説明

Fターム[3G301KA01]の内容

Fターム[3G301KA01]の下位に属するFターム

Fターム[3G301KA01]に分類される特許

81 - 100 / 1,465


【課題】省エネ効果を高めることができ、エンジンによる無駄な燃料消費を抑えることが可能な田植機を提供する。
【解決手段】田植機1は、エンジン14と、HST21aおよび遊星歯車機構21bを有するHMT21と、主変速レバー65と、苗継ぎ位置検出スイッチ65aと、モータ71と、モータ用ポテンショメータ71aと、変速ペダル67と、ペダル用ポテンショメータ67aと、制御装置100と、を備え、制御装置100は、苗継ぎ位置検出スイッチ65aから苗継ぎ位置検出信号を取得しない場合でペダル用ポテンショメータ67aから変速ペダル67が踏み込まれていないことを示すペダル信号を取得するときにエンジン14が第一アイドリング回転数で回転するようにモータ71を駆動し、苗継ぎ位置検出スイッチ65aから苗継ぎ位置検出信号を取得する場合にエンジン14が第二アイドリング回転数で回転するようにモータ71を駆動する。 (もっと読む)


【課題】誤ったクランク角の情報に基づいて内燃機関が自動起動されてしまうことを抑制し、排気性状が悪化したり、自動起動を正常に完了させることができなくなったりすることを抑制することのできる車載内燃機関の制御装置を提供することにある。
【解決手段】本発明にかかる車載内燃機関の制御装置である電子制御装置100は、カムシャフト60,70が停止しているときであってもその回転位相に基づくカム角信号を出力することのできるカムポジションセンサ106,107を備えている。電子制御装置100は、クランクシャフト50が停止したあと、出力されているカム角信号から推定されるクランク角の範囲と、記憶されているクランクカウンタの値とを比較し、記憶されているクランクカウンタの値が推定されるクランク角の範囲から外れている場合には、記憶されているクランクカウンタの値を利用せずに、通常の始動態様による始動を実行する。 (もっと読む)


【課題】潤滑油の温度に代わるパラメータを用いることで、エンジンの暖機状態に応じた適切な燃料噴射量を算出するようにした汎用エンジンの制御装置を提供する。
【解決手段】汎用エンジンの吸気管に配置されたスロットルバルブのスロットル開度(スロットル開度指令値)THとエンジン回転数NEとに基づいて基本噴射量を算出すると共に、汎用エンジンの点火プラグ座の温度変化量を検出し、検出された点火プラグ座の温度変化量に基づいて基本噴射量を補正して暖機時の燃料噴射量を算出してインジェクタから噴射させる暖機制御を実行する(S16,S18)。 (もっと読む)


【課題】低温始動後に副燃料が副燃料配管内に残存することを防止する。
【解決手段】始動用の副燃料を内燃機関へ噴射供給する副燃料供給系20として、副燃料が貯留される副燃料タンク22と噴射孔24とを結ぶ副燃料配管21には、その上流側より、副燃料を加圧する副燃料ポンプ25と、副燃料配管21の遮断・連通状態を切換可能な切換弁26と、所定容積の空気室31を有するエアチャンバ30と、が設けられる。主燃料による始動が困難な所定の低温始動時には、切換弁26を連通状態として、副燃料ポンプ25により加圧された副燃料を噴射孔24より吸気通路11へ噴射供給する。この際、空気室31には空気が圧縮状態で閉じ込められる。始動後に切換弁26を遮断状態とすると、空気室31に一時的に閉じ込められている圧縮された空気が膨張することによって、切換弁26の下流側に残存する副燃料が速やかに吸気通路11へ排出される。 (もっと読む)


【課題】本発明は、自動変速装置に接続され、所定の停止条件に基づきエンジンを自動的に始動および停止させるエンジンの自動始動停止制御装置を提供する。
【解決手段】本エンジンの自動始動停止制御装置は、自動始動後のスロットル開度制御の解除によりエンジン回転数および/またはタービン回転数が所定値以上に増大したことを検知して、スロットル開度制御を再開し、エンジン回転数および/またはタービン回転数の増大量からクラッチ係合までに要する時間の延長を推測して、スロットル開度制御によりスロットル開度を漸次大きくする制御構成を有する。 (もっと読む)


【課題】エンジン回転数及び燃料噴射量を自動的に制御することができる構成簡素なエンジンの電子制御装置を提供する。
【解決手段】 スロットル弁13を開閉駆動するステッピングモータ20と,目標エンジン回転数設定手段25と,ステッピングモータ20を作動して,エンジン回転数Ne及び燃料噴射量Qを制御する電子制御ユニット21とを備える,エンジンの電子制御装置であって,電子制御ユニット21がエンジンEの回転数を目標値に合わせるようにステッピングモータ20に入力するパルス数を増減させ,また電子制御ユニット21がステッピングモータ20への入力パルス数,エンジン回転数及び燃料噴射量の関係を示すマップ32を保持していて,ステッピングモータ20に入力されるパルス数とエンジン回転数に基づきマップ32から燃料噴射量Qを決定する。 (もっと読む)


【課題】機関始動時に凝縮水が被水することによる素子割れを確実に防止しつ、かつ、早期に空燃比フィードバック制御を開始できる空燃比検出装置を提供する。
【解決手段】内燃機関1の排気通路4に設けられた空燃比センサ7と、空燃比センサ7の素子を昇温させるために空燃比センサ7に内蔵されたヒータと、内燃機関1が始動したら素子の昇温を開始し、素子が活性温度に達したら素子の昇温速度を低下させるようヒータを制御する制御手段8と、を備える。 (もっと読む)


【課題】車両走行中の機関始動に伴って運転者に与えられる違和感を軽減することのできる車載内燃機関制御装置を提供する。
【解決手段】車両1は、駆動輪7を回転させる動力源として内燃機関3及び第2のモータジェネレータMG2を備える。電子制御装置20は、車両走行中に機関始動を行なうに際して、車両の要求駆動力TRQが所定値TRQth以下であるときには、マウント11の変形度合が所定度合以下であると推定して、当該機関始動の2サイクル目の燃料噴射量Q2を1サイクル目の燃料噴射量Q1に対して大きく設定する(Q2>Q1)。一方、車両の要求駆動力TRQが所定値TRQthよりも大きいときには、マウント11の変形度合が所定度合よりも大きいと推定して、当該機関始動の1サイクル目の燃料噴射量Q1を2サイクル目の燃料噴射量Q2に対して大きく設定する(Q1>Q2)。 (もっと読む)


【課題】組成変動の大きい燃料ガスを使用しても安定したエンジンの起動を確保する。
【解決手段】セルモータと、燃焼用空気中に燃料ガスを供給する燃料ガス供給装置と、エンジン回転数を検出する回転数センサーと、前記燃料ガス供給装置による燃料ガス供給量を制御する制御手段を有するガスエンジンの始動制御方法である。セルモータによる初期クランキング期間(T1)中、前記燃料ガス供給装置による燃料ガス供給量を所定の変更範囲(W1)内で順次増加させ、あるいは順次減少させ、初爆が生じた時の初爆回転数値(Ns)を前記回転数センサーにより検知し、制御手段に入力する動作を実行する。初期クランキング期間(T1)でエンジンが起動しなかった場合に、前記初爆回転数値(Ns)に対応する燃料供給量、たとえば燃料制御弁開度(Qs1)により、再度クランキングを実行する。 (もっと読む)


【課題】エンジン始動時の噴射装置における短絡障害を検出する障害検出方法を提供する。
【解決手段】噴射装置は1つまたは複数の圧電式燃料噴射器12a、12bを備え、これらの噴射器は駆動回路20内で接続される。本発明の一態様では、駆動回路内のバイアス点PBにおける電位VBが求められ、予測電圧VPBと比較される。バイアス点における電位が、予測電圧の所定許容電圧VTOLの範囲外である場合、短絡障害信号が生成される。本発明の別の態様では、第1の充電パルスが噴射器に印加されて噴射器が充電される。第1の充電パルスの後で、放電スイッチQ2を閉じることによって遅延期間Δt中に放電電流経路38が提供される。不良噴射器は、遅延期間Δt中に放電電流経路を介して放電することになる。遅延期間の後で、第2の充電パルスが噴射器に印加される。第2の充電パルス中に電流ISが感知され、第2の充電パルス中の電流が所定の閾電流よりも大きい場合、短絡警告信号が生成される。 (もっと読む)


【課題】より適正なタイミングで内燃機関から出力されるパワーが目標パワーに近づくよう内燃機関のスロットル開度をフィードバック制御する。
【解決手段】入力制限の絶対値が低温により比較的小さい値になっているとき、始動後経過時間tseが判定用閾値trefに至る前や始動後経過時間tseが判定用閾値trefに至ったとき以降でもエンジンや第1モータに異常が判定されているときにはスロットル開度をフィードフォワード制御し(ステップS120〜S160,S230〜S280)、始動後経過時間tseが判定用閾値tref至ったとき以降であり且つエンジンや第1モータが正常と判定されているときにはエンジンから実際に出力されるパワーが要求パワーPe*に近づくようスロットルバルブの開度をフィードバック制御する(ステップS120〜S150,S170〜S270)。 (もっと読む)


【課題】内燃機関の始動にあたってポートインジェクタ内の燃料中にベーパが発生している場合であっても、ベーパの発生を抑制し、燃料噴射量の減少を抑制することのできる燃料噴射制御装置を提供する。
【解決手段】
内燃機関の始動時には、ポートインジェクタによる始動が行われる。この際、ポートインジェクタ内の燃料中に発生すると予測されるベーパ量を推定し、同ベーパ量が所定値以上であると推定されるときには、筒内インジェクタによるアシスト噴射を行い、燃料を吸気通路に供給することで、吸気通路内の圧力を増加させる。これにより、ベーパの発生を抑制することができる。 (もっと読む)


【課題】エンジンの始動状態が自立始動か負荷始動かに拘わらず、エンジン始動時にエンジンの運転状態に関わる車両状態をより正確に判定する。
【解決手段】エンジン18の始動状態が自立始動か負荷始動かに基づいて、エンジン始動時のエンジントルクTを用いてエンジン18の運転状態に関わる車両状態(例えばエンジン18に供給される燃料Fの性状)を判定するときの判定方法が切り替えられるので、例えば自立始動か負荷始動かによってエンジン始動時のエンジントルクTの出方が異なることに対して、自立始動か負荷始動かに合わせてエンジン18の運転状態に関わる車両状態をより正確に判定することができる。 (もっと読む)


【課題】始動時の機関回転数が不安定な状態におけるスロットルバルブのばたつきを抑制する。
【解決手段】この内燃機関の制御装置は、内燃機関の始動状態と内燃機関の機関回転数とを検出し、内燃機関の目標トルクを実現するための目標スロットル開度を算出すると共に、目標スロットル開度の算出に際しては、機関回転数に応じた空気応答遅れ補償量に基づいて空気の応答遅れを補償する。更に、内燃機関の制御装置は、機関回転数の変化に基づいて、機関回転数が不安定であるか否かを判別し、内燃機関の始動状態が検出され、かつ、前記機関回転数が不安定であると判別された場合には、空気の応答遅れ補償量を制限する。 (もっと読む)


【課題】エンジンの始動時における実際の燃料噴射タイミングと所望の燃料噴射タイミングとのずれを低減する。
【解決手段】制御コンピュータCは、シグナルロータ31の回転に伴って出力されるパルスを用いて、エンジン回転数を算出する。制御コンピュータCは、圧縮行程中の期間(θ1,θ2)での平均のエンジン回転数Ne1,Ne2を算出する。制御コンピュータCは、エンジン回転数Ne1,Ne2を用いて、基本噴射角度Pθ,Mθにおける換算用エンジン回転数を算出する。そして、制御コンピュータCは、換算用エンジン回転数を用いて余り角度ΔΘp,ΔΘmを余り時間ΔTp,ΔTmに換算する。 (もっと読む)


【課題】低温始動時等の燃料が気化し難い状況において気化燃料を筒内に供給する内燃機関において、気化燃料供給時の空燃比ズレを抑制して始動性およびエミッションを向上させることが可能な内燃機関の制御装置を提供する。
【解決手段】気化燃料を蓄える気化燃料タンク38と、気化燃料タンク38とサージタンク20との接続部を開閉する常閉の気化燃料供給弁42と、を有し、運転中に気化燃料供給弁42を閉弁した状態でタンク内に燃料を噴射して気化燃料を生成し、エンジン始動時に気化燃料供給弁42を開弁し、タンク内に蓄えられていた気化燃料をサージタンク20へ供給する。気化燃料生成時には気化燃料供給弁42内の混合気の空燃比を推定し、当該空燃比が略ゼロとなるまで気化燃料の生成を継続する。 (もっと読む)


【課題】アルコール燃料を用いる内燃機関の制御装置に関し、供給する気化燃料が不足する状況でも、始動性を向上させるとともにエミッション特性の悪化を抑制する。
【解決手段】始動時に供給する気化燃料が不足するか否かを判定する(ステップ200〜212)。その結果、気化燃料が不足する場合には、気化燃料の供給に筒内燃料噴射を併用する。この際、冷却水温Te>所定水温Tsおよびアルコール濃度E<所定濃度Esの成立を判定し(ステップ216)、判定成立時には、始動時の点火気筒数のうち気化燃料が不足するまでの点火気筒には該気化燃料を供給し、不足後の点火気筒には筒内燃料噴射を行う第1の噴射形態を実行する(ステップ218)。一方、判定不成立時には、全ての点火気筒に気化燃料を分割して、各点火気筒の燃料不足分をそれぞれ筒内燃料噴射で補う第2の噴射形態を実行する(ステップ220)。 (もっと読む)


【課題】能動型防振支持装置と組み合わせて、エンジンの始動時に発生する初爆によるエンジン振動が車体に伝達することを抑制できるエンジン始動制御装置を提供する。
【解決手段】モータリング状態において、エンジン回転速度Neが閾値Nethに達したとき、ACM_ECU71は、初爆による振動のゲインを電流制御指令値としてエンジン・AT_ECU73に送信する。エンジン・AT_ECU73は、電流制御指令値から要求入力振動値を取得し、その要求入力振動値に適合するようにエンジン始動時制御部211aにおいて初爆エネルギを調節して初爆の制御をする。 (もっと読む)


【課題】 内燃機関の始動を圧縮着火燃焼によって適切に行うことができ、圧縮着火燃焼の実行領域を拡大できる内燃機関の始動制御装置を提供する。
【解決手段】 本発明による内燃機関3の始動制御装置では、内燃機関3の始動が要求されたときに、圧縮着火燃焼(HCCI燃焼)に必要な始動時HCCI空気量が気筒Cに存在しているか否かを判定する(図13、図14のステップ71〜74)。始動時HCCI空気量が気筒Cに存在していると判定されたときには、始動要求後の排気行程において、排気弁7の閉弁タイミングを早め、気筒Cに存在していた空気を圧縮するとともに、筒内燃料噴射弁19から気筒C内に燃料を噴射し、点火プラグ17から火花を発生させることにより、圧縮された空気の一部を用いて排気行程燃焼を実行する。そして、その直後に圧縮着火燃焼を実行することにより、内燃機関3を始動する(図15のステップ83、84、図18)。 (もっと読む)


【課題】エンジン始動時の燃料噴射時期を過進角若しくは過遅角を生じることなく最適な噴射時期に制御し、エンジン回転速度を速やかに上昇させて始動性を向上する。
【解決手段】エンジン回転が上昇せずに停滞又は降下していると判断される場合、燃料噴射時期のマップ値TFINmapに所定の補正値Δtを加算して燃料噴射時期TFINを進角させ(S3)、進角後の回転速度傾きが進角前の回転速度傾きより大きくなった((NE−NE0)/dt>0)か否かを判定する(S5)。エンジン回転が上昇した場合、燃料噴射時期を更に進角させ(S6)、前の回転速度傾きよりも悪化した場合、燃料噴射時期を補正値Δtだけ遅角させる(S8)。これにより、燃料噴射時期の過進角や過遅角を防止してエンジン回転速度を速やかに上昇させ、始動性を向上することができる。 (もっと読む)


81 - 100 / 1,465