン導入変異型G−CSF、すなわち、20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sの血清の保持時間を測定した。各群にについて、フィルグラスチム(コントロール)ならびに実施例で調製した20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sを各5匹のSDラット(体重200−250g、6週齢のスプラーグドーリーラットの雄)に対して1kg体重あたり100μgで皮下注射し、注射後0.5、1、2、4、8、12、16、20、24、30、36、48、60、72、96、120、144、168時間後に血液サンプルを採取した。血液サンプルを室温で1時間凝血させ、微量遠心機を用いて10000rpmで5分間遠心分離し、それにより細胞を除去した。モノクローナル抗体を用いる酵素結合免疫吸着法(ELISA)により血しょうG−CSFの量を測定した。
【0092】
表6は、テスト群とプルーフ群の血しょう半減期を示す。
(表6)
【0093】
【表7】

【0094】
図4は、本発明によるG−CSF−PEG抱合体のインビトロ薬物動態の測定結果を示す。
【0095】
表6および図4に関して、本発明の20kDaはフィルグラスチムより高い血しょう安定性、すなわち、フィルグラスチムより4.2−5.1倍長いインビボ半減期を示し、このことは、本発明によるシステイン導入変異型G−CSFの20kDa PEG抱合体がフィルグラスチムより長い期間インビボ活性を維持し、それにより治療効果を改善することを示唆する。
【0096】
実験的実施例3.薬物の薬力学測定
実験的実施例1で決定した20kDa PEG抱合システイン導入変異型G−CSF各々、すなわち、20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sの好中球活性を測定した。各群について、フィルグラスチム(コントロール)ならびに実施例で調製した20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sを各5匹のSDラット(体重200−250g、6週齢のスプラーグドーリーラットの雄)に対して1kg体重あたり100μgで皮下注射し、血液サンプルを経時的に目から採血することによって採取した。次いで、血漿中の好中球数をカウントした。
【0097】
図5は、G−CSF−PEG抱合体間の好中球のインビボ活性を比較する薬物動態の測定結果を表す図である。
【0098】
図5で示されるように、20kDa PEG抱合システイン導入変異型G−CSF各々、すなわち、20kDa PEG−M1、20kDa PEG_M1_S、20kDa PEG−M2、および20kDa PEG−M2_Sの好中球活性はフィルグラスチムより顕著に高かった。
【産業上の利用可能性】
【0099】
上記に記載するように、本発明は、抗がん薬物が投与される際に、骨髄細胞からの好中球の顆粒球コロニーの形成を刺激し、骨髄細胞の最終段階への分化を誘導するための治療におけるアジュバンドとしてのヒト顆粒球コロニー刺激因子(G−CSF)の変異型を対象とする。したがって、本発明は、医療目的および病気の治療に対して有利に利用可能である。
【図面の簡単な説明】
【0100】
【図1】PEG−G−CSF抱合反応の模式図である。
【図2】本発明によるG−CSFとPEG抱合体の精製した変異型のSDS PAGE(ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動)解析の結果を示す。
【図3】本発明によるG−CSF−PEG抱合反応物のSDS PAGE解析の結果を示す。
【図4】本発明によるG−CSF−PEG抱合体のインビボ薬物動態の測定結果を示す。
【図5】G−CSF−PEG抱合体間の好中球活性のインビボ活性を比較する薬物動態測定の結果を示すグラフ表示である。

【特許請求の範囲】
【請求項1】
配列番号3で同定されるアミノ酸配列を含むヒト顆粒球コロニー刺激因子(G−CSF)の変異型であって、配列番号1で同定されるアミノ酸配列を有するG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換された変異型。
【請求項2】
配列番号3で同定されるアミノ酸配列を含むヒトG−CSFの抱合された変異型であって、配列番号1で同定されるアミノ酸配列を含むG−CSFの位置133のスレオニン(Thr)残基がシステイン(Cys)残基に置換され、前記置換Cys残基が非タンパク質化合物に結合している変異型。
【請求項3】
前記変異型が、配列番号4で同定されるアミノ酸配列を含むタンパク質であって、位置17のシステイン(Cys)残基がセリン(Ser)残基に置換された、請求項2の抱合された変異型。
【請求項4】
非タンパク質化合物が、マレイミド、ビニルスルホン、ヨードアセトアミドおよびオルトピリジルジスルフィドを含む群から選択される1種類と結合する、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリカルボキシル酸およびポリビニルピロリドンを含む群から選択される1種類の化合物である、請求項2または3の抱合された変異型。
【請求項5】
非タンパク質化合物が、約2から約100kDaまでの範囲の分子量であり、請求項2または3の抱合された変異型。
【請求項6】
PEGが約5ないし約100kDaの範囲の分子量を有する、請求項4の抱合された変異型。
【請求項7】
配列番号5に含まれるアミノ酸配列を含むヒト顆粒球コロニー刺激因子(G−CSF)の変異型であって、システイン(Cys)残基が、配列番号1に含まれるG−CSFの位置135のグリシン(Gly)残基と位置136のアラニン(Ala)残基の間に挿入される変異型。
【請求項8】
配列番号5に含まれるアミノ酸配列を含むヒト顆粒球コロニー刺激因子(G−CSF)の抱合された変異型であって、システイン(Cys)残基が配列番号1に含まれるアミノ酸配列を含むG−CSFの位置135のグリシン(Gly)と位置136のアラニン(Ala)残基の間に挿入され、非タンパク質化合物が挿入されたシステイン残基に結合されている変異型。
【請求項9】
変異型が、位置17のシステイン(Cys)残基がセリン(Ser)残基に置換された配列番号6に含まれるアミノ酸配列を含むタンパク質である、請求項8の抱合された変異型。
【請求項10】
非タンパク質化合物が、マレイミド、ビニルスルホン、ヨードアセトアミドおよびオルトピリジルジスルフィドを含む群から選択される1種類と結合している、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリカルボキシル酸およびポリビニルピロリドンを含む群から選択される1種類の化合物である、請求項8または9の抱合された変異型。
【請求項11】
非タンパク質化合物が、約2から約100kDaまでの範囲の分子量を有する、請求項8または9の抱合された変異型。
【請求項12】
PEGが約5から約100kDaまでの範囲の分子量を有する、請求項10の抱合された変異型。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2009−501789(P2009−501789A)
【公表日】平成21年1月22日(2009.1.22)
【国際特許分類】
【出願番号】特願2008−522703(P2008−522703)
【出願日】平成18年7月19日(2006.7.19)
【国際出願番号】PCT/KR2006/002841
【国際公開番号】WO2007/011166
【国際公開日】平成19年1月25日(2007.1.25)
【出願人】(504385351)モガム バイオテクノロジー リサーチ インスティチュート (10)
【Fターム(参考)】