説明

Fターム[3G301JA02]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 目的(一般) (15,384) | 燃費向上 (1,441)

Fターム[3G301JA02]に分類される特許

41 - 60 / 1,441


【課題】気筒内の外周部にガス層を形成しかつ中心部に混合気層を形成するべく、エンジンの運転状態に応じて、外開弁式のインジェクタにより気筒内に噴射される燃料噴霧のペネトレーションを所定の大きさに調整する場合に、燃費及びエミッションの悪化を出来る限り抑制する。
【解決手段】エンジン負荷が所定値以下である低負荷領域(リフト制御領域)にあるときにおいては、エンジンの運転状態に応じて、外開弁のリフト量を変更することによって、燃料噴霧のペネトレーションを上記所定の大きさに調整する一方、エンジン負荷が上記所定値よりも高い高負荷領域(燃圧制御領域)にあるときにおいては、エンジンの運転状態に応じて、燃圧調整手段により燃料圧力を変更することによって、燃料噴霧のペネトレーションを上記所定の大きさに調整する。 (もっと読む)


【課題】火花点火式エンジンにおいて、冷却損失を低減する。
【解決手段】制御器100は、エンジン本体(エンジン1)の運転状態が高負荷領域にあるときに、燃焼室17内において、その中央部分に、それを囲む外周部分よりもリッチな混合気層が形成されるように圧縮行程において燃料噴射を実行すると共に、燃焼開始時の燃焼室内全体の空気過剰率λが1以上になるようにする。制御器100はまた、空気過剰率λ≧1の高負荷領域において、燃焼室内に排気ガスを還流させる。 (もっと読む)


【課題】外開弁式のインジェクタにより気筒内に噴射される燃料噴霧のペネトレーションを小さくして、気筒内の外周部にガス層を形成しかつ中心部に混合気層を形成する場合に、その混合気層での燃料濃度を出来る限り均一にする。
【解決手段】エンジンの気筒内の外周部に新気を含むガス層が形成されかつ中心部に混合気層が形成されるように、圧縮行程においてインジェクタのノズル口から気筒内に燃料を噴射させるとともに、当該燃料噴射時において、初期及び末期における外開弁のリフト量を、その間におけるリフト量よりも大きくする。 (もっと読む)


【課題】幾何学的圧縮比εが18以上40以下に設定された高圧縮比リーンバーンエンジンにおける冷却損失を低減する。
【解決手段】制御器100は、エンジン本体(リーンバーンエンジン1)の運転状態が低負荷領域にあるときには、空気過剰率λを2以上に、又は、G/Fを30以上に設定する。制御器はまた、エンジン本体の運転状態が低負荷領域にあるときには、燃焼室17の区画壁周りに設けられた冷却水通路(ウォータジャケット121、131)内の冷却水を排して冷却水通路内をエア空間にする一方、エンジン本体の運転状態が高負荷領域にあるときには、冷却水の循環回路400内で冷却水を循環させることで冷却水通路内に冷却水を流通させる。 (もっと読む)


【課題】高圧縮比の火花点火式4サイクルリーンバーンエンジンにおいて、冷却損失を低減する。
【解決手段】制御器100は、幾何学的圧縮比εが18≦ε≦40に設定されたエンジン本体(リーンバーンエンジン1)の運転状態が低負荷領域にあるときには、空気過剰率λを2.5以上に、又は、G/Fを35以上に設定しかつ、吸気弁21の閉弁時期を、圧縮行程の中期以降となるように設定する。 (もっと読む)


【課題】内燃機関に対する要求出力の減少に基づき同機関の吸入空気量及びEGR量を減少させる際、そのEGR量の減少の応答遅れによる燃焼室内での混合気の燃焼悪化を抑制しつつ、無駄なエネルギ消費が生じることを抑制できるようにする。
【解決手段】内燃機関1に対する要求出力が減少するとき、その要求出力の減少量が判定値以上であるとき、もしくはバッテリの充電量が判定レベル以上であるときには、除変処理によるスロットルバルブ29の制御に代えて、急変処理によりスロットルバルブ29が制御される。この急変処理では、内燃機関1の吸入空気量の減少が上記徐変処理による減少よりも急速に行われるようスロットルバルブ29が閉じ側に変化される。 (もっと読む)


【課題】粒子状物質の排出抑制と燃費の好適化とを両立する。
【解決手段】エンジン10は、燃料を直接気筒内に噴射する燃料噴射弁19を備える。ECU50は、エンジン運転状態に基づいて、エンジン10から排出される粒子状物質(PM)の量が最小となる燃料噴射時期(PM基準噴射時期)を算出する。また、エンジン10の排気中に含まれるPMの量を検出する。そして、燃料噴射弁19による燃料噴射を燃料噴射ごとに指令する噴射時期指令値を、PM量が所定の上限値を超えない範囲で、PM基準噴射時期から、今現在のエンジン運転状態において燃費が最良となる燃料噴射時期(燃費最良噴射時期)に向かって徐変させる。 (もっと読む)


【課題】この発明は、燃料噴射弁の噴射率を大きくしなくても、広い運転領域において燃料の微粒化を促進しつつ、片側吸気運転を実行することを目的とする。
【解決手段】エンジン10は、1つの燃焼室12に接続された吸気ポート20A,20Bと、吸気ポート20A,20Bに個別に燃料を噴射する燃料噴射弁24A,24Bと、一方の吸気ポート20Aに設けられた片側吸気用噴射弁26とを備える。そして、吸気バルブ30Bを閉弁停止した片側吸気運転を行うときに、エンジンの要求噴射量が燃料噴射弁24Aの最大噴射量を超える場合には、燃料噴射弁24Aと片側吸気用噴射弁26の両方により燃料を噴射する。これにより、燃料噴射弁24Aの噴射率を大きくしなくても、片側吸気運転を適用可能な負荷領域を高負荷側に拡大することができる。 (もっと読む)


【課題】機関運転に影響を与えることなく、空燃比センサの応答性に起因した排気性能の悪化を抑えることのできる内燃機関の空燃比制御装置を提供する。
【解決手段】電子制御装置22は、排気通路13に設けられた空燃比センサ19の出力値に基づいて空燃比フィードバック制御を行うとともに、燃料カットから復帰した後の空燃比フィードバック制御の開始時期を可変設定する。そして、燃料カット復帰後に空燃比センサ19で検出される空燃比の変化速度に基づき、空燃比フィードバック制御の開始時期を可変設定する。 (もっと読む)


【課題】燃料圧の切替え指示を行うタイミングを最適化し、燃料圧が切替った場合においても実際の燃料噴射量が所望の燃料噴射量から乖離することを抑制することにより、燃費向上を図ることができる燃料供給装置を提供する。
【解決手段】ECUは、噴射インターバルtcが燃料圧の変動時間t2より大きい場合には(ステップS14でYES)、次に燃料噴射が行われる気筒において燃料噴射が終了したと同時に変動時間t2が開始するよう切替弁を制御する。また、ECUは、変動時間t2が、噴射インターバルtcに所定時間αを加えた時間より短い場合には(ステップS15でYES)、次に燃料噴射が行われる気筒において燃料噴射が終了したと同時に変動時間t2が開始するよう切替弁を制御する。一方、変動時間t2が、噴射インターバルtcに所定時間αを加えた時間以上である場合には、ECUは、燃料圧の切替タイミング設定を回避する(ステップS17)。 (もっと読む)


【課題】再始動時に内燃機関の制御精度の悪化を抑制する。
【解決手段】ECUは、自動停止制御による停止期間Tsが第1期間Ts(0)以上であって(S100にてYES)、バッテリのSOCがしきい値SOC(1)以上である場合に(S102にてYES)、クランキング制御を実行するステップ(S104)と、第2期間Tcが経過した場合にクランキング制御を終了するステップ(S108)と、エンジンを再始動させる場合に(S110にてYES)、第1始動制御を実行するステップ(S112)と、SOCがしきい値SOC(1)よりも小さい場合であって(S102にてNO)、かつ、エンジンを再始動させる場合に(S114にてYES)、第2始動制御を実行するステップ(S116)と、異常診断を無効化するステップ(S118)とを含む、プログラムを実行する。 (もっと読む)


【課題】燃料圧力変更時の応答性を向上し、燃料供給圧力の切替時間の算出精度を向上し、燃費を向上する圧力制御装置および燃料供給装置を提供する。
【解決手段】燃料消費部に燃料を供給する燃圧制御弁50と、燃料の燃料圧を制御する操作圧燃料の燃料圧を切り替える燃料切替弁70とを備える圧力制御装置32において、燃料切替弁70が、燃料管部82に往復動可能に収容されて往復動により燃料管部82を開閉可能なシール部84と、シール部84と一体的に往復動可能なアーマチャ部83と、シール部84を開弁方向にアーマチャ部83を移動する電磁コイル72と、シール部84を閉弁する方向にアーマチャ部83を移動する付勢手段74とを備えてなる圧力制御装置32であって、アーマチャ部83の往復動方向の一方側の空間に開口した第1の口と、他方側の空間に開口した第2の口と、第1の口および第2の口を連通する連通路とを有する貫通孔83aを備える。 (もっと読む)


【課題】
内燃機関の燃焼方法を運転状態に応じて変更する方法が提案されているが、異なる燃焼方法においては燃焼騒音の発生状況も自ずと異なってくることが考えられ、従来技術の検出方法では異なる燃焼方法に対応できず燃焼騒音の検出精度が低かった。
【解決手段】
内燃機関の燃焼モードを把握し、内燃機関の燃焼室内の燃焼騒音を検出する燃焼騒音センサの検出周波数、或いは検出周波数帯域を燃焼モードに基づいて選択して燃焼騒音を検出することで燃焼騒音が精度よく検出できる。 (もっと読む)


【課題】EGR成層燃焼を行う内燃機関において、燃料と新気との混合を促進させつつ、内部EGRガスに燃料が混じることを抑制して、EGR成層燃焼における混合気の均質度を向上させ、燃費性能を改善する。
【解決手段】第1吸気弁の開時期を上死点前に設定し、第2吸気弁の開時期を上死点以降に設定する一方、第1吸気弁及び第2吸気弁の閉時期を下死点以降に設定することで、第1吸気弁上流側の吸気ポートに吹き返したEGRガスが、上死点後に燃焼室に吸入されるようにし、かつ、燃焼室内に生成されるスワール流を強化することで、燃料と新気との混合を促進させる。そして、第1吸気弁上流側の吸気ポートに吹き返したEGRガスが、上死点後に燃焼室に吸入されてから、第1吸気弁に向けた燃料噴射を開始させ、これにより、第1吸気弁を介して燃焼室に吸入されるEGRガスに燃料が混じることを抑制する。 (もっと読む)


【課題】筒内空燃比に関する正確な情報に基づいて内燃機関を制御することのできる過給機付き直噴内燃機関の制御装置を提供する。
【解決手段】目標排気空燃比を取得するとともに、吸気弁を通過する空気の量に対する排気通路に吹き抜ける空気の量の割合(以下、スカベンジ割合)に関する情報を取得する。そして、スカベンジ割合に関する情報に基づき目標排気空燃比を補正することによって筒内空燃比を算出する。筒内空燃比は、過給機付き直噴内燃機関の動作を制御する少なくとも1つのアクチュエータの操作量を決定するための情報の1つとして用いられる。 (もっと読む)


【課題】手動変速機73のシフトアップ後における、ディーゼルエンジン1の燃焼安定性の低下を回避する。
【解決手段】エンジン1が完全暖機する前の運転状態において、燃料噴射弁(インジェクタ18)は、拡散燃焼を主体とした主燃焼を行うために圧縮上死点又はそれよりも前に燃料噴射を開始する主噴射と、主燃焼の開始前に前段燃焼が生起するように、主噴射よりも前のタイミングで少なくとも1回の燃料噴射を行う前段噴射と、を実行し、EGR手段(排気ガス還流通路50、排気ガス還流弁51a、クーラバイパス弁53a)は、エンジンの運転状態に応じたEGR量の排気還流を実行する。EGR手段はまた、アクセルの全閉とクラッチ(クラッチ機構72)の開放とを伴う変速機73のシフトアッププロセスの最中に、当該シフトアッププロセスの開始直前のEGR量を保持する。 (もっと読む)


【課題】アイドル以外の運転域でも補正量を追従させることができるエンジンの制御方法を提供すること。
【解決手段】予め、複数の回転数に対応つけて、補機トルクと制御量との関係を記憶させておき、前記記憶させた関係に基づいて、補機トルクの算出値から該当する回転数に対応する前記制御量の推定値を算出し、前記制御量の推定値と、エンジン回転数、スロットル開度、インマニ圧力の少なくとも1つから算出した前記制御量の指令値とを比較し、前記制御量の推定値と指令値との比較によって生じた差分を検出する。 (もっと読む)


【課題】船内負荷の急減時に対して船速の変動を応答良く抑制することができる排熱回収システムを搭載した船舶の推進方法及びその推進方法が用いられる船舶を提供する。
【解決手段】内燃機関の出力によりプロペラを回転させる工程と、内燃機関から発生する排ガスによって電力を生成する工程と、電力を生成する工程により生じた余剰電力により電動機を駆動させることでプロペラの回転をアシストする工程と、を備えた船舶の推進方法であって、目標プロペラ回転数と実プロペラ回転数の偏差を基準燃料噴射量に換算する工程と、機関回転数、および電動機の出力から演算された機関出力に基づき、内燃機関への燃料噴射量の補正値を演算する工程26と、基準燃料噴射量から前記補正値を減算することで内燃機関に供給すべき補正燃料噴射量を算出する工程21bと、を備えたことを特徴とする。 (もっと読む)


【課題】筒内噴射式内燃機関において、燃料及び火炎等がキャビティと接触して熱損失を生じるため、エネルギーを十分に活用できずに燃費が悪化する。
【解決手段】
ピストンと、前記ピストンの頂面に設けられ、底面と側壁面とから成るキャビティと、前記キャビティに向かって燃料を噴射する燃料噴射手段と、燃料の噴射期間を制御する噴射期間制御手段とを備える筒内噴射式内燃機関において、前記キャビティは、前記ピストンの外周側に位置する第一キャビティと、前記ピストンの内周側に位置する第二キャビティとから成り、前記第二キャビティは、前記第一キャビティにおける底面に設けられ、前記第一キャビティにおける底面を前記ピストンの中心軸に向けて延長した仮想延長底面よりも下方に位置するキャビティを用い、燃料噴射期間を制御することを特徴とする筒内噴射式内燃機関。 (もっと読む)


【課題】EGR装置を備えたエンジンにおいて、EGRガスによる減速時及び再加速時の失火を防止できるようにする。
【解決手段】筒内流入EGRガス量を推定すると共にエンジン運転状態に基づいて失火限界EGRガス量を算出し、失火限界EGRガス量と筒内流入EGRガス量とを比較して失火が発生するか否かを予測する。そして、失火が発生すると予測したときに、失火回避制御(例えば、燃料噴射量増量制御、点火エネルギ増加制御、気流強化制御、吸入空気量増加制御等)を実行する。その際、筒内流入EGRガス量と失火限界EGRガス量との差に基づいて失火回避に必要な要求失火対策効果量を算出し、その要求失火対策効果量に応じて失火回避制御を実行する際の条件(例えば、失火回避制御の種類、組み合わせ、制御量、実施タイミング等)を変更して、要求失火対策効果量を実現するのに適した条件で失火回避制御を実行する。 (もっと読む)


41 - 60 / 1,441