説明

Fターム[3C081BA54]の内容

マイクロマシン (28,028) | 形状、構成 (11,743) | 可動部 (6,256) | 駆動手段 (1,714) | 電磁力 (273)

Fターム[3C081BA54]に分類される特許

261 - 273 / 273


本発明の目的は、静電力および電磁力を活用して作動するNEMを提供することである。一つのナノ静電実施形態においては、ナノスケールビームが電界に張られる。帯電されたレールがビームの周りに置かれる。ビームがレールに接触するときには、ビームは電界の中を特定の方向に動かされる。一つのナノ電磁実施形態においては、ナノスケールビームが磁界に張られる。ビームの付近にレールが置かれており、極性の異なる電荷がレールおよびビームに加えられる。この形態において、ビームおよびレールが互いに接触するときには、ビームとレールとの間に電流が流れ得る。この電流は磁界と相互作用し、その結果ビームを特定の方向に動かす。
(もっと読む)


光スイッチにおけるMEMSミラーに対するディザ振幅を調整する方法、およびこのような方法を用いた光スイッチが開示されている。1つまたは複数のMEMSミラーのディザ振幅を、入力ポートと、光入力/出力(I/O)ポートの1つまたは複数に選択的に光結合される1つまたは複数のMEMSミラーのアレイとを有する光スイッチにおいて、調整する。ミラーを位置付けるためのデジタル/アナログ(DAC)設定を用いて、位置xにおける出力ポートに光信号を結合させるように位置付けされたMEMSミラーの1つに対して、ディザ振幅を決定する。サーボ制御アセンブリは、オープン制御ループにおいて各ミラーをポート位置xの関数として位置付けるためのデジタル/アナログ・コンバータ(DAC)設定を含むメモリを含む。サーボ制御アセンブリは、記憶されたDAC設定を用いて1つまたは複数のMEMSミラーのディザ振幅を調整するようにプログラムされている。
(もっと読む)


マイクロミラー・アレイは、複数のマイクロミラーを含み、マイクロミラーの回転および/または並進の制御によって所定の自由表面を再生成する。マイクロミラーは、制御回路によって制御され、機械構造によって支えられ、反射面を備えている。レンズの所定の自由表面は、マイクロミラーの回転および/または並進の制御によって変化する。マイクロミラーは、レンズを形成するために、1または複数の同心円状に配置されている。マイクロミラーは、扇形、六角形、長方形、正方形、または三角形の形状を有している。マイクロミラーの反射面は、ほぼ平面である。制御回路は、半導体超小型電子技術を用いてマイクロミラーの下に設けられている。マイクロミラーは、静電力および/または電磁力によって作動する。マイクロミラーの反射面は、高反射率の材料によって作られている。レンズは、画像装置、監視カメラ、カムコーダなどに用いられる。
(もっと読む)


微小電気機械システム(MEMS)を基礎にした電気振動信号を生成するための電子デバイスを開示する。電子デバイスは、一般に基板(104)と、この基板(104)に対して移動可能な可動素子(102)と、アクチュエータ手段と、センサとを備える。アクチュエータ手段は、可動素子(102)の振動を誘導するために使用し、2個の誘導素子、すなわち基板(104)に固定して設けた第1誘導素子および可動素子(102)に固定して設けた第2誘導素子を備える。誘導された可動素子(102)の振動はセンサを用いて検知し、電気振動信号に変換する。この信号は増幅して少なくとも部分的にアクチュエータ手段の電力として使用することができ、これにより安定した共振周波数および一定の振幅を有する振動信号を得ることができる。異なるコンポーネントをチップ上に高度に集積することができる。
(もっと読む)


本発明では、微小流体システム、そのような微小流体システムを製作する方法、およびそのような微小流体システムの微小チャネルを通る流体の流れを制御しまたは操作する方法が提供される。微小チャネルの壁の内側には、アクチュエータ素子が設置され、この素子は、外部刺激に応答して、形状および配向を変化させることができる。この形状および配向の変化を通じて、微小チャネルを通る流体の流れが制御され、操作される。

(もっと読む)


本発明は移動ビーム(1)を備えるマイクロ機械デバイスに関し、前記ビームはその2つの端部(2)によって硬質フレーム(3)に対して取り付けられ、硬質フレーム(3)にはそれぞれが2つの端部(5)を有する2つのアーム(4)が設けられている。アーム(4)の端部(5)はそれぞれ移動ビーム(1)の2つの端部(2)に固定される。各アーム(4)は、対応するアーム(4)の2つの端部(5)間に配置された中央部分(6)を有している。各アーム(4)の中央部分(6)の後面はベース支持体(10)に取り付けられている。フレーム(3)は、ビームの応力状態を調整するための少なくとも1つの応力要素(11)を備えている。応力要素(11)は、対応するアーム(4)の前面と後面との間に中心付けることができる。フレーム(3)は、アーム(4)の前面および後面上に互いに対向するようにそれぞれ配置された前側および後側応力要素(11)の対を備えることができる。
(もっと読む)


本発明は、少なくとも一つの電気回路をスイッチングするために、磁気効果によって第一位置と第二位置の間で制御される、基板3によって支持された可動部材を備えた磁気マイクロアクチュエータ2、2’と、可動部材を第一位置に維持するために可動部材に均一な第一磁界Bをかける永久磁石または電磁石と、基板3の外部に励起コイル4、6とを備え、該励起コイル4、6は、通電時に可動部材に第二磁界BS1をかけて可動部材を第一位置から第二位置へ移動させるマイクロシステムにおいて、励起コイルはソレノイド型であって、可動部材を支持する基板を取り囲んでいるマイクロシステムに関する。
(もっと読む)


【課題】熱管理のための流体ポンプ
【解決手段】熱発生デバイスは、流体ポンプに流体的に結合される熱交換器に接触させて配置される。流体ポンプは、熱交換器と熱が放散される箇所との間の閉じた流体システムを通して流体をポンプ作用で注入するように作動する。一態様では、アクチュエータは、ポンプの壁を通過せずに流体をポンプ作用で注入するように作用する。一態様では、ポンピング要素としてインピーダンスポンプを使用する。 (もっと読む)


本発明の一観点は、静電アクチュエータを有するマイクロミラー・デバイスの偏向のドリフトに対する安定化方法において、前記マイクロミラーと前記マイクロミラーの下の少なくとも1つの電極とである少なくとも2つの部材を含むアクチュエータであって、前記少なくとも2つの部材の少なくとも1つが半導体材料で形成されているアクチュエータを提供する行為と、前記アクチュエータの前記他の部材に面する前記少なくとも1つの半導体部材上に、1017cm以上のキャリア密度を有する表面層を提供する行為とを含む方法を含む。 (もっと読む)


本発明は単極モータ(110)を有する流体置換装置(100)に関する。単極モータは、少なくとも1つの流体置換構造(120)が配置された回転可能な円板(115)を含んでいる。この流体置換構造は翼板とし得る。回転可能な円板は、例えばセラミック基板、液晶高分子基板、又は半導体基板などの基板(105)に形作られた空洞(145)内に配置されている。回転可能な円板の回転速度を制御するために閉ループ制御回路(235)が含められ得る。例えば、この制御回路は、回転可能な円板に電圧を印加する電圧源又は電流源を制御する。この制御回路はまた、回転可能な円板の回転軸(155)に実質的に整合された磁場(205)を印加する磁石(210)の強度を制御し得る。
(もっと読む)


本発明は、マイクロミラーアレイレンズのアレイに関するものである。マイクロミラーアレイレンズは、複数のマイクロミラーと駆動部分とから構成されている。各マイクロミラーアレイレンズは、高速での焦点距離変更が可能な可変焦点距離レンズである。上記レンズは、所望の任意のサイズおよび/または型を有するとともに、所望の任意の光軸を有し、さらに、各マイクロミラーを独立に制御することにより収差を補正することができる。各マイクロミラーの独立した制御は、公知のマイクロエレクトロニクス技術によって可能である。上記駆動部分は、静電気的におよび/または電磁気的に、上記マイクロミラーの位置を制御する。上記マイクロミラーアレイレンズの光学効率は、上記マイクロミラーを支持する機械的構造と上記駆動部分とを上記マイクロミラーの下に配置することにより、改善される。公知のマイクロエレクトロニクス技術は、電極パッドおよびワイヤによる有効反射領域の損失を取り除くことができる。
(もっと読む)


共振MEMS走査システムは、その共振周波数でMEMSスキャナを動作させて、走査角を最大限にし、かつ消費電力を最小限にする。コントローラは、位相ロックループ、振幅サーボ制御ループ、および共振周波数サーボ制御ループを含む。マイクロプロセッサは、ループを制御し、起動のような状態の間オーバーライドを提供する。共振周波数は動的かつ熱的に調整されて、デバイスがより高いQ値で操作されることが可能になる。位相ロックループはプレロック条件で動作して、より速い起動が可能になる。アイドルおよび起動の間、共振周波数は制御された開ループである。駆動電圧は、起動の間は高く設定されて、走査角の急速な増加が達成される。
(もっと読む)


MEMSスキャナ(102)のような、改善され、簡素化された駆動構想および構成を有するMEMS発振器である。駆動インパルスは、サポートアームを経てトルクの形態で発振部分に伝えられる。マルチ軸発振器のために、2以上の軸の駆動信号は、駆動回路によって重ね合わせられ、MEMS発振器に送られる。前記発振器はその軸の共振周波数に従って各軸で応答する。前記発振器はそのいくつかのあるいはすべての軸で共振的に駆動できる。改善された負荷分散は、結果として歪みを減少させる。簡素化した構造は、単一の運動体を使ってマルチ軸振動を提供する。他の構造は直接、複数の運動部分体を直接に動かす。他の構造は、1以上運動体からアクチュエータを不要とし、前記運動体は、それらのサポートアームで駆動される。
(もっと読む)


261 - 273 / 273