説明

Fターム[2G054EB10]の内容

化学反応による材料の光学的調査・分析 (27,357) | 分析形態 (1,011) | レート分析、反応速度分析、変化率検出 (31)

Fターム[2G054EB10]に分類される特許

21 - 31 / 31


【課題】金属酸化膜と触媒金属膜の多層構造から構成される光学式ガスセンサにおいて、従来の単体触媒金属膜の検知応答性の遅さを改善すること。
【解決手段】従来の単体触媒金属膜をパラジュウムPdとルテニュウムRu、パラジュウムPdと白金Pt、あるいはパラジュウムPdとロジュウムRhの組み合わせから成る合金または2層構造金属触媒膜とする。これにより、検知ガス曝露時間に対する光学特性変化がほぼ一次関数で表現される効果を利用し、単位時間当たりの光学変化を検知に利用する。これにより、従来吸着平衡に達する迄の時間(約200秒)が必要であった検知応答性を0.1〜1秒以内の高速検知に改善可能となる。 (もっと読む)


マイクロ波アシスト化学反応を実施する機器と関連する方法が開示される。機器は、マイクロ波システム化学反応を実施するためのマイクロ波キャビティ、好ましくは閉じたマイクロ波キャビティと、マイクロ波放射をキャビティ内部で、容器とその内容物とに印加するソースとを含む。機器は、容器とその内容物とを照明する照明光源を含むとともに、容器とその内容物とを視覚的に観察する手段と、容器とその内容物の温度をモニタリングする赤外線検出器と、照明光源が赤外線検出器を飽和させるのを防ぎ、これにより視覚的観察と赤外線モニタリングとを可能にする手段とを含む。
(もっと読む)


【課題】 蒸気の自己分解伝播性を直接観察でき、自然発火性を有する蒸気でも安全に評価でき、自己分解伝播速度を精度良く求めることができる評価装置および評価方法を提供する。
【解決手段】 本発明の方法は、試料の導入口とその栓および試料の導入と内部ガスの排気を行う配管とそれを開閉するバルブ、および分解エネルギー供給手段を有する試料容器内に、試料の導入口または試料の導入および内部ガスの排気を行う配管から試料を導入し、試料容器を覗き窓を有する恒温槽内の覗き窓から見える位置に配置し、分解エネルギー供給手段からエネルギーを付与し、該覗き窓から自己分解伝播の発生の有無を観察することを特徴とし、更に、試料容器として透明ガラス容器を使用し、恒温槽の覗き窓の外部にビデオカメラを配置して、自己分解伝播する分解火炎を撮影し、その撮像における分解火炎の移動距離とその時間から自己分解伝播速度を求めることを特徴とする。 (もっと読む)


【課題】 既存の物の表面に設けられた光触媒層に含まれる光触媒の分解活性の評価を行うための技術を提供する。
【解決手段】 光触媒層に、光触媒の分解活性によって分解される色素を含む試料を塗布し、その色素の分解に基づくその試料の色彩の変化に基づいて、光触媒層に含まれる光触媒の分解活性を評価する。試料が含む色素は、フッ素樹脂とアナターゼ型酸化チタン光触媒粉が重量比で3:1になるようにされた光触媒層に試料を塗布して、2500μW/cmの紫外線を1時間照射した場合における紫外線照射前後の色差ΔEの変化率が20%以上となるように脱色されるものとする。 (もっと読む)


薄膜サンプルなどの複数のサンプルに対して、化学反応を同時に行い、分子輸送ダイナミクスを測定するための方法および装置。本発明の装置は、多数のサンプルをハウジング内のサンプルホルダの個別のサンプル保持位置に収容し、それらの保持位置を互いから化学的に隔離された状態に維持することができる。コンピュータ化された制御装置の制御下で、装置は、各サンプル保持位置を、分配マニホルドに接続された1つもしくはそれ以上の口に隣接して位置決めしてもよいように、サンプルホルダを位置決めする。装置は、各サンプルを液体相または気体相の1つもしくはそれ以上の流体に曝し、それにより、制御された温度および圧力の条件下で、化学反応を行い、および/または分子輸送ダイナミクスを測定する。サンプル保持位置を、ハウジング内の分析測定ステーション内に位置決めしてもよく、それにより、得られた化学化合物または混合物を特徴づけてもよい。
(もっと読む)


【課題】 被検査溶液を展開させて吸光度測定を行なう際に、展開速度の相違により測定値に誤差が含まれ、展開完了後においては、吸光度値が安定しないことによる誤差が含まれる。
【解決手段】 被検査溶液を点着された試験片7に展開された被検査溶液を固定する試薬固定化部11を設け、この試薬固定化部11に分析光を照射し被検査溶液と分析光との反応を光学的に分析する装置において、第1のフォトダイオード4と第2のフォトダイオード5とで受光した反射光から、被検査溶液が試験片7に展開される展開速度を検出後、この展開速度に基づいて被検査溶液と分析光との反応を光学的に分析する分析光の照射開始時間を設定する。 (もっと読む)


本発明は液体試料中の分析対象物質をルミネセンスによって検出するためのシステムに関し、そのシステムは分析対象物質に特異的な物質と比較参照物質を含む担体を包含する。さらに、本発明は前記システムを使って液体試料中の分析対象物質を検出する方法に関する。本発明によるシステムは、分析対象物質の検出以外に、分析試料量の決定、分析対象物質量の決定、および/または検出用担体の使用準備状態の確認にも適する。
(もっと読む)


圧縮ポンプ2と、第1の空気制御部4と、二酸化炭素の除去装置6と、フィルタ8と、第1の冷却装置10と、少なくとも2つ以上の堆肥槽12と、少なくとも2つ以上の第2の冷却装置10’と、少なくとも2つ以上の第2の空気制御部14と、少なくとも2つ以上の非分散赤外線のガス分析機16と、捕集部18と、前記第1の空気制御部4、第2の空気制御部14、堆肥槽12に連設されるコンピュータ34とを含む、生分解度の測定装置を開示する。本発明によれば、二酸化炭素の量を非分散赤外線の分光分析法を利用して速やかに定量的に測定し、前記測定した結果が再現性を表すようにし、生分解性の高分子を実験して開発する過程において適切なデータを迅速に供給することができる効果がある。
(もっと読む)


【課題】本発明は、蛍光分析によって光触媒活性の表面における有機染料の光触媒分解を定量化する方法に関する。
【解決手段】本発明の目的を達成するために、検査される光触媒及び光触媒非活性参照物は、有機染料によってコーティングされる。そして、このサンプルは、強度及びスペクトル分布既知の紫外線又は可視光線に照射される。蛍光強度は、照射の前後及び機械の構成によって照射中にも、蛍光スキャナ、チップリーダー又は蛍光顕微鏡によって検出される。染料にもコーティングされ、光触媒非活性参照物(例えば、石英)に比べて、染料にコーティングされた光触媒のその後の蛍光減少が、検査されているサンプルの光触媒効率の量的な測定値としてみなされる。 (もっと読む)


分析物の濃度、特にグルコースの濃度を生体内または生体外で感知する装置が開示される。好ましくは光ファイバである光導管は、その近位端のところに光学系を有する。感知要素は、光導管の遠位端に付着され、少なくとも1種の標的分析物に結合するように適合された少なくとも1種の結合タンパク質を含む。この感知要素はさらに、分析物の濃度の変化とともに発光が変化する少なくとも1種のレポータ基を含む。任意選択で、感知要素は、分析物の濃度の変化によって実質的に変化しない発光特性を有する基準基を含む。

(もっと読む)


本発明は蛍光を用いて、相互作用、詳細にはペプチド対ペプチド相互作用を検出する方法に関する。蛍光タンパク質断片、対象のペプチド、ならびに、対象のペプチドと蛍光タンパク質断片のと間に挿入された、異なる長さのリンカー部分をコードする核酸を、ペプチド相互作用システムおよびそれを使用する方法と共に提供する。 (もっと読む)


21 - 31 / 31