説明

Fターム[3G301LA07]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 主たる制御手段(空気、混合気) (5,458) | 吸気バルブ(タイミング) (1,278)

Fターム[3G301LA07]に分類される特許

141 - 160 / 1,278


【課題】炭化水素(HC)の排出量を低減することが可能な内燃機関の燃料噴射制御装置を提供する。
【解決手段】吸気弁5の位相角及びリフト量を含む動弁特性が変更可能な可変動弁機構6を備えた内燃機関1に適用される燃料噴射制御装置であって、その吸気弁5の開弁時に筒内に流入する吸気の流速が所定の閾値を超えて増大する領域αに吸気弁5の動弁特性が設定されたか否かを判別する動弁特性判別手段と、当該動弁特性が領域αに設定されたと判断された場合、燃料噴射の開始時期を吸気弁5の開弁時期よりも当該動弁特性の設定状態に応じて遅角させる燃料噴射時期制御手段とを備える。 (もっと読む)


【課題】2機のターボ過給機を用いて過給を行う際に、付与されるアシスト力をできるだけ低く抑えながら十分な過給圧を確保する。
【解決手段】本発明のターボ過給機付エンジンには、過給容量が相対的に大きい大型ターボ過給機25と、過給容量が相対的に小さい小型ターボ過給機35とが設けられており、上記大型ターボ過給機25には、そのコンプレッサ27の回転をアシストするアシスト駆動手段(30)が設けられている。エンジンの低回転・高負荷寄りに設定された2段ターボ領域(A3)では、上記アシスト駆動手段(30)の作動により上記大型ターボ過給機25のコンプレッサ27が回転駆動されるとともに、ここで加圧された吸気が上記小型ターボ過給機35のコンプレッサ37に導入されることにより、上記大型・小型ターボ過給機25,35の両方によって過給が行われる。 (もっと読む)


【課題】2機のターボ過給機を使い分けて効率的な過給を行いながら、過給条件を変更する際にエンジントルクが変動するのを防止する。
【解決手段】エンジンの低速寄りの回転域に設定された小型ターボ領域(A2)で、小型ターボ過給機35のみを用いた過給を行い、これよりも高負荷側に設定された2段ターボ領域(A3)で、大型・小型ターボ過給機25,35をともに用いた2段過給を行う。上記小型ターボ領域(A2)から2段ターボ領域(A3)への移行時には、まず上記大型ターボ過給機25のタービンバイパス通路40およびコンプレッサバイパス通路41の両方を開放した状態で、大型ターボ過給機25のコンプレッサ27をアシスト駆動手段(30)により回転駆動させ、その後コンプレッサ27の回転速度が所定値以上に上昇した時点で、上記大型過給機25のコンプレッサバイパス通路41を遮断する。 (もっと読む)


【課題】圧縮自己着火可能な運転領域を拡大する。
【解決手段】低負荷域では、排気行程途中から吸気行程途中にかけて吸気弁および排気弁が共に閉じている負のオーバラップ期間が形成されるように、排気弁の閉弁時期と吸気弁の開弁時期とが設定される。吸気行程中に気筒内に燃料噴射を行ってピストンの圧縮作用により燃焼室内の混合気が自己着火で燃焼される。エンジン負荷が低いほど、吸気弁の閉弁時期が、そのときのエンジン回転数において空気充填量が最大となるタイミングからずれるように遅角または進角される。この遅角または進角による吸気弁閉弁時期のずらし量は、エンジン負荷が低いほど増加される。 (もっと読む)


【課題】 内燃機関の始動直後における吸気弁の最大リフト量制御をより適切に行い、良好な排気特性を得ることができる内燃機関の制御装置を提供する。
【解決手段】 機関始動後に空燃比センサ23が活性化したと判定され、空燃比フィードバック制御実行条件が成立する時刻t1において吸気弁の下限リフト量LFTMINが第1リフト量LFT1より小さな第2リフト量LFT2に変更される。時刻t1より前では空燃比センサ23に出力に基づく空燃比フィードバック制御を行うことができないので、下限リフト量LFTMINを時刻t1以後より大きな第1リフト量LFT1に設定しておくことにより、空燃比のずれを抑制し、排気特性の悪化を防止する。時刻t1において下限リフト量LFTMINを小さくすることにより、排気浄化触媒21の活性化が早められる。 (もっと読む)


【課題】機関回転数に変動が生じた時、目標回転数に機関回転数を維持するため、補助空気量を増減させる制御を行うものがある。従来は、この補助空気量の増減量を決定するために、負荷が発生すると想定される要因に応じた補助空気量をあらかじめデータマップに記憶しておいたが、記憶させる補正値を運転環境に応じて適合し、決定しなければならない課題がある。
【解決手段】内燃機関のアイドル回転数を保持するために必要なエンジン出力を、負荷の変化に伴い、当該負荷の要素となるエンジンのロストルク、補機類の駆動負荷を個別に物理モデルにより推定し、前記補機類は、エアーコンディショナーとオルタネータとATトルクコンバータとを含み、前記物理モデルはエンジン出力と駆動負荷推定量による学習機能を備えるとともに、前記駆動負荷の推定値に基づいてエンジン出力補正量を演算し、アイドル回転数を制御するアイドル回転数の制御装置である。 (もっと読む)


【課題】吸気弁の閉弁時期を早閉じ範囲と遅閉じ範囲とに設定し、該閉弁時期の遅閉じ範囲から早閉じ範囲への移行中にスロットル弁を絞る場合に、開き気味のスロットル弁開度に設定することができるようにして、ポンプ損失を出来る限り低減する。
【解決手段】内燃機関の要求トルクが、第1所定トルク以上である状態から、該第1所定トルク以下に設定された第2所定トルクを超えて低下するときに、機関速度が所定量以上低下する可能性を判定し、前記可能性が所定レベルよりも低いと判定したとき(ステップS66の判定がNOであるとき)、吸気弁の閉弁時期が遅閉じ範囲から早閉じ範囲へ移行し且つスロットル弁が一時的に閉方向に作動するようにし(ステップS68の進角遷移モードMTR-Aにし)、前記可能性が前記所定レベル以上であると判定したとき(ステップS66の判定がYESであるとき)、吸気弁の閉弁時期が遅閉じ範囲に留まるようにする。 (もっと読む)


【課題】吸気弁の閉弁時期を早閉じ範囲と遅閉じ範囲とに設定し、該閉弁時期の遅閉じ範囲と早閉じ範囲との間の移行中にスロットル弁を絞る場合に、その移行中に内燃機関のトルク過渡応答性が低下するのを抑制する。
【解決手段】応答速度判定工程において判定される吸気閉弁時期可変機構の応答速度が所定速度以上であることが確認される前では(ステップS56の判定がNOであるとき)、各気筒サイクルにおいて、遅閉じ範囲内および早閉じ範囲内のうちのいずれか一方の範囲内で吸気弁を閉じ(ステップS55)、応答速度が所定速度以上であることが確認された場合には(ステップS56の判定がYESであるとき)、機関運転状態に応じて遅閉じ工程、早閉じ工程および運転領域移行工程を実行する(ステップS60)。 (もっと読む)


【課題】吸気弁の閉弁時期を早閉じ範囲と遅閉じ範囲とに設定し、該閉弁時期の遅閉じ範囲から早閉じ範囲への移行中にスロットル弁を絞る場合に、開き気味のスロットル弁開度に設定することができるようにして、ポンプ損失を出来る限り低減する。
【解決手段】機関運転状態が第1運転領域から第2運転領域へ移行するときに、吸気弁の閉弁時期が遅閉じ範囲から早閉じ範囲へ移行し且つスロットル弁が一時的に閉方向に作動する運転領域移行動作が生じるようにするとともに、動力伝達装置による機関速度低下動作(シフトアップ)の要求が有ると判定したとき(ステップS73の判定がYESであるとき)において、前記運転領域移行動作終了の判定がなされている場合(ステップS74の判定がNOである場合)に、機関速度が低下するように動力伝達装置を制御する(ステップS75)。 (もっと読む)


【課題】冷間始動性を向上させることができる始動制御装置を提供する。
【解決手段】内燃機関10を始動するための始動制御装置1において、前記内燃機関10の吸気弁2を任意のタイミングで開弁可能な可変動弁機構3と、前記内燃機関10の吸気通路4内の温度を検出する吸気温度検出手段5と、前記内燃機関10を始動する際に前記吸気温度検出手段5により検出された温度が所定の閾値以下の間は、前記内燃機関10をクランキングすると共に、そのクランキング中の圧縮行程後半および膨張行程前半のいずれか一方または両方で前記可変動弁機構3により前記吸気弁2を開弁させる制御手段6とを備えたものである。 (もっと読む)


【課題】燃料の気化を促進させ、機関始動を容易に行わせる技術を提供する。
【解決手段】内燃機関がクランキングされる気筒の初爆直前サイクルでは、当該気筒が吸気行程の時期に吸気弁を吸気弁可変動弁機構で閉弁し(S108)、当該気筒内に燃料噴射手段で燃料を噴射し(S109)、当該気筒内への点火手段での点火を禁止し、当該気筒が排気行程の時期に排気弁を排気弁可変動弁機構で閉弁状態に維持し(S110)、当該気筒の初爆サイクルでは、当該気筒内への燃料噴射手段からの燃料噴射を禁止する。 (もっと読む)


【課題】吸入行程でのリフト量をより良好な精度で予測することにより、実際の駆動リフト量および燃料噴射量、しいては空燃比をより的確に制御する。
【解決手段】吸気バルブのリフト量を変更可能な可変動弁機構を備える内燃機関において、リフト量とリフト量に関連する燃料噴射量とを制御するための制御装置を提供する。その制御装置は、目標リフト量と実リフト量とから予測リフト量を算出する手段51と、予測リフト量に基づいて、次の制御周期において噴射すべき燃料噴射量を算出する手段52と、実リフト量と遅延回路(1/Z)53によって1周期分遅らされた目標リフト量とからフィードバック制御によりリフト制御量を算出する手段54と、リフト制御量に基づいて吸気バルブのリフトの駆動を制御する手段55を備える。 (もっと読む)


【課題】可変バルブタイミング機構のロック位置学習からドライバのアクセル操作による目標バルブタイミング制御へ移行する際の加速応答遅れを抑制し、ドライブフィーリングの悪化を防止する。
【解決手段】ロック位置学習フラグFがF=1すなわちロック位置学習を実施中である場合、アクセル開度が0%から変化したか否かを調べる(S1,S2)。そして、アクセル開度が0%から変化した場合、ロック位置学習フラグFを0にクリアしてロック位置学習を終了させ(S3)、燃料噴射量を設定時間だけ増量させる(S4,S5)。これにより、ロック位置学習からドライバのアクセル操作による目標バルブタイミング制御へ移行する際の加速応答遅れを抑制し、ドライブフィーリングの悪化を防止することができる。 (もっと読む)


【課題】エンジン始動後に燃焼安定度を許容範囲に保ちつつ排気ガス温度を速やかに上昇させて触媒の早期活性化を図ることのできるエンジン制御を提供する。
【解決手段】排気ガス温度及び/又は触媒温度を検出ないし推定するとともに、エンジンの運転状態に基づき、前記排気ガス温度及び/又は触媒の目標温度を設定し、前記温度検出手段により検出ないし推定された現在温度と前記目標温度とに基づき、エンジンの燃焼状態に関与する制御パラメータ(点火時期、燃料噴射量、排気弁開時期)を変化させる冷機始動用燃焼制御を行なう。燃焼安定度が許容範囲内である場合には、前記制御パラメータを、排気ガス温度を高める方向に変化させ、燃焼安定度が許容範囲外である場合には、前記制御パラメータを、燃焼安定度を高める方向に変化させる。 (もっと読む)


【課題】燃料系の誤差と空気系の誤差のそれぞれに応じて、適切に補正を実施し、空燃比ばらつきとトルクばらつきの双方を補正する。
【解決手段】排気管集合部10Aの空燃比に基づいたフィードバック制御を実施中に、目標空燃比と実空燃比の差が所定値以下のとき、角加速度のばらつきがもっとも大きい気筒cyl_1の空燃比を例えば、燃料増量によってリッチ側に補正する。その後、あらためて、気筒毎の角加速度を検出し、気筒間の角加速度ばらつきが解消されていないときは、前記ばらつきがもっとも大きかった気筒の空気制御量に誤差があると判断し、当該気筒の空気量、燃料量、点火時期などを補正する。 (もっと読む)


【課題】従来から車両に搭載される構成を用いてクラッキング時にセルモータで消費される電力、すなわちバッテリ放電電力を所望値に設定可能とすることで、車載バッテリの放電特性を精度良く監視および診断できるようにする。
【解決手段】車載バッテリ放電装置10は、車両1に搭載されるエンジン12をクラッキングするために駆動されるモータ24と、クラッキング時にモータ24を駆動するための電力を放電する充電可能なバッテリ16と、クラッキング時におけるバッテリ放電電流Ibおよびバッテリ放電電圧Vbを検出するバッテリ放電検出部40,42と、外部からの入力Pinに応じて、クラッキング時のエンジン回転トルクおよびエンジン回転数の少なくとも1つを変更することによりクラッキング時のバッテリ放電電力を所望値に設定可能な制御装置26と、を備える。 (もっと読む)


【課題】 気筒内において温度分布をつけるとともに燃料濃度を均一化することにより、着火後の圧力上昇率の低い緩慢燃焼と二酸化窒素の発生を抑制する燃焼を実現し、HCCI運転可能領域を拡大できるHCCIガソリンエンジンを提供する。
【解決手段】
前記気筒1a内に、主として新気からなる低温ガス層T2と主としてEGRガスからなる高温ガス層T1とを層状をなすように形成する層状化機構70を備え、筒内燃料噴射弁24の特性及び配置構造を、噴射燃料が前記低温ガス層T2を通過後に前記高温ガス層T1に到達するように設定した。 (もっと読む)


【課題】機関出力を安定させることができる内燃機関システムの制御方法及び内燃機関システムを提供する。
【解決手段】内燃機関2のエンジン回転数が、等スロットル開度において内燃機関2のトルクが最大となる機関速度よりも低く設定された第1速度Nよりも低いときに、エンジン回転数の上昇に応じて、吸気弁28及び排気弁32の開閉位相の変更を、第1率A1で増加させ、エンジン回転数が、第1速度Nより高く設定された第2速度Nよりのときに、エンジン回転数の上昇に応じて、吸気弁28及び排気弁32の開閉位相の変更を、第1率A1より小さい第2率A2で増加させ、エンジン回転数が第1速度Nと第2速度Nの間であるときに、エンジン回転数の上昇に応じて、吸気弁28及び排気弁32の開閉位相の変更を、第1率A1よりも小さく第2率A2以下である第3率A3で増加させる。 (もっと読む)


【課題】熱利用要求に応じた廃熱制御を実施でき、しかも要求熱量の変更に伴う制御切替時のショック等を低減する。
【解決手段】ECU40には、エンジンの熱効率特性を各々異なるものとする複数の制御モードが設定されている。ECU40は、熱利用要求に基づいてエンジンの廃熱量を増加又は減少させるべく制御モードを切り替える際に、熱利用要求の発生タイミング又は解消タイミングに対して制御モードの切替を遅延させて実施する。特に、ECU40は、熱効率特性に応じた制御モードの切替の前後で熱効率特性が同じになるか又は同熱効率特性の変化がほぼ生じないエンジンの運転領域で制御モードの切替を実施する。 (もっと読む)


【課題】プレイグニッションが生じ得る機会を広く捕らえてプレイグニッションを回避する。
【解決手段】吸気流量を調節する吸気流量調節手段(29)と、プレイグニッションの発生を回避することの可能な吸気弁閉時期での筒内温度及び筒内圧力の各上限値を決定する吸気弁閉時期筒内温度・圧力上限値決定手段(41)と、基本吸気流量に基づいて吸気弁閉時期での筒内温度及び筒内圧力の各推定値を算出する吸気弁閉時期筒内温度・圧力推定値算出手段(42)と、吸気弁閉時期筒内温度・圧力上限値決定手段(41)により決定される吸気弁閉時期での筒内温度及び筒内圧力の各上限値と、吸気弁閉時期筒内温度・圧力推定値算出手段(42)により算出される吸気弁閉時期での筒内温度及び筒内圧力の各推定値とに基づいて、プレイグニッションの発生を回避するように吸気流量調節手段(29)を制御する制御手段(43、44)とを備える。 (もっと読む)


141 - 160 / 1,278