説明

Fターム[3G093FA12]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御部の特徴 (6,324) | 演算部内での処理 (5,972) | アクチュエータへの出力信号の処理 (705)

Fターム[3G093FA12]の下位に属するFターム

Fターム[3G093FA12]に分類される特許

141 - 160 / 664


【課題】第2電動機からの動力を有段式の自動変速機を介して駆動輪(車軸)に出力する車両において、ダウンシフト変速中のショック発生及び自動変速機の摩擦材熱負荷の増大を抑制する。
【解決手段】シーケンシャルモードで高車速走行している場合に、第2モータジェネレータMG2の熱負荷(発熱)を抑制するために高車速ダウンシフト変速線が選択されたときには、シーケンシャルシフト変速線をエンジン回転数を下げる側に変更することで、ダウンシフト変速中に第1モータジェネレータMG1による保護制御(エンジンオーバラン防止制御)が作動しないようにする。これによって、ダウンシフト変速中に第2電動機のトルクダウンを実施して第2電動機のモータの吹きを抑制することができ、変速ショックの低減及び摩擦係合要素の摩擦材の保護が可能になる。 (もっと読む)


【課題】EGRクーラの通路内壁に付着した煤を燃費や内燃機関の運転状態の悪化なく除去可能なEGRシステムを提供する。
【解決手段】EGR通路(10)にEGR弁(12)及びEGRクーラ(13)を含むEGR装置を設けるとともにEGR通路のEGRクーラよりも排気通路(8)側の部分に電気ヒータ(16)を設け、EGRクーラの加熱が要求されるとき、EGR装置を制御して少なくともEGRクーラへの排ガスの流入を許容し且つ電気ヒータへの通電を行う。 (もっと読む)


【課題】変速時における車両の駆動力の制御精度を向上する。
【解決手段】ECT部9200は、オートマチックトランスミッションの変速中において、目標出力トルクTOTを設定する。さらに、ECT部9200は、オートマチックトランスミッションの目標出力トルクTOTおよび入力トルクに応じて、摩擦係合要素のトルク容量を設定し、摩擦係合要素の実際のトルク容量が設定されたトルク容量になるように、摩擦係合要素に供給される油圧を制御する。パワートレーンマネージャ9100は、オートマチックトランスミッションの目標入力軸回転数(目標タービン回転数)に対応する目標エンジン回転数から目標エンジントルクを設定する。エンジン制御部9000は、設定された目標エンジントルクに基づいてエンジン1000を制御する。 (もっと読む)


【課題】運転者に与える加速感の低下を抑制することと、車両の燃費の低下を抑制することとのうち、少なくとも一方を達成すること。
【解決手段】変速比制御装置は、運転者の車両に対する加速の要求量に基づいて、第1目標回転速度と第2目標回転速度との中から入力軸の最終的な目標回転速度である最終目標回転速度を設定し、第1目標機関トルクと第2目標機関トルクと第3目標機関トルクとの中から動力発生手段の最終的な目標機関トルクである最終目標機関トルクとを設定する。これにより、本発明に係る変速比制御装置は、運転者に与える加速感の低下を抑制することと、燃費の低下を抑制することとのうち、少なくとも一方を達成する。 (もっと読む)


【課題】エンジンの制御精度を向上する。
【解決手段】ECUには、オートマチックトランスミッションのワンウェイクラッチが解放状態になった場合に目標エンジン回転数NETを設定するECT部9200と、車両の目標駆動力を第1目標エンジントルクに変換し、目標エンジン回転数NETを第2目標エンジントルクに変換し、第1目標エンジントルクおよび第2目標エンジントルクのうちのいずれか一方を最終的な目標エンジントルクとして設定するパワートレーンマネージャ9100と、設定された目標エンジントルクに基づいてエンジン1000を制御するエンジン制御部9000とが実装される。 (もっと読む)


【課題】内燃機関を負荷運転する際に駆動軸と電動機とに接続されたギヤ機構における異音の発生を抑制すると共に内燃機関を自立運転する際により適正な回転数で内燃機関を自立運転する。
【解決手段】駆動軸に要求される要求トルクTr*とエンジンの目標パワーPe*とに基づいてエンジンと二つのモータMG1,MG2を制御するとギヤ機構を介して接続されたモータ出力されるトルクが値0近傍となる条件の成立時に(S240)、エンジンを負荷運転するときには回転数およびトルクを変更した運転ポイントでエンジンを負荷運転する(S250,S260)。一方、前述の条件の成立時にエンジンを自立運転するときには(S250,S280)、バッテリの入力制限Winに応じた回転数(回転数N1または回転数N2)でエンジンを自立運転する(S190,S290)。 (もっと読む)


【課題】電動機からの動力により走行している最中のアクセルオフ時にシフトポジションが制動用ポジションに変更された際、内燃機関の回転抵抗による車両への制動力をより確実に作用させると共に発電機からのトルクが急変するのを抑制する。
【解決手段】所定時間内にエンジンのクランキング開始が判定されたときには(S120,S130)、バッテリの入力制限Winの範囲内でモータMG1によりエンジンをクランキングする(S200)。これにより、バッテリの入力制限Winより制限を課したBポジション用入力制限Winbなどで行なうものに比して、エンジンのモータリングをより確実に開始することができる。また、エンジンのクランキングが終了した以降は(S190)、Bポジション用入力制限Winbまで除変する入力制限の範囲内でエンジンをモータリングする(S220〜S260)。これにより、モータMG1のトルク変動を抑制することができる。 (もっと読む)


【課題】動的な要求エンジントルクおよび静的な要求エンジントルクの両方を考慮して、エンジンの制御精度を向上する。
【解決手段】静的な要求エンジントルクは動的な要求エンジントルクに変換される。静的な要求エンジントルクから変換された動的な要求エンジントルクと、他のシステムで設定された動的な要求エンジントルクとが調停される。静的な要求駆動力は動的な要求要求駆動力に変換される。静的な要求駆動力から変換された動的な要求要求駆動力と、他のシステムで設定された動的な要求要求駆動力とが調停される。 (もっと読む)


【課題】スタータの寿命を長くできるとともに、スタータの寿命を調整することができるように構成された定置型原動機を提供すること。
【解決手段】エンジン停止要求を受けた際に、スタータ6の累積駆動時間Tsとガスエンジン2の累積運転時間Teとを比較して、予め設定されたスタータ6の寿命時間Tjに対するスタータ6の累積駆動時間Tsの比率(Ts/Tj)が、ガスエンジン2の整備間隔時間Tmに対するガスエンジン2の累積運転時間Teの比率(Te/Tm)よりも大きいという関係が成立する場合、ガスエンジン2をアイドリング運転状態に移行させて延長運転させる制御を行うよう構成されてなるECU9を備えた定置型原動機11。 (もっと読む)


【課題】 車両が旋回中に所定の速度で走行する走行制御が開始された場合でも、ドライバ対して与える違和感を小さくすることができる車両走行制御装置を提供する。
【解決手段】 車間制御ECU1は、ヨーレートセンサ5から送信されるヨーレート信号および車速センサ7から送信される車速信号に基づいて自車両の旋回状態を検出する。ここで、自車両が旋回状態にあるときにクルーズ設定スイッチ4がONとされた場合には、ACCを開始するとともに、スロットル開度を0に設定して、現状のスロットル開度を維持するようにする。 (もっと読む)


【課題】エンジンと第1電動機と第2電動機とを備えたハイブリッド車両用動力伝達装置において、モータ走行中、第1電動機及び/又は第2電動機が正常作動不能となった場合に走行が困難になることを回避する制御装置を提供する。
【解決手段】モータ走行中に第1電動機M1及び/又は第2電動機M2が正常作動不能である場合には、可能であればエンジン8が始動され差動部11は差動制限状態にされるので、駆動力源がエンジン8に切り換えられエンジン走行により走行を継続でき、走行が困難になることを回避できる。また、差動部11が差動制限状態となりエンジン走行が実行されるので、そのエンジン走行において第1電動機M1または第2電動機M2のフェールに関係なく走行を継続できる。 (もっと読む)


【課題】差動機構と第1、第2電動機と自動変速部(機械式動力伝達部)とを備えた車両用動力伝達装置において、エンジン走行中に上記自動変速部にて動力伝達が遮断されエンジンにかかる走行負荷が急低下した場合に、第2電動機が高速回転してしまうことを回避する制御装置を提供する。
【解決手段】回転状態判定手段92は、第2電動機M2が高回転速度判定値LMT1を超えて高速回転している高速回転状態、または高回転速度判定値LMT1を超えた高速回転に至ることが予測される高速回転予測状態であるか否かを判定する。そして回転抑制手段94は、第2電動機M2が上記高速回転状態または高速回転予測状態である場合にエンジン回転速度Nをエンジン回転速度制限値LMTE以下に抑制するエンジン回転抑制制御を実行する。従ってエンジン回転速度上昇により第2電動機M2が高速回転してしまうことが回避される。 (もっと読む)


【課題】ニュートラルレンジから走行レンジへシフトされた場合に、エンジンストールとクラッチ耐久性低下とを防止でき、クラッチ保護とエンジンの耐ストール性を両立させる車両の制御方法を提供する。
【解決手段】NレンジからDレンジへシフトされ、その直後にアクセルが踏み込まれた時、Dレンジにおける同期タービン回転数を推定し、エンジン回転数から同期タービン回転数を引き算し、その計算値が負の値でかつその絶対値が所定値を越える場合は、トルクダウン制御を禁止し、上記計算値が上記以外の場合にはトルクダウン制御を実施する。このようにエンジン回転数が低い領域でトルクダウン制御を禁止するので、エンジンの吹き上がりとエンジンストールの両方を防止できる。 (もっと読む)


【課題】オペレータの出力要求に応じた方法においてシリーズハイブリッド車両を作動させる一方で、車両のドライバビリティにおいて、エンジン効率を最大化し、障害を最小化するのに好適な方法を提供すること。
【解決手段】シリーズハイブリッド車両の運転者が出力要求をする場合、第2の動力源(12)は、エネルギー貯蔵デバイス(14)に貯蔵された第2のエネルギー、エンジン(16)によって生成された直接入力のエネルギー、または両方、のいずれかが供給されるが、それは車両の第2の貯蔵デバイスのみに貯蔵された利用可能な第2のエネルギー量、および車両速度との組み合わせに依存する。エンジンが第2のエネルギーを生成するために使用される間、エンジンが作動する動力効率レベルはまた、車両速度、車両の第2の貯蔵デバイスのみに貯蔵された利用可能な第2のエネルギー量、および車両速度との組み合わせに依存する。 (もっと読む)


【課題】アルコールが混合された燃料に係る燃料性状を正確に推定する。
【解決手段】ハイブリッド車両10において、エタノール混合燃料を使用可能なエンジン200の始動時に、ECU100により始動制御が実行され、適宜当該燃料の燃料性状が推定される。この際、エンジン200が初爆状態に到達するまでのクランキング期間におけるクランキング回転速度NEkrが、エンジン200のフリクションを規定する指標値として取得される。一方、初爆以降、完爆状態に到達するまでのアシスト期間においても、MG1によるトルクアシストは継続されており、この際のトルクアシストの度合いは、燃料性状により大きく影響される。ECU100は、このトルクアシストの度合いとして、当該アシスト期間の長さを取得し、上記クランキング回転速度NEkr及び当該アシスト期間の長さに基づいて燃料性状を推定する。 (もっと読む)


【課題】よりドライバの感覚に合った走行制御を行う車両用走行制御装置を提供することを目的とする。
【解決手段】先行車との車間距離を目標距離に保つ車間制御モードと、前記先行車を確認できない場合に車速を設定車速に保つ定速制御モードとが切り替え可能で、前記車間制御モードから前記定速制御モードへの移行時であっても自車の走行環境が所定の走行環境である場合には当該移行に伴う加速を抑制する加速抑制制御を行う車両用走行制御装置であって、前記加速抑制制御を実行中にドライバによりアクセルペダルが踏下されたか否かの情報を取得するドライバ情報取得手段と、前記ドライバ情報取得手段により前記アクセルペダルが踏下された旨の情報を取得すると、前記加速抑制制御を解除して前記アクセルペダルの踏下に応じた加速を行う制御を行う車速制御手段とを有することを特徴とする。 (もっと読む)


【課題】内燃機関のアイドルストップ制御と蓄電装置の残容量の確保とをより適正に行なう。
【解決手段】回復充電モードではバッテリの充放電電流Ibが閾値Ibref未満の状態で所定時間Trefib経過する通常自動停止モードに移行する条件が成立しないときであっても(S560,S570)、所定時間Tref0が経過したときには回復充電モードを強制的に終了してアイドルストップ制御が許可され得る低自動停止モードに移行するから(S550,S600)、エンジンのアイドルストップ制御が実行されなくなる不都合を回避することができる。また、低自動停止モードでは、通常自動停止モードよりエンジンが自動停止されにくくするから、自動停止によるバッテリの放電を抑制することができる。この結果、エンジンのアイドルストップ制御とバッテリの残容量(SOC)の確保とをより適正に行なうことができる。 (もっと読む)


【課題】車両減速時にフューエルカット制御を行うときに、確実な燃費向上を可能とする。
【解決手段】フューエルカット制御と並行して実行されるエアコンカット制御では、エアコンがオン状態でフューエルカットが開始されると、エアコンECUへ過冷指示を行い、コンプレッサの冷房能力を高める(ステップ130〜134)。これと共に、車両減速時の加速度aを検出し、この加速度に基づいてエアコンカット車速VACを演算し、車速Vが演算されたエアコンカット車速に達すると、エアコンカット信号を出力することによりコンプレッサの停止を要求する(ステップ136〜142)。このときに、エアコンカット車速をタイムラグ及び、フューエルカットを解除する復帰車速に基づいて演算することにより、エアコンのオン状態に対する復帰車速に達する前に、確実にコンプレッサを停止状態とすることができる。 (もっと読む)


【課題】内燃機関の回転数が、共振現象を生じやすい回転数に長時間留まることを回避しつつ、エネルギー消費の増加を抑制する。
【解決手段】内燃機関の始動制御装置(1)は、アルコールを含んでなる燃料(141)を使用可能な内燃機関(11)、及び少なくとも内燃機関が始動するまでの間、内燃機関を回転させるモータ(12)を備える車両における内燃機関の始動制御装置である。該内燃機関の始動制御装置は、内燃機関を始動する際において、内燃機関の回転数が共振現象を生じる共振回転数領域の下限値に達するまでに、回転数の変動割合を検出する変動割合検出手段(320)と、検出された変動割合が変動閾値より小さいことを条件に、変動割合が増加するようにモータを制御する制御手段(310)とを備える。 (もっと読む)


【課題】容易な構成で、無用な作動を抑制して、騒音の防止、安全性の向上およびバッテリ寿命の延長を計るファン作動制御方法およびファン作動制御装置を提供する。
【解決手段】車両の外気温を検出し、ファンの作動時間をファン作動時間マップから外気温に応じて設定し、アイドルアップ時間をアイドルアップ時間マップから上記ファン作動時間に応じて設定する(ステップS22)。これにより、ファン作動時間およびアイドルアップ時間を容易に算出することができるとともに、必要のないファン作動やアイドルアップの時間を抑制して、無用な騒音の防止、作動時間の短縮による安全性の向上およびバッテリ寿命の延長を計ることができる。 (もっと読む)


141 - 160 / 664