説明

Fターム[3G301ND01]の内容

Fターム[3G301ND01]の下位に属するFターム

Fターム[3G301ND01]に分類される特許

121 - 140 / 1,762


【課題】適切なタイミングでエンジンを始動させることができ、走行モードの切り替えをスムーズに行うことができるハイブリッド車両の内燃機関始動制御装置を提供する。
【解決手段】駆動用モータと、内燃機関とを有すると共に、駆動用モータに電力を供給するバッテリの残容量を検出する残容量検出手段51と、内燃機関の排気通路に設けられる空燃比検出器の検出結果に基づいて内燃機関の稼働をフィードバック制御する内燃機関制御手段52とを備え、残容量が所定の第1残容量よりも高い所定の第2残容量以下になると空燃比検出器の予熱を開始し、その後で第1残容量以下となると内燃機関を始動させる構成とする。 (もっと読む)


【課題】 内燃機関の複数気筒に対応する空燃比がばらつくインバランス故障を比較的簡単な構成で正確に判定することができる空燃比制御装置を提供する。
【解決手段】 機関の安定運転状態において、機関運転状態に応じて三元触媒14の上流側における排気温度TEXUの適正値である上流温度適正値TEXUREFを算出し(S33)、排気温度TEXUの推定値である推定上流排気温度HTEXUを算出する(S34)。推定上流排気温度HTEXUが、上流温度適正値TEXUREFから所定量DTEXを減算した温度より低いとき、インバランス故障が発生していると判定する(S36)。推定上流排気温度HTEXUは、排気通路に設けられる酸素濃度センサの加熱素子に供給される電流のデューティ比DUTY1または素子抵抗値RI1に応じて算出される。 (もっと読む)


【課題】ディーゼルエンジンでも三元触媒を適用し得るようにして尿素水タンクや尿素水供給管といった付帯設備を不要とし、尿素水の補給といった手間も省けるようにする。
【解決手段】制御装置27により各EGRバルブ23,24を制御して低圧ループ21により加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施し且つ高圧ループ22では不足EGR率分を補足するべく追加の排気ガス再循環を実施することで空燃比を理論空燃比近傍に抑制すると共に、ディーゼルエンジン1の燃料噴射装置を制御してディーゼルエンジン1でのメイン噴射直後の着火可能なタイミングでアフタ噴射を実施することで該アフタ噴射による未燃燃料分の増加とその一部の酸化反応による酸素消費とにより空燃比を理論空燃比まで下げ、三元触媒20を機能させるようにする。 (もっと読む)


【課題】 高負荷低回転運転状態に限定されることなく燃料噴射弁の異常判定を高い精度で行うことができる内燃機関の空燃比制御装置を提供する。
【解決手段】 空燃比センサにより検出される空燃比が目標空燃比と一致するように、空燃比補正係数KAFが算出される。各気筒の空燃比を理論空燃比よりリッチ側の空燃比とリーン側の空燃比とに変動させるパータベーション制御が実行され(S22)、パータベーション制御を実行していない状態で算出される空燃比補正係数KAFの記憶値KAFMEMと、パータベーション制御を実行している状態で算出される空燃比補正係数値(パータベーション係数値)KAFPTとの差DKAFが、判定閾値DKAFTH以下であるときに、燃料噴射弁の何れかが異常であると判定される(S26〜S28)。 (もっと読む)


【課題】発電用のエンジンを搭載したレンジエクステンダ型の電気自動車において、排出ガス浄化率を確保しながら低コスト化の要求を満たすことができるようにする。
【解決手段】発電用のエンジン10は、要求発電量等に応じて運転モードを切り換えるとき以外は定常運転することができるため、過渡運転時の空燃比制御の応答性をあまり必要としない。この点に着目して、触媒38の下流側に排出ガスセンサ39(例えば酸素センサ)を設置し、この排出ガスセンサ39の出力に基づいて空燃比フィードバック制御を実行する。これにより、触媒の上流側に排出ガスセンサを設置する場合に比べて、排出ガスセンサ39の出力特性の変化(ばらつき)を小さくして、空燃比制御精度の低下を抑制することができ、触媒38の排出ガス浄化率を確保することができる。また、触媒の上流側と下流側の両方に排出ガスセンサを設置する場合に比べて、低コスト化できる。 (もっと読む)


【課題】スロットルバルブの固着異常と、スロットルバルブが全開又は全閉ストッパに衝突する異常とを判別し、それぞれの異常に適したフェールセーフ処理を実行することが可能な内燃機関のスロットル制御装置を提供する。
【解決手段】減速ギヤ13の噛込みによりスロットルバルブ3が固着した異常状態である場合には、アクセルペダルセンサ6によって検出される踏込量が変化するのに対し、スロットルバルブ3が全開又は全閉ストッパに衝突する異常状態である場合には、全てのセンサの検出信号が実質的に変化しなくなるので、アクセルペダルセンサ6によって検出される踏込量がほとんど変化しない。従って、アクセルペダルセンサ6の信号を利用することにより、スロットルバルブの固着異常と、ストッパ衝突異常とのいずれが生じているのかを判別し、それぞれの異常状態に適したフェールセーフ処理を実行することが可能となる。 (もっと読む)


【課題】冷却制御装置に関し、エンジンの冷却水温の制御性を向上させつつ燃費を改善する。
【解決手段】エンジン10の燃焼形態の変化を検出する検出手段1aと、電力供給を受けて作動しエンジン冷却水の流量を可変制御するウォーターポンプ4と、検出手段1aで検出された前記燃焼形態の変化に応じて前記流量を変更する変更手段1cと、を備える。前記燃焼形態としては、例えばリーン燃焼やストイキ燃焼といった燃焼形態を検出してもよい。 (もっと読む)


【課題】内燃機関の制御装置に関し、排気ガスの空燃比の時間変化が大きい場合であっても、精度の良い酸素濃度センサの出力値を得る。
【解決手段】内燃機関の排気通路に配置され、排気通路を流れる排気ガス中の酸素濃度に応じた出力を発するサブO2センサを備える。サブO2センサの出力値の変化速度に応じて、サブO2センサの出力値を補正する。これにより排気ガスの空燃比の時間変化が大きくなることで定常特性に対する酸素濃度センサの出力値のばらつき(ヒステリシス)が生ずるような場合であっても、精度の良い酸素濃度センサの出力値が得られるように補正することが可能となる。 (もっと読む)


【課題】アイドリング状態における酸素濃度センサの活性を得難いエンジンであっても、アイドリングを安定可能なエンジンの空燃比制御装置およびエンジンの空燃比制御方法を提案する。
【解決手段】エンジン18の空燃比制御装置31は、スロットルバルブ32が全閉状態か否かを検知するスロットルセンサ33と、エンジン回転数センサ35と、スロットルバルブ32の全閉状態およびエンジン18の回転数からエンジン18がアイドリング状態か否かを判断するアイドリング判断部36と、エンジン18の排気ガスの酸素濃度を測定する酸素濃度センサ37と、酸素濃度センサ37を加熱するヒータ38と、アイドリング状態のとき、時系列における補正係数の変化が予め定める所定の範囲に収束すると補正係数の代表値を維持して燃料供給量の制御を行うとともにヒータ38への給電を継続的または断続的に停止するECU43と、を備える。 (もっと読む)


【課題】WGVを有する過給機付きの多気筒内燃機関において、WGVの開閉状態によらず、気筒別の空燃比を高精度に制御することのできる内燃機関の制御装置を提供する。
【解決手段】WGV40が開いているか否かを判定する(ステップ100〜102)。その結果、WGV40が閉じている場合には、空燃比制御に使用する輸送遅れ時間を、タービン301を通過する排気経路長に対応した値に設定する(ステップ104)。一方、WGV40が開いている場合には、空燃比制御に使用する輸送遅れ時間を、排気バイパス通路38を通過する排気経路長に対応した値に設定する(ステップ106)。設定した輸送遅れ時間に基づいて空燃比センサ52の出力信号に対応する気筒を特定し、当該空燃比センサ52の出力信号を特定気筒の燃料噴射量の計算にフィードバックする空燃比制御を実行する(ステップ108)。 (もっと読む)


【課題】燃料の圧力が変化した場合においても、燃料噴射弁を確実に開弁することができる内燃機関の燃料噴射制御装置を提供する。
【解決手段】この内燃機関3の燃料噴射制御装置では、燃料噴射弁4のコイル6bに駆動電流IACを供給することにより、燃料噴射弁4に供給された燃料の圧力に抗して弁体9を駆動し、開弁させることによって、燃料を噴射する。燃料噴射弁4に供給される燃料の圧力PFは、燃料圧力制御手段2により、設定された目標燃料圧力PFCMDになるように制御される。また、目標燃料圧力PFCMDが高いほど、駆動電流の目標となる目標駆動電流は、より大きな値に設定される。さらに、目標燃料圧力PFCMDが増大側に変化したときに、コイル6bへの駆動電流IACの供給を開始し、その後、供給された駆動電流IACが目標駆動電流に達したときに、燃料圧力制御手段2による燃料圧力の制御を開始する。 (もっと読む)


【課題】 内燃機関の減筒運転時における空燃比制御をより適切に行うことができる内燃機関の空燃比制御装置を提供すること。
【解決手段】 内燃機関が減筒運転により作動しているとき(ステップ1005にて「Yes」)、ステップ1010にて休止気筒数を確認する。続いて、ステップ1015にて前記確認した休止気筒数と検出された吸入空気流量とに対応する排気圧力の増加量を算出し、ステップ1020にて前記算出した排気圧力の増加量に対応する下流側空燃比センサの応答性の向上量を算出する。そして、ステップ1025にて、前記算出した応答性の向上量に対応する下流側空燃比センサの検出時間の短縮量を算出する。このように、内燃機関の減筒運転時における空燃比センサの応答性の向上を考慮することにより、フィードバック制御の応答性を改善し、空燃比制御をより適切に行うようにすることができる。 (もっと読む)


【課題】 プラントを制御する制御量のリミット処理を行うことによる制御性の悪化を最小限に抑制することができるプラントの制御装置を提供する。
【解決手段】 リミット処理の対象となるフィードバック制御量UMとリミット処理後フィードバック制御量UMFとの差分値dLMTの過去値に応じて、フィードバック制御量の修正値DLMが算出され、フィードバック制御量Uを修正値DLMにより修正して、修正フィードバック制御量UMが算出される。修正フィードバック制御量UMのリミット処理が行われ、リミット処理後フィードバック制御量UMFが制御入力としてプラントに入力される。修正値DLMは、プラントの応答特性を示す応答特性パラメータαに応じた値に設定される修正係数KMと、差分値dLMTの過去値とを用いて算出される。 (もっと読む)


【課題】離散時間系の制御対象モデルを用いて、所定の拘束条件が複数のモデルパラメータ間に存在する制御対象や、1次遅れなどの遅れ特性を有する制御対象を制御する場合において、制御精度および制御の安定性を向上させることができる制御装置を提供する。
【解決手段】制御装置1は、ECU2を備える。ECU2は、2つのモデルパラメータα,1-αを含む制御対象モデルを整理し、モデルパラメータαが乗算されていない項および乗算されている項を制御対象モデルの左辺および右辺にそれぞれ振り分けるとともに、左辺を合成信号値W_actとし、右辺を推定合成信号値W_hatとしたときに、合成信号値と推定合成信号値との間の同定誤差eid'が最小となるように、モデルパラメータαの同定値αidをオンボードで算出し、この同定値αidと制御対象モデルから導出された制御アルゴリズム(式(34),(35))とを用いて、空燃比補正係数KAFを算出する。 (もっと読む)


【課題】目標スート再生量を設定して、該目標スート再生量になるようにスート再生量を直接制御して、再生温度と再生時間を適正化し、過昇温とオイルダイリューションを抑えることができるディーゼルエンジンの排ガス浄化装置を提供することを目的とする。
【解決手段】排気通路に酸化触媒(DOC)7およびディーゼルパティキュレートフィルター(DPF)9を備えるディーゼルエンジンの排気浄化装置において、DPFの再生制御で燃焼室内に燃焼に寄与しないタイミングで燃料を噴射するレイトポスト噴射制御手段62が、レイトポスト噴射量をDPF9によって再生されるスート再生量が目標スート再生量になるようにフィードバック制御することを特徴とする。 (もっと読む)


【課題】異常しきい値を適切に定めて検出精度を向上し、誤検出を防止する。
【課題手段】本発明に係る気筒間空燃比ばらつき異常検出装置は、多気筒内燃機関の排気通路に設置された空燃比センサと、前記空燃比センサの出力の変動度合いに基づいて気筒間空燃比ばらつき異常を検出する異常検出手段であって、前記空燃比センサ出力の変動度合いに相関するパラメータの値を所定の異常しきい値と比較してばらつき異常を検出する異常検出手段と、前記パラメータの値又は前記異常しきい値のうち少なくとも一方を大気圧に基づいて補正(S104,S105,S108,S109)する補正手段と、を備える。 (もっと読む)


【課題】むだ時間や応答遅れが変化する特性を備えた制御対象を制御する場合において、制御精度を向上させることができる制御装置を提供する。
【解決手段】制御装置1のECU2は、4個のむだ時間dがそれぞれ経過したタイミングでの制御量として、4個の予測値PRE_KACT_4-iを算出し、排ガスボリュームVexに対応する4個の重み関数値Wdiを算出し、重み関数値Wdiを予測値PRE_KACT_4-iにそれぞれ乗算することにより、4個の乗算値Wdi・PRE_KACT_4-iを算出し、4個の乗算値Wdi・PRE_KACT_4-iの総和を予測当量比PRE_KACTとして設定し、予測当量比PRE_KACTが目標当量比KCMDになるように、空燃比補正係数KAFを算出する。 (もっと読む)


【課題】車両の挙動の乱れを招くことなく、潤滑油圧の異常低下時のフェイルセーフを実現する。
【解決手段】潤滑油圧が閾値未満かつエンジン回転数が閾値以上となったときにエンジン回転数を閾値以下に抑制するフェイルセーフ処理を実行するとともに、当該フェイルセーフ処理の実行開始時のエンジン回転数が高いほど、フェイルセーフ処理の実行開始直後におけるエンジン回転数の低下速度を大きくする。このようなものであれば、車両の走行中に内燃機関を完全に停止させてしまうことがない。加えて、潤滑油圧の異常低下時、高回転領域では速やかにエンジン回転数を低下させて内燃機関の焼き付きを確実に予防し、低中回転領域ではエンジン回転数の低下を緩やかにしてエンジン回転数のアンダーシュートを抑制することができる。 (もっと読む)


【課題】内燃機関の燃焼制御装置及び燃焼制御方法において、内燃機関の制御パラメータに基づいて着火時期及び熱発生期間を効率的な算出手段により精度よく推定することにより、安定性及び追従性に優れた燃焼制御を実現する。
【解決手段】内燃機関(1)の燃焼制御装置(40)は、着火時期及び熱発生期間が目標値に近づくように複数の制御パラメータを制御する。特に、試運転時の取得データに基づいて予測モデル式を複数の制御パラメータの一次式として予め作成し、実運転時に該予測モデル式を解くことにより、前記目標値に対応する複数の制御パラメータの適正値を求めて補正量を算出し、該補正量に基づいて複数の制御パラメータを制御する。 (もっと読む)


【課題】電子スロットルバルブの動作角度を制限する機械的な機構を用いない構成で、角度検出手段が異常となっても、モータ制御を継続して電子スロットルバルブを急激な開閉を防止した電子スロットル制御装置を得る。
【解決手段】コントロールユニット1は、異常検出時に、異常検出後の角度情報θ1、θ2を使用せずに、角度検出手段6が異常となる前の角度情報θbと、角度検出手段6が異常となる前のモータ2の供給電力情報と、角度検出手段6の異常が検出されるまでの時間Tbcと、あらかじめ設定したスロットル角度の変化速度とに基づいて、電子スロットルバルブ3を駆動するモータ2を制御する。 (もっと読む)


121 - 140 / 1,762