説明

Fターム[2G088GG18]の内容

放射線の測定 (34,480) | 測定手段 (6,504) | シンチレーション検出器 (4,418) | シンチレーション光検出 (3,084) | 光電子増倍管(PMT) (435)

Fターム[2G088GG18]に分類される特許

101 - 120 / 435


【課題】TOF―PETにおける製造コストと画質との最適なバランスの実現。
【解決手段】TOF―PET装置は、中心軸に沿って配列された複数の検出器リングを有する。複数の検出器リングの各々は、中心軸の周りの略円周上に配列され、被検体からの対消滅ガンマ線に応答してシンチレーション光を発生する複数のシンチレータと、発生されたシンチレーション光に応じた電気信号を発生する複数の光電子増倍管と、を有する。複数のシンチレータ各々の略円周の径方向に沿う長さは、シンチレータの総体積が一定となる条件下で、消滅ガンマ線との相互作用確率が80%に調整された基準シンチレータを用いる場合よりも、対消滅ガンマ線のコインシデンスイベントの総カウント数/時間分解能の値が向上する範囲に設定される。 (もっと読む)


【課題】蛍光寿命の短いシンチレータ材料、及びこのシンチレータ材料からなるシンチレータを備えたシンチレーション検出器を提供する。
【解決手段】
C面を主面とする板状の酸化亜鉛の種結晶の+C面上又は−C面上に結晶成長した酸化亜鉛単結晶からなり、前記酸化亜鉛単結晶中にInとLiとを含有するものをシンチレータ材料とする。このシンチレータ材料は、放射線の入射により、蛍光寿命が20ps未満の蛍光を発する。 (もっと読む)


【課題】放射線を検出できない状態で測定することを防止すること。
【解決手段】実施の形態の核医学イメージング装置は、核医学画像を生成するための放射線を検出する検出器を有する。また、実施の形態の核医学イメージング装置は、核医学画像を生成するための検出器により放射線が検出された回数を計測する。また、実施の形態の核医学イメージング装置は、核医学画像を生成するための検出器により放射線が検出された回数が閾値以下である場合に、核医学画像を生成するための検出器による検出を終了するように制御する。 (もっと読む)


【課題】蛍光取出効率を向上できるとともに、簡単に製造できる放射線検出器を提供する。
【解決手段】表面のうちの1以上の面を蛍光取出面11bとして設定するとともに、その他の面11aを鏡面とし、前記蛍光取出面11bを、前記その他の面11aよりも面粗さが粗い粗面としたシンチレータ11と、前記蛍光取出面11bに臨ませて配置した受光機構2と、前記その他の面11aに対向させつつ一定距離離間させて配置した反射部材12とを設けるようにした。 (もっと読む)


【課題】医用画像を用いた検査効率を向上させること。
【解決手段】実施形態の医用画像診断装置である核医学イメージング装置において、PET検出器は、被検体Pに投与された核種が放出するガンマ線を検出する。PET画像再構成部41bは、PET検出器により検出されたガンマ線に基づいて生成されたガンマ線投影データから、逐次近似法により医用画像である核医学画像(PET画像)を再構成する。制御部43は、逐次近似法に用いられるパラメータを、被検体Pの撮影部位に関する情報に応じて変更するようにPET画像再構成部41bを制御する。 (もっと読む)


【課題】 ポジトロン核種標識薬剤の減衰の影響をスキャン方法によって取り除くことで良質の画像を撮影できるPET装置を提供する。
【解決手段】 ポジトロン核種標識薬剤が投与された被検体を載置する寝台と、前記寝台との相対的な移動により前記被検体の各箇所に順次到達して、前記ポジトロン核種標識薬剤の時間経過による減衰に応じてその到達した箇所での放射線検出時間を増す検出器と、前記検出器での検出結果から前記被検体内の画像を再構成する再構成処理部とを備える。 (もっと読む)


【課題】関心領域の画質を他の領域と比較して良好にすること。
【解決手段】実施の形態の放射線イメージング装置は、被検体の形態画像を予め記憶する。また、放射線イメージング装置は、被検体の形態画像を撮像する。また、放射線イメージング装置は、被検体について予め記憶された形態画像を記憶部から取得し、取得した形態画像である取得形態画像内の位置であって、取得形態画像と紐づけて撮像された機能画像において特定される関心領域に対応する位置を取得する。そして、放射線イメージング装置は、撮像された形態画像である撮像形態画像内の位置と取得形態画像内の位置との対応関係に基づいて、取得した取得形態画像内の位置を撮像形態画像内の位置に変換する。そして、放射線イメージング装置は、変換結果となる撮像形態画像内の位置に基づいて、核医学画像を生成するための放射線を検出する検出器と被検体との位置関係を調整する。 (もっと読む)


【課題】小型化・低価格化を可能とし、かつ、蛍光ガラス素子に照射された放射線線量を広範囲に渡って精度良く読み取ることができるガラス線量計読取装置を提供する。
【解決手段】ガラス線量計読取装置は、蛍光ガラス素子10に照射された放射線線量を読み取る装置であり、照射部20、光電子増倍管30、光子計数部50、光源制御部60および線量算出部80を備えている。照射部20は、電源24から供給された電流値に応じた強度の紫外線20aを発する光源22を備え、蛍光ガラス素子10に紫外線20aを照射する。光子計数部50は、光電子増倍管30が出力した信号をA/D変換して得た出力パルスの数をカウントする。光源制御部60は、出力パルスの数に基づいて光源22に供給される電流値を制御する。線量算出部80は、出力パルスの数および光源22に供給された電流値に基づいて蛍光ガラス素子10に照射された放射線線量を算出する。 (もっと読む)


【課題】核医学画像の生成出力に要する時間を短縮すること。
【解決手段】実施の形態の核医学イメージング装置では、検出部は、複数の検出素子が環状に配置された環状検出素子群が、所定の軸方向に沿って複数配置される。回転部は、前記検出部を、前記所定の軸を中心にして回転させる。放射線情報生成部は、回転部による回転中に、検出部が検出した放射線量を示す放射線情報を環状検出素子群ごとに生成する。補正値算出部は、放射線情報生成部により生成された放射線情報を用いて、環状検出素子群ごとの検出感度を補正するための補正値を算出する。再構成制御部は、検出部が回転されるように回転部を制御し、回転部による回転中に、検出部が検出した放射線量を補正値算出部により算出された検出素子群ごとの補正値により補正した後に、核医学画像を再構成するように制御する。 (もっと読む)


【課題】α線源弁別に有用な、発光量が多くエネルギー分解能が高いシンチレータが求められていた。
【解決手段】溶質であるZnOおよびCuO、または、CdOと溶媒との混合・溶融物に、基板を直接接触させることによりZnO単結晶を成長させる液相エピタキシャル成長法により、Cuドープ、または、Cdドープ単結晶を製造して、発光量が多く、エネルギー分解能が高い不純物ドープZnO単結晶シンチレータを得、これを具備した放射線検出器、放射能測定装置およびα線カメラを提供する。 (もっと読む)


【課題】ガンマ線の検出時間差を用いた画像をより高精度に再構成すること。
【解決手段】実施例のPET装置は、較正部24と画像再構成部25とを備える。較正部24は、周囲が散乱体で囲まれた陽電子放出核種を含む点線源が設置された状態で対消滅ガンマ線を略同時に計数した2つの検出器モジュール14の各検出時間と、当該2つの検出器モジュール14の位置と、点線源の位置とに基づいて、当該2つの検出器モジュール14それぞれの検出時間を決定するための時間情報を較正することで、複数の検出器モジュール14すべての時間情報を較正する。画像再構成部25は、陽電子放出核種により標識された物質が投与された被検体を撮影する際、較正部24により較正された複数の検出器モジュール14それぞれの時間情報に基づいて補正された対消滅ガンマ線の各検出時間の時間差を用いて、TOF−PET画像を再構成する。 (もっと読む)


【課題】本発明の目的は、二次元アレイ型シンチレータにおいて、輝度を向上したシンチレータを提供することにある。
【解決手段】二次元アレイ型シンチレータのシンチレータ素子を区切る隔壁部を、放射線を受けて発光する蛍光体材料で形成するとともに、隔壁部に反射機能を持たせるか隔壁部と蛍光体部の間に反射層を設けることで、隔壁部としての機能を有しながら発光するようにして輝度を向上させる。 (もっと読む)


【課題】放射線や光が入射したときに光を出射する、波長変換セラミックスや放射線−光変換セラミックスなどの発光セラミックスであって、発光減衰時間が短い発光セラミックスを提供する。
【解決手段】発光セラミックスは、(A(1−x))(C(1−y)Ta)O(但し、Aは、La,Gd,Yb及びLuからなる群から選ばれた少なくとも一種であり、Bは、Sr及びBaの少なくとも一方であり、Cは、Al及びGaの少なくとも一方であり、0.2≦x≦0.95、0<y≦0.6、0.4≦y/x≦0.6、Wは、電気的中性を保つための正の数である。)で表される複合ペロブスカイト型化合物を主成分とするセラミックスを還元雰囲気中において熱処理してなる。 (もっと読む)


【課題】検出器の故障を判定するのに要する時間を短縮すること。
【解決手段】実施の形態の放射線イメージング装置は、X線CT画像を生成するためのX線を照射するX線管を有する。また、実施の形態の放射線イメージング装置は、核医学画像を生成するための放射線を検出する検出器を有する。また、実施の形態の放射線イメージング装置は、X線CT画像を生成するためのX線を照射するX線管により照射されたX線を、核医学画像を生成するための放射線を検出する検出器が検出したか否かを判定することで、検出器の故障を判定する。 (もっと読む)


【課題】放射性物質取り扱い施設の運転時において放射性核種を含む液体が流れる放射線検出対象物の線量率を精度良く測定することができる線量率監視方法を提供する。
【解決手段】原子力プラントの炉水が流れる配管12付近に放射線検出器1A,1Bを配置する。原子力プラントの運転時に、配管12内面に付着した測定対象核種(Co−60)9から放射されたγ線(カスケードγ線)17及び配管12内の炉水中の短半減期核種(N−16)10から放射されたバックグラウンドγ線18が、検出器1A,1Bで検出される。エネルギー弁別装置4A,4Bが検出器1A,1Bからのγ線検出信号のうち0.4〜2.0MeVのγ線検出信号を出力する。同時計数処理装置5はエネルギー弁別装置4A,4Bからのγ線検出信号を基に同時計数を行って同時計数信号を発生し、放射能演算装置6は同時計数信号に基づいて配管線量率を求める。 (もっと読む)


【課題】PET画像の生成時間を短縮することを課題とする。
【解決手段】PET装置100は、検出器モジュール14の時間分解能に応じて定められた画像のぼかし幅を記憶する。また、PET装置100は、陽電子から放出された一対のガンマ線を検出した一組の検出器モジュール14の空間位置と、該一組の検出器モジュール14によって一対のガンマ線が検出された一組の検出時間とを用いて、該一組の検出器モジュール14を結ぶLOR上に該陽電子の空間位置を推測する。そして、PET装置100は、LOR上において時間分解能に対応する空間分解能が反映されるように、推測された空間位置を中心に、ぼかし幅分の画素に画素値を割り当ててPET画像を生成する。 (もっと読む)


【課題】被検体の臓器の深さを簡便に求める核医学診断装置を提供する。
【解決手段】この実施形態に係る核医学診断装置は、検出手段と、制御手段と、演算手段とを有する。検出手段はコリメータを有する。コリメータは、放射性同位元素が投与された被検体の臓器から放出される放射線を選択する。検出手段は、コリメータを通過した放射線を検出する。制御手段は、臓器の像であって大きさが異なる第1の像と第2の像とを検出手段に検出させる。演算手段は、第1の像の大きさと第2の像の大きさとを求め、第1の像の大きさと第2の像の大きさとの比に基づいて、臓器から被検体の体表までの距離を求める。 (もっと読む)


【課題】PET−MRI融合装置の映像品質を低下させるMRI RF遮蔽物なしにPET−MRI融合装置でのPET信号のノイズ除去方法を提供する。
【解決手段】方法は、(a1)PETアナログ信号を一定のサンプリング周波数を有したデジタル信号に変換する段階と、(b1)PETデジタル信号のサンプリングポイントまたはPETデジタル信号の積分値を利用したモデリングを通じて映像構成に含まれるPETデジタル信号であるか否かを判断する段階と、(c1)映像構成に含まれるPETデジタル信号のみを抽出する段階と、を含む。PET検出器の性能低下なしに分子映像を獲得することができる。 (もっと読む)


【課題】PET−MRI融合装置の映像品質を低下させるMRI RF遮蔽物なしにPET−MRI融合装置でのPET信号のノイズを除去する方法を提供する。
【解決手段】方法は、PET−MRI融合装置でPET出力信号を入力されて、PET出力信号の周波数とMRRF周波数(Lamor frequency)との間の相関関係を用いて、PET出力信号からRFパルス周波数によるノイズ成分を除去してアナログフィルタリングする段階と、フィルタリングされた信号を入力されて、サンプリングを通じてデジタル信号に変換する段階と、を含む。MRI環境でPET検出器の性能低下なしに分子映像を獲得することができる。 (もっと読む)


【課題】放射線、特にベータ線を高感度で測定することができ、機械的強度を向上したシンチレータ部材及びそれを用いた放射線検出器を提供する。
【解決手段】放射線の入射により蛍光を生じるシンチレータ14と、シンチレータ14の放射線入射面の表面に成膜され、光の透過を阻止させる反射層16と、反射層16の表面に設けられた遮光層17と、遮光層17の表面に設けられた保護層18とからなり、シンチレータの機械的強度を向上させる。 (もっと読む)


101 - 120 / 435