説明

Fターム[3G092HA01]の内容

機関出力の制御及び特殊形式機関の制御 (141,499) | 吸気系 (12,204) | 吸入空気量 (3,172)

Fターム[3G092HA01]の下位に属するFターム

変化率 (20)

Fターム[3G092HA01]に分類される特許

81 - 100 / 3,152


【課題】ターボチャージャー11を備える内燃機関2の吸排気装置1において、ターボラグを低減する。
【解決手段】吸排気装置1は、タービン20と内燃機関2との間の排気路10に接続し、蒸発燃料を排気路10に供給する蒸発燃料供給路32と、制御手段12により動作を制御され、蒸発燃料供給路32の開度を変化させる制御弁33とを備える。これにより、制御弁33を開弁させることでタービン20の上流側の排気路10に蒸発燃料を供給することができる。このため、ターボラグ発生の虞が高いときに、タービン20の上流側の排気路10に蒸発燃料を積極的に供給して排気ガス中で蒸発燃料を酸化することで、排気ガスのエネルギーを高めることができる。この結果、排気ガスからタービン20に与えるエネルギーを早期に高めることができるので、ターボラグを低減することができる。 (もっと読む)


【課題】VVT機構の駆動源として機械式オイルポンプを備える内燃機関であれ、アイドル運転時のバルブタイミングを適正に調整することのできる内燃機関のバルブタイミング制御装置を提供する。
【解決手段】内燃機関1のバルブタイミング制御装置は、内燃機関1により駆動されるオイルポンプ25から供給されるオイル15を駆動源として、内燃機関1の吸気バルブ9のバルブタイミングを可変とする可変バルブタイミング機構13を備え、内燃機関1のアイドル運転時にバルブタイミングを最遅角よりも進角したアイドル制御位相に制御する。内燃機関1のバルブタイミング制御装置は、オイル15の油温に応じて、バルブタイミングをアイドル制御位相に制御する開始時期を変化させる。 (もっと読む)


【課題】低速領域において過給限界を高負荷側に移動することにより、RawNOxの生成抑制と低燃費との両立に有利な運転領域を拡大させた過給機付リーンバーンエンジンを実現する。
【解決手段】制御器(PCM10)は、エンジン本体1が少なくとも暖機後でかつ、運転状態が低速領域にあるときにおいて、第1負荷領域にあるときには、作動ガス燃料比G/Fを30以上に設定し、第2負荷領域にあるときには、EGR手段による既燃ガスの導入を停止すると共に、空気燃料比A/Fを30以上に設定し、全開負荷を含む第3負荷領域にあるときには、空気燃料比を理論空燃比に設定すると共に、EGR手段による既燃ガスの導入を行う。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、新規な点火時期制御を可能とする内燃機関の制御装置を提供することを目的とする。
【解決手段】本発明においては、混合気の燃焼速度の推定値を規定する特性マップを用いて点火時期を決定する。混合気の燃焼速度は、気筒外の要因により変化する混合気の状態を代表するものであるので、その推定値を規定した特性マップを用いれば、高精度に点火時期を決定できる。 (もっと読む)


【課題】この発明は、燃料中のアルコール濃度が高い場合でも、触媒の劣化とアルコール被毒の両方を防止することを目的とする。
【解決手段】エンジン10は、弁停止機構となる可変動弁機構36,38を有する。ECU60は、少なくとも吸入空気量と燃料中のアルコール濃度とに基いて触媒24のHC被毒量を推定し、被毒解除要求を発生させる。そして、燃料カットを行うべき条件が成立した場合には、被毒解除要求の有無に基いて弁作動燃料カットと弁停止燃料カットとを使い分ける。弁作動燃料カットでは、吸気バルブ32と排気バルブ34とを作動させた状態で燃料カットを実行し、触媒24のHC被毒を解除する。一方、弁停止燃料カットでは、バルブ32,34の少なくとも一方を弁停止した状態で燃料カットを実行し、触媒24の劣化を抑制する。 (もっと読む)


【課題】経時的な機関構成部品劣化や燃焼室内のデポジット付着による、各気筒間における機械圧縮比のバラツキを検出しうる手段を有する内燃機関の制御装置を提供すること。
【解決手段】本発明の内燃機関の制御装置は、吸気および排気を複数の気筒のうちの一部の気筒において休止するように制御しうる休止手段を有し、新気吹き抜け時に、複数の気筒の各気筒に対して、休止手段により他の気筒を休止させて2つの異なる機械圧縮比による機関運転を実行し、実行された各機関運転における吸入空気量を検出するという第1の学習用機関運転を実行し、各気筒ごとに、新気吹き抜け時における2つの異なる機械圧縮のうちの一方の機械圧縮比による機関運転の際の吸入空気量と他方の機械圧縮比による機関運転の際の吸入空気量との差分を算出し、各気筒ごとに算出された吸入空気量の差分のバラツキを各気筒間における機械圧縮比のバラツキとして学習する。 (もっと読む)


【課題】スロットルバルブが開側に駆動され続けて、全開位置に達するような異常が生じた場合であっても、エンジン出力を抑制できるようにすること。
【解決手段】スロットルバルブ3の全開側の開度を制限する全開ストッパ7の位置を、スロットルバルブ3が吸気管2を全開とする開度を越えて、再び吸気管2の流路を絞る開度となる位置に設定した。これにより、スロットルバルブ3が開側に駆動され続けて、全開位置に達するような異常が生じた場合であっても、その全開位置は、スロットルバルブ3が吸気管2の流路を絞る開度となる位置に設定されているので、エンジン出力を抑制することができる。 (もっと読む)


【課題】細分化された内燃機関の運転状態に応じて圧縮比を制御する。
【解決手段】触媒を暖機中であると(S100にてYES)、S102にて、圧縮比が、第1圧縮比CR1にされる。触媒の暖機終了後において、エンジンを暖機中であると(S110にてYES)、S112にて、圧縮比が、前述の第1圧縮比CR1よりも小さい第2圧縮比CR2にされる。エンジン100の暖機終了後は(S110にてNO)、S120にて、圧縮比が、第1圧縮比CR1および第2圧縮比CR2よりも低い圧縮比にされる。 (もっと読む)


【課題】内部EGRの残留率が0%となる最小バルブオーバーラップ期間を精度良く把握することが可能な内燃機関の制御装置を提供すること。
【解決手段】本発明の内燃機関の制御装置は、吸気圧が背圧よりも高い機関運転状態の際に、バルブオーバーラップ期間がそれぞれ異なる複数の機関運転を行い、該複数の機関運転のそれぞれの機関運転状態における吸入空気量を計測する吸入空気量計測手段と、吸入空気量計測手段により計測された各吸入空気量データに基づいて、バルブオーバーラップ期間の変化に対する吸入空気量の変化傾向を導き、該変化傾向が異なる傾向に移行する境界バルブオーバーラップ期間を特定し、該境界バルブオーバーラップ期間を、残留する内部EGRを0%とすることが可能な最小バルブオーバーラップ期間として学習するバルブオーバーラップ期間学習手段とを具備する。 (もっと読む)


【課題】排気浄化部材の前端面におけるPMの詰まりを好適に低減することのできる内燃機関の排気浄化装置を提供する。
【解決手段】エンジン1は、排気通路26に設けられた酸化触媒31と、酸化触媒31に添加剤を供給する燃料添加弁5と、排気を吸気通路3に還流させる排気還流機構と、排気還流機構による排気の還流量を機関運転状態に基づいて制御する制御装置25とを備える。制御装置25は、酸化触媒31の前端面の詰まり量が閾値を超えたときには、排気の還流量を減少させる。 (もっと読む)


【課題】エンジンに供給される燃料を改質する機能を備えたシステムにおいて、改質用の燃料を噴射する改質用燃料噴射弁の故障を検出できるようにする。
【解決手段】改質運転モードでは、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させながら、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態に改質する改質運転を実行する。この改質運転中(改質用燃料噴射弁26の燃料噴射中)に空燃比センサ21で検出した空燃比A/Fが所定の正常範囲内(リッチ側閾値≦A/F≦リーン側閾値)であるか否かを判定し、空燃比A/Fが正常範囲外(A/F<リッチ側閾値、又は、リーン側閾値<A/F)であると判定された場合には、改質用燃料噴射弁26の故障有りと判定して、改質用燃料噴射弁26の燃料噴射を禁止するフェールセーフ処理を実行する。 (もっと読む)


【課題】この発明は、燃料中のアルコール濃度が高い場合でも、気筒間のA/Fインバランスを正確に検出することを目的とする。
【解決手段】ECU50は、クランク角センサ40の出力に基いて回転変動を検出し、回転変動に基いて気筒間のA/Fインバランスを検出するインバランス検出制御を実行する。また、インバランス検出制御の実行時に燃料中のアルコール濃度が所定値B以上である高い場合には、可変動弁機構38を駆動することにより、各気筒のトルクを低減する。これにより、燃料中のアルコール濃度に応じてトルクが増加する分だけ当該トルクを低減し、トルク(回転変動)をガソリン使用時と同等のレベルに保持することができる。従って、リーンインバランス発生時の回転変動と正常時の回転変動とを十分に異ならせることができ、リーンインバランスを高い精度で安定的に検出することができる。 (もっと読む)


【課題】排気浄化触媒の暖機に際して、内燃機関の冷間始動直後から、燃焼の安定性を確保しつつ、PM排出量を効果的に低減することのできる内燃機関の制御装置、及び内燃機関の制御方法を提供する。
【解決手段】エンジン10は、燃焼室22内に燃料を直接噴射するインジェクタ21と、点火プラグ36と、吸気バルブ31の開閉タイミングを可変とする可変バルブタイミング機構33と、排気管35に設けられた三元触媒38と、を備えている。ECU50は、エンジン10が冷間始動された場合に、可変バルブタイミング機構33により吸気バルブ31と排気バルブ32との開弁期間のオーバーラップ量を増大させるとともに、インジェクタ21によりエンジン10の吸気行程及び圧縮行程に燃料を噴射させ且つ圧縮行程での燃料噴射量を吸気行程での燃料噴射量よりも多くし、点火プラグ36による点火時期を遅角させる制御を実行する。 (もっと読む)


【課題】この発明は、内燃機関の制御装置に関し、外部EGRガスを導入可能な内燃機関を対象として、目標スロットル開度を実現するための目標新気量を正確に設定することを目的とする。
【解決手段】内燃機関10の排気通路14と吸気通路12とを連通するEGR通路26と、当該EGR通路26の開閉を担うEGR弁28と、吸気通路12内に配置されたスロットル弁18と、を備える。EGRガスの応答遅れを考慮して算出された筒内吸入EGRガス量megrcylと目標新気量との和である目標全吸入ガス量mcrefに基づいて、目標インマニ圧(スロットル下流圧力)Pmrefを算出する。そして、算出された目標インマニ圧Pmrefの実現に必要な目標スロットル開度TAを算出する。 (もっと読む)


【課題】EGRバルブの前後の差圧を検出することなく、過渡時におけるEGR制御を効果的に行う。
【解決手段】EGR通路が接続された位置の吸気圧を吸入空気量に基づいて推定し(S11)、EGR通路が接続された位置の排気圧を吸入空気量に基づいて推定する(S12)。S12で算出した第1推定排気圧に、応答遅れを考慮した所定の遅れ処理を行って第2推定排気圧を算出する(S16)。そして、過渡時には、推定吸気圧と第1推定排気圧との差圧と、推定吸気圧と第2推定排気圧との差圧と、差もしくは比率からバルブ面積補正値を算出し(S17)、このバルブ面積補正値でEGR制御弁の基準バルブ面積を補正する(S18)。 (もっと読む)


【課題】吸気バルブの作用角の変更に伴う機関回転速度の急変を抑えることのできる内燃機関の制御装置を提供する。
【解決手段】電子制御ユニット1は、VVT機構9の作動油圧の不足に応じて吸気バルブの作用角を拡大したときに、スロットルバルブ7の開度を、吸入空気量を増大させる側に補正することで、吸気バルブのバルブタイミングを遅角した状態での作用角の拡大に応じた吸入空気量の減少を抑えて、機関回転速度の落ち込みを抑制する。 (もっと読む)


【課題】精度良く新気の吹き抜け量を推定できる内燃機関を提供する。
【解決手段】シリンダ容積にシリンダ内吸気密度を乗じてシリンダ内空気質量を算出する(S11)。S11で算出されたシリンダ内空気質量と、機関回転速度と、回転当たりの吸気シリンダ数を用いてシリンダトラップ吸入空気量を算出する(S12)。
エアフローメータ9で検出された吸入空気量から、S12で算出されたシリンダトラップ吸入空気量を差し引いた値を推定掃気量として算出する(S13)。 (もっと読む)


【課題】始動時の筒内コンプレッションのばらつきを抑制すると共に、吸気弁の閉時期の変換角を過度に大きくする必要のない可変動弁装置を提供する。
【解決手段】ステップ11で、排気VEL1と吸気VTC3によって吸排気弁のそれぞれの開閉時期を、EO1、EC1、IO1、IC1に予め保持し、ステップ12で、自立燃焼による始動条件であると判断した場合は、ステップ13で、ピストンの停止位置を検出する。ステップ14で、圧縮行程の気筒がBDC後のθp±Δθの範囲内と判断した場合は、ステップ15で、排気VEL1と吸気VTC3に、前述の開閉時期にそれぞれ変換する制御信号を出力する。ステップ16で、膨張行程の気筒に燃料噴射と点火制御を行って自立燃焼始動を開始し、ステップ21では、制御マップに基づいて通常制御を行う。 (もっと読む)


【課題】複数の気筒間での空燃比のばらつきを判定する場合において、良好な判定精度を確保しながら、製造コストを削減することができる内燃機関の判定装置を提供する。
【解決手段】内燃機関3の判定装置1は、ECU2を備える。ECU2は、式(1)〜(11)を用いて、出力値SVO2が所定の下流側目標値VVO2_TRGTに収束するように、目標当量比KCMDを算出し(ステップ2〜11)、式(13)〜(18)を用いて、検出当量比KACTが目標当量比KCMDに収束するように、気筒#1〜#4に供給される混合気の空燃比を制御し(ステップ32)、排気還流率REGRを、値0と所定の強制オン用値R_ONとの間で切り換えて制御し(ステップ45,50〜65)、適応則入力偏差DUADP(=|UADP_EGRON|-|UADP_EGROFF|)に基づき、複数の気筒間で空燃比のばらつきが発生しているか否かを判定する(ステップ70〜83)。 (もっと読む)


【課題】EGR運転領域を確保しつつ、EGRクーラ等の凝縮水による腐食を抑制でき、燃費も改善できる排気再循環制御装置および内燃機関の排気再循環システムを提供する。
【解決手段】エンジン1の冷却水の温度が予め設定された閾値温度以上になったことを条件に、エンジン1の排気通路18w側から吸気通路7w側への排気ガスの還流を許可するとともにその還流排気ガスの還流量を制御する排気再循環制御装置であって、還流排気ガスの圧力とエンジン1の排気ガス中の水のモル比とに基づいて還流排気ガスの露点温度を算出する露点温度算出部31と、その露点温度に応じて閾値温度を可変設定する閾値温度可変設定部32とを備えている。 (もっと読む)


81 - 100 / 3,152