説明

Fターム[3G093DB17]の内容

車両用機関又は特定用途機関の制御 (95,902) | パラメータ、検出(機関以外) (18,896) | 車輪のスリップ(率) (129)

Fターム[3G093DB17]に分類される特許

1 - 20 / 129


【課題】車両の挙動を安定させること。
【解決手段】車両10の旋回状態量に基づいた前輪Wfl,Wfrの転舵角又は前輪Wfl,Wfr及び後輪Wrl,Wrrの夫々の転舵角の制御により車両10の挙動制御を行う車両制御システムにおいて、旋回走行中で且つ前輪Wfl,Wfr及び後輪Wrl,Wrrの夫々の転舵角が制御されており、更に車両10の旋回状態が所定よりも大きい高G旋回領域にある場合に、前記前輪Wfl,Wfr及び後輪Wrl,Wrrの夫々の転舵角の制御における後輪Wrl,Wrrの転舵角制御の介入度合いを減少させる又は当該後輪Wrl,Wrrの転舵角制御を停止させること。 (もっと読む)


【課題】エンジンとモータを走行用動力源として有するハイブリッド車両において、簡素的な制御ロジックを用いて車両姿勢安定制御とスリップ率制御とを両立させる。
【解決手段】本発明に係るハイブリッド車両(1)の制御装置(14)は、車両姿勢を安定化する車両姿勢安定制御を実施する車両姿勢安定制御手段と、モータ(3)に駆動トルク又は回生トルクを付与してスリップ率制御を実施するスリップ率制御手段と、車両姿勢安定制御の実施時にモータの出力トルクを第1のモータトルクT1以下に制限し、車両姿勢安定制御の実施中に更にスリップ率制御を実施する場合、モータの出力トルクの制限を第2のモータトルクT2に変更するモータトルク制御手段とを備えたことを特徴とする。 (もっと読む)


【課題】エンジン及びモータからの動力によって走行するハイブリッド車両において、ABS制御やスリップ率制御などの車両安定制御を安定的に実施可能なハイブリッド車両の制御装置を提供する。
【解決手段】本発明に係るハイブリッド車両の制御装置(18)は、スリップ状態にあるか否かを判定する駆動輪状態判定手段(22)と、スリップ状態と判定時にエンジン(2)及びモータ(4)の少なくとも一方の運転状態を制御することでスリップ状態から回復させる車両安定制御手段(24)と、車両安定制御手段の作動を判定する車両安定制御判定手段(27)と、車両安定制御手段の作動時にクラッチ(3)を切断状態に設定するクラッチ制御手段(28)とを備えたことを特徴とする。 (もっと読む)


【課題】電源不足が生じても自動二輪車のトラクション制御の誤動作や中断がないようにする。
【解決手段】少なくとも前車輪速センサおよび後車輪速センサに供給するためにバッテリの出力電圧に基づいてセンサ駆動電圧を作成し、そのセンサ駆動電圧に基づくセンサ電圧またはバッテリの出力電圧に基づく電源電圧が、少なくとも前車輪速センサおよび後車輪速センサが正常に作動する電圧範囲として設定される所定電圧範囲から外れた状態では、エンジンの回転加速度に基づいて車輪スリップ状態を判断し、その判断結果に基づいて算出したエンジン制御量でエンジン出力を制御する。 (もっと読む)


【課題】制振のための制駆動力制御を行う際に、制御介入時の動作をより適切なものとすること。
【解決手段】車両における制駆動状態に基づいて、車両に働く荷重を安定化させるための荷重安定化制駆動力指令値を算出する荷重安定化制駆動力指令値算出手段と、車両における操舵状態に基づいて、車両の荷重を付加するための荷重付加制駆動力指令値を算出する荷重付加制駆動力指令値算出手段と、車両の走行状況に基づいて、走行環境の安定度合いを示す荷重安定化指標を算出する荷重安定化指標算出手段と、操舵入力に基づいて、操舵操作の安定度合いを示す荷重付加指標を算出する荷重付加指標算出手段と、荷重安定化制駆動力指令値と、荷重付加制駆動力指令値と、荷重安定化指標と、荷重付加指標とに基づいて、制駆動力制御手段による制駆動力の付与状態を制御するトルク制御手段とを有する制駆動力制御装置とした。 (もっと読む)


【課題】推定速度の精度を向上可能な駆動力制限装置を提供すること。
【解決手段】車両の駆動輪に働く駆動力を制限する駆動力制限装置は、前記車両の第1の加速度を補正して、補正された前記第1の加速度を第2の加速度として得る加速度補正部と、前記駆動輪の車輪速度及び前記第1の加速度に基づき前記車両の第1の速度を算出する第1の算出部と、前記車輪速度及び前記第2の加速度に基づき前記車両の第2の速度を算出する第2の算出部と、前記第1の速度と前記第2の速度との差が第1の閾値以上である場合、前記駆動力を制限する制限駆動力を要求する要求部と、前記第2の速度を前記車両の推定速度として用いる推定部と、を備える。前記要求部が前記制限駆動力を要求することによって、前記車輪速度が第2の閾値を下回る時、前記推定部は、前記第2の速度を前記第1の速度でリセットして前記推定速度を得る。 (もっと読む)


【課題】実際のスリップ防止制御が行われる前に、予め運転者に対してスリップ情報を知らせることで、走行状態を確認させることができる技術を提供することを課題とする。
【解決手段】図(a)は、比較例を示し、時間taでスリップ率が第1閾値以上になったために、従来のトラクション制御に従って、制御部はスロットル弁開度を自動的に小さくした。しかし、エンジン出力の減少は、車速の低下に直結し、スピード走行への影響が大きい。一方、本実施例に係る(b)に示すように、時間tbでスリップ率が第2閾値以上となったため、スロットル弁が脈動制御された。運転者がアクセルグリップを少し戻すなどの対策を講じた結果、時間遅れはあるものの、後輪速度が前輪速度に近づいた。第2閾値で対策を講じたため、スリップ率が第1閾値を超えることはなかった。 (もっと読む)


【課題】トラクション制御中のフェール時に、ユーザに過度な負担を強いる限定しすぎたフェール処理を回避することができるトラクション制御装置を提供する。
【解決手段】アクセル開度αAに応じてモータ57でスロットル制御を行うスロットルバイワイヤ手段(TBW)61を備え、駆動輪WRのスリップ検出時にTBW61によってスロットル弁開度θTHを第1予定値θTHTCSに低減する。スロットル弁開度θTHを第1予定開度θTHTCSに低減している間にフェールを検出した場合にTBW61によってスロットル弁開度θTHを第2予定値θTHidleまでさらに低減させる。スロットル弁開度θTHを第2予定値θTHidleに低減している間にアクセルグリップ24Rが全閉位置に操作された場合はTBW61による制御を停止し、アクセル開度αAに応じて直接アクセルグリップ24Rの操作によるスロットル制御を行えるようにする。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、様々な運転状況下で発生する駆動輪のスリップに対して各運転状況に応じた制御を行ない適切にスリップの抑制を行なう。
【解決手段】走行駆動源としてのエンジン1及びモータ3と、エンジン1とモータ3との間に介装されたクラッチ2と、駆動輪8の実スリップ率を算出するスリップ率算出手段60bと、駆動輪8のスリップが検出されたら、クラッチ2の断接状態と、車両の走行状態に基づいて、駆動輪8の目標スリップ率を設定する目標スリップ率設定手段60dと、駆動輪8のスリップが検出されたら、実スリップ率が目標スリップ率になるように走行駆動源の出力トルクを制御する出力トルク制御手段60eとを備える。 (もっと読む)


【課題】従来技術における問題を解決する自動車用の改善されたコントロールシステムを提供することである。
【解決手段】自動車速度計算機10が、最も遅い車輪の速度または2輪以上の車輪の平均速度として自動車速度を算出して自動車速度値を決定する構成を有し、車輪スリップ量が各車輪速度を算出した自動車速度と比較して決定される。コントローラ14に所定の車輪スリップ閾値が保存され、第2出力信号としての車輪スリップ量信号16が車輪スリップ閾値と常に比較され、車輪スリップ緩和のためのトルク緩和を要する状況であるか否かが決定される。車輪スリップ量信号16の値が車輪スリップ閾値を上回ると車輪スリップ状況と認定され、パワートレーンから車輪への付加トルクが緩和され、かくして車輪スリップ開始が、またはそれ以上の車輪スリップ発生が防止される。 (もっと読む)


【課題】エンジンからの動力を駆動輪へ出力し差動用電動機により差動状態が制御される差動機構を備えた車両用駆動装置において、車両のスリップ時にも非スリップ時にもエンジンの駆動制御を適切に行うことができる車両用駆動装置の制御装置を提供する。
【解決手段】ハイブリッド制御手段86は、基本的には、出力回転部材19の実回転速度である差動部実出力回転速度に基づいてエンジン8を制御する。そして、車両6のスリップ時には、上記差動部実出力回転速度に替えて、実際の車速Vに対応する車速基準出力回転速度に基づいてエンジン8を制御する。従って、上記スリップ時にエンジンパワーが不必要に大きくならないようにエンジン8の駆動制御を適切に行うことができる。また、基本的にはエンジン8は出力回転部材19の実回転速度に基づいて制御されるので、車両6のスリップ時以外でもエンジン8の駆動制御を適切に行うことができる。 (もっと読む)


【課題】 車両負荷が大きいときに第2クラッチの過剰な発熱を抑制可能なハイブリッド車両の制御装置を提供すること。
【解決手段】 エンジンとモータの間に第1クラッチを有し、モータと駆動輪の間に第2クラッチを有するハイブリッド車両において、車両負荷が所定値以上のときは、エンジンを作動させた状態で第1クラッチを解放し、モータをエンジン回転数よりも低い回転数として第2クラッチをスリップ締結することとした。 (もっと読む)


【課題】スプリットμ路を素早く検出し、適切なタイミングで車両の制御を実行する。
【解決手段】メイン制御部1で、左右のCCDカメラ1aにより得られた撮像画像を基に前方走行路がスプリットμ路であるいか否か判定し、前方走行路がスプリットμ路と判定された場合、衝突防止制御部2で設定するブレーキ介入距離を補正するブレーキ介入距離補正ゲインGBRを増加補正して、衝突防止制御部2は、このブレーキ介入距離補正ゲインGBRで補正したブレーキ介入距離を用いて通常より早いブレーキタイミングで衝突防止制御を行う。一方、前方走行路がスプリットμ路と判定された場合、エンジン制御部3で設定する目標トルクTtを補正する目標トルク補正ゲインGTを減少補正して発生する駆動力により、左右で異なった路面μによって車両にヨーモーメントが発生して車両が不安定になることを防止する。 (もっと読む)


【課題】運転指向を可及的に反映し、かつ路面μの低下にも対応した走行を可能にする車両制御装置を提供する。
【解決手段】車両の走行状態に基づいて指標を求め、その指標に応じて駆動力の制御特性とサスペンション機構による車体の支持特性との少なくともいずれか一方の特性を変更するように構成された車両制御装置において、前記車両が走行する路面の摩擦係数に関する情報を取得するとともに、前記指標に応じて変更された前記少なくともいずれか一方の特性を、前記路面の摩擦係数に関する情報に基づいて補正(ステップS1,S3,S5,S7)するように構成されている。 (もっと読む)


【課題】車体に作用する前後加速度と車輪速に基づく前後加速度により車輪速の低下を検出し、車輪速低下やスリップを検出した際に、的確にエンジンブレーキを抑制する。
【解決手段】車体に作用する前後加速度と車輪速に基づく前後加速度との差分値ΔGを算出し、アクセルONからOFFに変化する直前の所定時間、ΔGの変化率の絶対値が設定閾値を超えない状態のときにΔGの安定性が確保されていると判定し、アクセルONからOFFに変化した時に前後加速度GBと前後加速度Gwが第1の基準値と第2の基準値として更新され、これら基準値が更新されている場合、アクセルONからOFFに変化した時に、これら基準値の更新後のΔGが、第1の基準値−第2の基準値で補正した設定値以上の差を設定時間継続し、アクセルOFFを設定時間継続し、更にアップ/ダウンシフト完了後設定時間経過した場合に車輪速低下と判断して燃料カットを禁止する。 (もっと読む)


【課題】低μ路走行時の惰行制御が回避できる惰行制御装置を提供する。
【解決手段】車両が低μ路走行中であることを認識する低μ路走行認識部4と、前記低μ路走行認識部により車両が低μ路走行中であることが認識されているときは惰行制御を禁止する低μ路走行中惰行制御禁止部5とを備える。 (もっと読む)


【課題】車体に作用する前後加速度と車輪速に基づく前後加速度により車輪速の低下を検出し、車輪速低下やスリップを検出した際に、的確にエンジンブレーキを抑制する。
【解決手段】車体に作用する前後加速度GBと車輪速に基づく前後加速度Gwとの差分値ΔGを算出し、アクセルONからOFFに変化する直前の所定時間、差分値変化率の絶対値が、設定閾値を超えない状態のときにΔGの安定性が確保されていると判定し、アクセルONからOFFに変化した時に前後加速度GBと前後加速度Gwが第1の基準値と第2の基準値として更新され、第1の基準値と第2の基準値が更新されている場合、アクセルONからOFFに変化した時に、第1の基準値と第2の基準値の更新後のΔGが、第1の基準値GB−基準値Gwで補正した設定値以上の差を設定時間継続し、アクセルOFFを設定時間継続した場合に車輪速が低下していると判断して燃料カットを禁止する。 (もっと読む)


【課題】簡素な制御により、必要に応じて原動機の過剰な回転上昇を防止し、車両の滑らかな運転を実現しながら、運転者の運転操作が極力、反映されるようにする。
【解決手段】自動二輪車等の車両の原動機を制御する制御装置であって、車両の運転状態を検出する運転状態検出手段と、運転状態が第1の状態であるか否かを判定する第1判定手段と、運転状態が第2の状態であるか否かを判定する第2判定手段と、第1の状態であれば原動機の回転数を所定の上限値以下に制限する、回転数制限制御を行う回転数リミッタ手段と、第2の状態であれば回転数制限制御を解除するリミッタ解除手段と、を備える。 (もっと読む)


【課題】駆動輪の状態がスリップ状態とグリップ状態との間で変化する場合に駆動用回転電機において急激に発生する余剰電力を効率よく消費する。
【解決手段】HV−ECUは、余剰電力が発生し(S100にてYES)、発生した余剰電力がしきい値を超えていた場合であって(S102にてYES)、かつ、触媒温度が予め定められた値Ta以下である場合(S104にてYES)、EHCのオン時間を設定するステップ(S106)と、EHCをオンするステップ(S108)と、オン時間が経過した場合に(S110にてYES)、EHCをオフするステップ(S112)と、余剰電力がしきい値以下である場合(S102にてNO)、あるいは、触媒温度が予め定められた値Taよりも大きい場合(S104にてNO)、発生した余剰電力をバッテリで吸収する処理を実行するステップ(S114)とを含む、プログラムを実行する。 (もっと読む)


【課題】変速機を備えると共に、加速時の内燃機関や変速機の動作を適切に制御し、よって加速直後における加速性能を向上させるようにした船外機の制御装置を提供する。
【解決手段】変速機を備える船外機の制御装置において、変速機で2速が選択されているとき、内燃機関に対して操船者によって加速が指示されたか否か判定し(S32)、船外機が搭載される船舶の理論速度Vaと実速度Vに基づいてプロペラのスリップ率εを検出し(S38)、加速が指示されたと判定されるとき、検出されたスリップ率εの上昇を抑制するように内燃機関のスロットル開度THを制御すると共に(S42)、検出されたスリップ率εが第1の所定値ε1以下で、かつスリップ率の変化量Dεが規定値Dε1以下になったとき、2速から1速に変速するように変速機の動作を制御する(S44,S46)。 (もっと読む)


1 - 20 / 129