説明

Fターム[2G016CB11]の内容

遮断器と発電機・電動機と電池等の試験 (23,023) | 電池の測定項目 (6,284) | 電圧、電流特性 (2,126) | 開放電圧 (503)

Fターム[2G016CB11]に分類される特許

121 - 140 / 503


【課題】 車両に搭載されるエンジンに始動用電力を供給するバッテリ等の残容量を、誤差による精度の低下を抑制して、精度よく検出することを課題とする。
【解決手段】 バッテリの端子電圧と拡散分極及び成層化分極の影響とに基づいて残容量を検出する第1残容量検出工程と、バッテリに出入りする充放電電流を積算することにより残容量を検出する第2残容量検出工程と、前記第1残容量検出工程で検出した残容量の誤差と前記第2残容量検出工程で検出した残容量の誤差を演算するする誤差演算工程と、該演算工程で演算した誤差を比較し、誤差が小さい方の残容量検出工程で検出した残容量を前記バッテリの残容量と判定する残容量判定工程とを備える。 (もっと読む)


【課題】組電池の劣化を監視可能とし、組電池の単位電池間の端子電圧を均一化して規定範囲内に収める。
【解決手段】通常時には、常時充電状態にあり、かつ、複数の単位電池を有する組電池における各単位電池UXの端子電圧を測定してその内部抵抗を測定する蓄電状態制御装置において、内部抵抗測定回路は、測定対象の単位電池UXからの電力供給を受けて動作し、電圧測定回路により測定した単位電池UXの端子電圧が規定電圧範囲に収まるように、単位電池UXに内部抵抗測定回路を接続して電力消費を行わせる単位時間当たりの測定頻度を変更する制御部を備える。 (もっと読む)


【課題】セルを電源として作動する監視手段における消費量を正確に演算することができる電池制御装置を提供する。
【解決手段】組電池3に含まれる電池に接続され、電池を動力源として作動し、電池の状態を監視する監視手段と、電池の電圧に応じて監視手段により消費される、電池の第1の消費量を、電池の電圧を用いて推定する推定手段とを備える。 (もっと読む)


【課題】特定の電池以外の電池に対して充放電制御を行う。
【解決手段】車両の減速時に回転電機により回生して電池を充電する電池制御システムにおいて、電池の電圧および電流を計測する計測手段と、電池の電圧および電流に基づいて電池の開放電圧を算出する電圧算出手段(ステップ20)と、電池の開放電圧と充電時の電池の電圧および電流に基づいて電池の充電時内部抵抗を算出する抵抗算出手段(ステップ21)と、回転電機の供給可能な電流と電圧および電池の開放電圧に基づいて目標充電時内部抵抗を設定する設定手段(ステップ23)と、充電時内部抵抗と目標充電時内部抵抗との比較結果に基づいて、回生充電後の電池の充放電を制御する制御手段(ステップ24〜29)とを備える。 (もっと読む)


【課題】 エンジン及びモータと、二次電池と、外部電源を用いて二次電池を外部充電する外部充電手段と、を備える車両における、外部充電手段を制御して、二次電池の劣化を精度良く検知できる電池制御システムを提供する。このような電池制御システムを備える車両を提供する。
【解決手段】 電池制御システム10は、車体90と、エンジン50と、モータ41,42と、二次電池21Bと、外部充電手段M1と、を備える車両1における、外部充電手段を制御し、外部充電手段による二次電池の充電中に、二次電池の劣化を検知する劣化検知手段S20を備える。 (もっと読む)


【課題】 エンジン及びモータと、二次電池と、外部電源を用いて二次電池を外部充電する外部充電手段と、を備える車両における、外部充電手段を制御して、二次電池の劣化を精度良く検知できる電池制御システムを提供する。このような電池制御システムを備える車両を提供する。
【解決手段】 電池制御システム10は、車体90と、エンジン50と、モータ41,42と、二次電池21Bと、外部充電手段M1と、を備える車両1における、外部充電手段を制御し、外部充電手段による二次電池の充電中に、二次電池の劣化を検知する劣化検知手段S20を備える。 (もっと読む)


【課題】より簡易な構成で従来検出困難であったバッテリパックの異常原因を検出して、バッテリパックの安全性をより一層向上させる。
【解決手段】バッテリパック20を、充放電可能な電池30と、無負荷に相当する状態における電池30の電圧降下に関する情報を取得して記憶するマイクロコンピュータ24とを備える構成とする。そして、マイクロコンピュータ24で取得された無負荷に相当する状態における電池30の電圧降下に関する情報に基づいてバッテリパック20の異常判定を行う。 (もっと読む)


【課題】二次電池の充電に要する時間を極力短縮することができる充電装置及び充電方法を提供する。
【解決手段】充電装置1は、二次電池Bに接続可能に構成され、二次電池Bに接続された状態で二次電池からの電力が入力される電力回路(スイッチ13及び抵抗14)と、二次電池Bの充電中に、上記の電力回路を所定時間だけ二次電池Bに接続して二次電池Bに充電された電力を電力回路に放電させる制御を行う充電制御装置18とを備える。 (もっと読む)


【課題】劣化度を推定して充放電制御を行うことにより蓄電デバイスを適切な部分充電状態に維持することが可能な充放電制御方法及び充放電制御装置を提供する。
【解決手段】状態検知要求信号が状態検知部103に入力されると(ステップS1)、ステップS3で状態検知モード1の選択条件が成立しているかが判定される。状態検知モード1の選択条件が成立していると、ステップS4で蓄電池11に対し状態検知前充電を行い、ステップS5で蓄電池11の状態検知が行われる。これに対し、状態検知モード1の選択条件が成立していないと判定されると、ステップS9で状態検知モード2の状態検知が行われる。ステップS11では、状態検知の結果をもとに蓄電池11を所定の部分充電状態に移行させるのに必要な充放電制御指令値が作成される。 (もっと読む)


【課題】電動工具用装置において、バッテリの内部温度を推定して、その内部温度が許容温度範囲の上限である限界温度に達するのを防止する。
【解決手段】バッテリパック内のMCUは、バッテリからの放電時に、サーミスタにより検出されるバッテリ温度(表面温度)の温度上昇量「Tnow−Tini」を、バッテリの内部温度を表す推定値として算出し、温度上昇量が、判定値「△T−x」以上になると、放電電流等の制限処理で用いられる閾値を補正して、放電制御を制限し、温度上昇量が温度上昇許容基本値△T以上になると、放電を停止させる(S220〜S250)。また、温度上昇許容基本値△Tについては、サーミスタにより検出された表面温度、充電履歴、放電履歴、バッテリの開放電圧、残容量に基づき、表面温度が高い場合やバッテリ状態が悪い場合ほど値△Tが小さくなるよう、マイナス補正する(S180〜S210)。 (もっと読む)


【課題】複数のバッテリスタックが設けられた蓄電システムにおいて、各バッテリスタックの残存容量の違いを考慮した全体的な残存容量を算出する。
【解決手段】第1バッテリスタックの第1残存容量S1と、第2バッテリスタックの第2残存容量S2との和が大きい場合は、大きい方の残存容量が優先残存容量SMAINとして選択される。第1バッテリスタックの第1残存容量S1と、第2バッテリスタックの第2残存容量S2との和が小さい場合は、小さい方の残存容量が優先残存容量SMAINとして選択される。優先残存容量SMAINに応じて、第1係数W1および第2係数W2が設定される。第2係数W2は、第1係数W1よりも小さくなるように設定される。第1係数W1と優先残存容量SMAINとの積を、第2係数W2と他方の残存容量との積に加えることにより、蓄電システムの残存容量STOTALが算出される。 (もっと読む)


【課題】電池モジュールの状態検出方法を提供する。
【解決手段】電池モジュール2は電池ユニット21、22、23を含み、負荷3に接続される。電池モジュール2の状態検出方法は、以下の工程を含む。まず、電池ユニット21、22、23の負荷時電圧値及び負荷3を流れる負荷電流値を計測する。次に、電池ユニット21、22、23の瞬間抵抗値を電池ユニット21、22、23の無負荷電圧値、負荷時電圧値、及び負荷電流値に基づいて計算する。最後に、電池ユニット21、22、23の動作状態を瞬間抵抗、及び内部抵抗と放電時間との関係に基づいて取得する。本発明により、使用者は電池モジュール2の残存エネルギーを正確にリアルタイムで計測し、電池モジュール2を過度に放電することにより発生する電気による危険を防止できる。 (もっと読む)


【課題】充電および放電を行いつつ複数のバッテリセルの残存容量の差を簡単な構成および低コストで検出するバッテリモジュール状態検出装置、バッテリモジュール状態制御装置、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置を提供する。
【解決手段】バッテリモジュール10を構成するバッテリセル10a〜10cは、直列に接続される。バッテリモジュール状態検出装置200において、電流測定部210により電源線501を流れる電流が測定される。電流値に基づいて電流積算部273により電流積算値が算出される。電圧比較ユニット290によりバッテリセル10a〜10cと中間電圧Vth_Mとが比較される。各バッテリセル10a〜10cの電圧と中間電圧Vth_Mとが等しくなった時点で電流積算値が求められ、それぞれ求められた電流積算値の差がバッテリモジュール状態として算出される。 (もっと読む)


【課題】二次電池の使用条件が異なっても、通電電流量の2分の1乗則に基づいて二次電池の容量劣化を一義的に推定できるようにする。
【解決手段】二次電池の容量劣化に影響する複数の使用条件のそれぞれに対応して、二次電池に流れる電流量を所定の期間に亘って積算し、単一の使用条件のときの二次電池の劣化速度に対する複数の使用条件における二次電池の劣化係数を算出し、積算した電流積算値を劣化係数によって補正し、単一の使用条件における電流積算値に換算し、換算した電流積算値と単一の使用条件における劣化速度とによって二次電池の容量劣化を推定する。 (もっと読む)


【課題】リチウムイオン二次電池の実際の開放電圧特性に基づいて、劣化状態を判定する装置を提供する。
【解決手段】リチウムイオン二次電池の容量対開放電圧特性を測定する測定部と開放電圧特性を特定するためのパラメータを設定可能であり、測定部によって測定された開放電圧特性と略一致する開放電圧特性を特定するパラメータを用いて摩耗およびリチウム析出による劣化状態を判定する判定部とを有する。パラメータは下記式(I)及び(II)で示され、摩耗による劣化に応じて変化する単極の容量維持率と、下記式(III)で示され、摩耗およびリチウム析出による劣化に応じて変化する電池容量の変動量とを含む。(I)正極の容量維持率=劣化状態の正極の容量/初期状態の正極の容量;(II)負極の容量維持率=劣化状態の負極の容量/初期状態の負極の容量;(III)電池容量の変動量=劣化状態の負極の容量×正極組成軸に対する負極組成軸のずれ量。 (もっと読む)


【課題】 電池容量を高精度に算出できる電池容量算出装置および電池容量算出方法を提供する。
【解決手段】 充電器によるバッテリ6の充電期間内における所定電流積算期間のセンサ電流Iの積算値に基づいて電流積算充電率変化量ΔSOC-iを算出し、バッテリ6の状態量に基づいて所定電流積算期間の開始時および終了時の開放電圧OCVを推定し、推定した開放電圧OCVから所定電流積算期間の開始時および終了時の充電率SOC-v1,SOC-v2を求め、両者の差分から開放電圧充電率変化量ΔSOC-vを算出し、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、バッテリ6の初期バッテリ容量Ahに容量維持率SOHを乗算してバッテリ6の電池容量Chを算出する。 (もっと読む)


【課題】電池のシミュレーションモデル基づいてSOHを算出すること。
【解決手段】シミュレーションモデルに含まれる複数のパラメータを格納する格納手段(RAM10c)と、電池の端子電圧および放電電流を所定の周期で測定する測定手段(CPU10a)と、測定手段による測定結果に基づいて、パラメータに対して適応学習を実行する適応学習手段(CPU10a)と、電池の内部抵抗を実測する実測手段(I/F10d)と、実測手段によって得られた内部抵抗の実測値Rmeasと、適応学習手段によって得られたパラメータの値および/またはパラメータの補正値に基づいて電池の劣化状態を示すSOHを推定する推定手段(CPU10a)と、を有する。 (もっと読む)


【課題】二次電池の使用状態に合わせた適切なSOC推定方式を適用して、その推定精度を向上させる。
【解決手段】バッテリ電流Ibが、バッテリ温度Tbに応じて設定される制限電流|Ijd|以下であり、かつバッテリ温度Tbに応じて設定される一定時間以上継続して流れている場合に、二次電池10を安定状態であると判定する(S100)。二次電池10が安定状態のときには、バッテリ電圧Vb=開放電圧OCVとみなして、開放電圧−SOC特性に基づいてSOC推定を行なう(S110)。二次電池の内部抵抗の温度依存性に対応させて制限電流|Ijd|を設定することによって、内部抵抗と制限電流|Ijd|との積をほぼ一定値(一定電圧)とすることにより、安定状態では、バッテリ電圧Vbを開放電圧OCVとみなしてSOC推定を行なっても推定誤差を一定範囲内にできる。 (もっと読む)


【課題】簡易な装置構成で小型化が容易であり、実際に放電試験を行った場合と同様の良否判定を行える鉛蓄電池用バッテリテスタを提供する。
【解決手段】バッテリBTに矩形波パルス放電を行わせてコンダクタンスを測定し、当該バッテリBTの劣化状態を判定する鉛蓄電池用バッテリテスタ10において、バッテリBTの開回路電圧を測定する開回路電圧測定回路を備え、コンダクタンスの測定により良品と判断された後に、前記矩形波パルス放電後の開回路電圧と、前記矩形波パルス放電を予め実験的に定めた所定回数以内行わせた後の開回路電圧との差が、予め定めた良否判定電圧差以下である場合に、当該鉛蓄電池を良品であると判定する。 (もっと読む)


【課題】電流センサの検出精度を適切に向上させる。
【解決手段】電流センサの誤差補正方法は、充電器1による充電の実行中の第1期間において、OFF状態で電流センサ19の誤差を補正し、該補正後の電流センサ出力Iを用いて二次電池11の満充電容量CAPAchgを算出する工程と、第1期間以外の期間であって、少なくとも電動車両10の走行時を含む第2期間において、電流センサ出力Iを用いて二次電池11の満充電容量CAPAdrvを算出する工程と、満充電容量CAPAchgと満充電容量CAPAdrvとを比較した結果を用いて電流センサ19の誤差を補正する工程とを含む。 (もっと読む)


121 - 140 / 503