説明

Fターム[3G384EA11]の内容

内燃機関の複合的制御 (199,785) | 演算処理A(制御方式) (7,004) | 学習制御 (1,784) | 学習値の設定、変更 (494)

Fターム[3G384EA11]の下位に属するFターム

Fターム[3G384EA11]に分類される特許

1 - 20 / 447


【課題】電子制御スロットルの製造バラつきがある場合でも、従来より最適なスロットル制御を行うことができる内燃機関の制御装置を提供する。
【解決手段】エンジンECUは、内燃機関のアイドル時のエンジン回転数制御後、この学習を行って(ステップS1)、アイドル時の単位時間あたりの吸入空気量を表す学習値を得て(ステップS2)、内燃機関のエンジン回転数を検出し(ステップS3)、学習値とエンジン回転数とに基づいて走行時の吸入空気量を算出し(ステップS4)、この値に基づいてスロットル開度を制御する(ステップS5)。 (もっと読む)


【課題】高価な空気過剰率センサを追加することなく、燃料供給システムの異常を診断することができる内燃機関の燃料噴射の異常判定方法を提供する。
【解決手段】NOxセンサ21の酸素濃度値から算出した実空気過剰率と、吸気通路5に設けたMAFセンサ22で検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率との偏差値を算出し、現学習値を、偏差値がゼロになるように補正して、新たな学習値を算出し、インジェクタ3からの燃料噴射に際しては、現指示燃料噴射量を学習値で補正して、燃料噴射を行い、学習値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定する。 (もっと読む)


【課題】排気ガス処理装置の下流に設けたNOxセンサを用いて、実際の燃料噴射量と指示された燃料噴射量との偏差を補正することができる内燃機関の燃料噴射方法と内燃機関を提供する。
【解決手段】排気通路7に設けた排気ガス浄化装置15の下流に設けたNOxセンサ21の酸素濃度値O2_exhから算出した実空気過剰率λ1と、吸気通路5に設けたMAFセンサ22で検出された新気空気量m_airと現指示燃料噴射量Q_finから算出した目標空気過剰率λ2との偏差値Δλを算出し、コモンレール圧と指示燃料噴射量をベースとする学習領域マップM1に記憶され、且つ、現学習値を偏差値Δλがゼロになるように補正して新たな学習値L(I,J)を算出し、燃料噴射に際しては、現指示燃料噴射量Q_finと現コモンレール圧Pに対応する現噴射時間T(i,j)を学習値L(I,J)で補正して、燃料噴射を行う。 (もっと読む)


【課題】内燃機関の空燃比学習制御装置において、空燃比学習制御に用いる学習値を常に適正な値に更新して、内燃機関の燃焼状態を適正な状態に維持することにある。
【解決手段】電子制御装置(27)は、現在使用中の第一の吸気学習値とこの第一の吸気学習値と他の変速領域に記憶される第二の吸気学習値との偏差を算出する偏差算出手段(27E)と、この偏差算出手段(27E)で算出された前記第一の吸気学習値と前記第二の吸気学習値との偏差が補正条件値から乖離する場合に、前記第二の吸気学習値を前記第一の吸気学習値に近づける学習値補正手段(27F)とを備えている (もっと読む)


【課題】機械的機構の歯打ちなどによる異音の発生を抑制するために電動機からトルクを出力しているときでも、より適正な内燃機関のアイドリング運転時の制御量を学習する。
【解決手段】アイドリング学習条件が成立してアイドリング制御量を学習する際には、モータMG2から押し当てトルクTadを出力しているときには、押し当てトルクTadが大きいほど大きくなる傾向に補正空気量Qadを設定し(S130)、この補正空気量Qadをアイドリング運転時における吸入空気量Qaに加算することによる補正を施してアイドリング空気量Qidlを計算し(S150)、アイドリング空気量Qidlを含むアイドリング制御量を学習する(S160)。これにより、プラネタリギヤの歯打ちなどによる異音の発生を抑制するための押し当てトルクTadをモータMG2から出力しているときでも、より適正なアイドリング制御量を学習することができる。 (もっと読む)


【課題】失火判定の学習機会をより確実に確保し、経年変化に拘わらずエンジンの失火の判定をより適正に行なう。
【解決手段】ユーザーによりレディオフが指示されたときには(S200)、エンジンを目標回転数Ne*で自立運転すると共に特定気筒への燃料カットを実施して擬似失火状態をつくり(S210〜S270)、擬似失火状態で検出されるエンジンの回転変動RFに基づいて失火判定用の閾値を学習する。そして、学習が完了したときに(S280)、エンジンを停止してレディオフとする(S310,S320)。これにより、失火判定の学習機会をより確実に確保することができ、経年変化に拘わらずエンジンの失火を適正に判定することができる。 (もっと読む)


【課題】燃圧センサの個数削減を図った燃料噴射システムにおいて、その削減対象となった燃料噴射弁における噴射量を高精度で制御することを、マップ作成に要する作業負荷軽減を図りつつ実現可能にする。
【解決手段】センサ有り噴射弁から噴射された燃料の燃焼に伴い生じた第1出力ΔNE(#1)、およびセンサ無し噴射弁から噴射された燃料の燃焼に伴い生じた第2出力ΔNE(#2)を検出する出力検出手段S12と、第1出力を生じさせたセンサ有り噴射弁からの燃料噴射量である第1噴射量Q(#1)を、燃圧センサの検出値に基づき算出する第1噴射量算出手段S13と、第2出力を生じさせたセンサ無し噴射弁からの燃料噴射量である第2噴射量Q(#2)を、検出した第1出力、第2出力、および算出した第1噴射量に基づき推定する第2噴射量推定手段S15と、を備える。 (もっと読む)


【課題】電源不足が生じても自動二輪車のトラクション制御の誤動作や中断がないようにする。
【解決手段】少なくとも前車輪速センサおよび後車輪速センサに供給するためにバッテリの出力電圧に基づいてセンサ駆動電圧を作成し、そのセンサ駆動電圧に基づくセンサ電圧またはバッテリの出力電圧に基づく電源電圧が、少なくとも前車輪速センサおよび後車輪速センサが正常に作動する電圧範囲として設定される所定電圧範囲から外れた状態では、エンジンの回転加速度に基づいて車輪スリップ状態を判断し、その判断結果に基づいて算出したエンジン制御量でエンジン出力を制御する。 (もっと読む)


【課題】従来に比してより信頼性の高いラムダセンサの応答性の良否判断を可能とする。
【解決手段】車両が減速状態にあって、エンジン回転数が所定範囲内にある場合に(S110)、エンジンの一つの気筒に対して微小噴射を行い、その際のラムダセンサ13の出力信号に対して周波数解析を施して周波数スペクトルを得(S112,S114)、その周波数スペクトルの所定周波数において、所定レベルを越えるスペクトルが生じている場合、ラムダセンサ13の極希薄領域の応答性に問題無しと判定する(S118)一方、所定レベルを超えるスペクトルが生じていない場合にはラムダセンサ13の極希薄領域の応答性に問題有りと判定する(S120)よう構成されてなるものである。 (もっと読む)


【課題】アイドル以外の運転域でも補正量を追従させることができるエンジンの制御方法を提供すること。
【解決手段】予め、複数の回転数に対応つけて、補機トルクと制御量との関係を記憶させておき、前記記憶させた関係に基づいて、補機トルクの算出値から該当する回転数に対応する前記制御量の推定値を算出し、前記制御量の推定値と、エンジン回転数、スロットル開度、インマニ圧力の少なくとも1つから算出した前記制御量の指令値とを比較し、前記制御量の推定値と指令値との比較によって生じた差分を検出する。 (もっと読む)


【課題】気筒間空燃比ばらつき異常がある場合に、より適切に排気空燃比を制御する。
【解決手段】本発明の一実施形態に係る内燃機関の制御装置は、複数気筒を有する内燃機関の排気通路に配置された触媒コンバータ11の上流側および下流側の排気通路にそれぞれ設けられた触媒前センサ17および触媒後センサ18と、触媒前センサ17の出力に基づく第1検出値が第1所定目標値に追従するように、かつ、触媒後センサ18の出力に基づく第2検出値が初期状態では第1所定目標値に相当する第2所定目標値に追従するように空燃比フィードバック制御を実行する空燃比フィードバック制御手段と、気筒間空燃比のばらつき異常が検出されたとき、前記第2所定目標値を変更する変更手段とを備える。 (もっと読む)


【課題】誤学習時における各学習値の修正を適正に行うことのできる内燃機関の吸気量制御装置を提供する。
【解決手段】この装置は、アイドル運転時における吸気量を学習するISC学習制御処理とスロットル機構の流量特性を学習するスロットル特性学習処理とを実行する。吸気量の調節制御を、ISC学習制御処理を通じて学習したISC学習値とスロットル特性学習処理を通じて学習したスロットル特性学習値とに基づき実行する。アイドル運転時に所定レベル以上の機関回転速度NEの変化が生じたときに(S11:YES)、スロットル特性学習値の直近の更新時における更新量が判定値J1以上であるときには(S12:YES)、各学習値のうちのスロットル特性学習値のみを修正する(S13)。更新量が判定値J1未満であるときには(S12:NO)、各学習値のうちのISC学習値のみを修正する(S14)。 (もっと読む)


【課題】エンジンのノック検出精度を向上させながら、燃料噴射時期を各種要求に応じた適正時期に設定できるようにする。
【解決手段】所定のノック判定期間における振動強度(例えばノックセンサ27の出力信号のピークホールド値等)を算出すると共に、噴射弁ノイズ期間(燃料噴射弁21の動作によるノイズを含む期間)における振動強度を算出する。この後、ノック判定期間における振動強度と噴射弁ノイズ期間における振動強度のうちの大きい方の振動強度に基づいてノック判定値を算出してノック判定を行う。これにより、噴射弁ノイズ(燃料噴射弁21の動作によるノイズ)によって振動強度が大きくなった状態をノック発生と誤判定することを防止できると共に、燃料噴射時期をノック判定期間に応じて変化させる必要がないため、燃料噴射時期を各種要求に応じた適正時期に設定することができる。 (もっと読む)


【課題】燃費の悪化を最小限に抑えつつスロットル開度と吸入空気量との関係(開度-空気量特性)の変化を適正に学習することができ、エンスト防止、トルク制御精度等の向上を図ることのできるエンジンの制御装置を提供する。
【解決手段】開度-空気量特性の特性変化分を学習する学習手段と、前記学習の要否を判定する学習要否判定手段と、前記学習が必要であると判定されたとき、安定運転状態において、前記学習手段に前記学習を実行させる学習移行手段と、を備え、前記学習要否判定手段は、安定運転状態において、特性記憶手段に記憶されているそのときのスロットル弁の開度に対応する吸入空気量とエアフローセンサにより検出される実吸入空気量との乖離量を求め、該乖離量とそれについて設定された閾値とを用いて前記学習の要否を判定するようにされる。 (もっと読む)


【課題】高圧燃料ポンプの吸入弁の故障診断において、燃圧の脈動幅,燃圧センサの出力信号のノイズ等により瞬間的に燃圧が目標燃圧よりも下回る場合、または、燃圧が変化(低下)するまでの応答遅れが発生する場合において、診断精度が低下する。
【解決手段】故障診断の実行許可の判定成立経過時間と、エンジンの状態に基づいて演算する故障診断しきい値により、高圧燃料ポンプの吸入弁の故障診断を行う。 (もっと読む)


【課題】噴射タイミングのずれを確実に検出、診断可能とする。
【解決手段】インジェクタ2−1〜2−nが無噴射状態において、エンジン3の運転条件に基づいて定まるインジェクタ2−1〜2−nの通電開始タイミングを中心に、進角側及び遅角側の双方向に所定範囲内で、通電開始タイミングを一定時間づつずらし、通電開始タイミングをずらす毎に、微小噴射量の燃料噴射である微小噴射を複数回行い、その際生ずるエンジン回転数の変動量に基づいて通電開始タイミングのずれ量を算出し、その算出されたずれ量が所定基準値を超えない場合に、そのずれ量を差分通電時開始タイミング学習値として記憶し、以後、実際の燃料噴射の際に、エンジン3の運転条件に基づいて定まる通電開始タイミングを、差分通電時間開始タイミング学習値により補正し、より正確な燃料噴射を可能としてなるものである。 (もっと読む)


【課題】中間ロック機構付き可変バルブタイミング制御システムのロック要求時に保持デューティ学習値がずれていた場合にロック完了までの時間が長くなることを抑制する。
【解決手段】ロック要求が発生したときにVCT位相を一旦中間ロック位相を所定量だけ通り越したロック前位相まで移動させるロック前位相制御を行ってから、VCT位相を中間ロック位相へ向けて戻しながらロックピン58を突出させるロックピン突出制御を行ってロックピン58によりVCT位相を中間ロック位相でロックする。その際、ロック前位相制御中に、保持デューティ学習実行条件を緩和して、通常の保持デューティ学習よりも早く保持デューティを学習できる条件に変更して保持デューティを学習することで、保持デューティ学習値を補正する保持デューティ学習値補正を行い、この保持デューティ学習値補正により補正された保持デューティ学習値に基づいて油圧制御弁25を制御する。 (もっと読む)


【課題】噴射形態の切替時における空燃比の乱れを抑えることのできる内燃機関の空燃比制御装置を提供する。
【解決手段】エンジン11は、ポート噴射用インジェクタ22と筒内噴射用インジェクタ17とを備える。電子制御装置30は、エンジン11の実空燃比が目標空燃比となるように燃料噴射量を補正する空燃比補正値を算出する。この空燃比補正値は、目標空燃比と実空燃比との偏差に基づいて算出されるフィードバック補正値と、目標空燃比と実空燃比との定常的なずれを補償する学習値とで構成されている。噴射形態の切替に際して、切替前の噴射形態における学習値及び切替後の噴射形態における学習値の少なくとも一方の学習が完了していないときには、切替前のフィードバック補正値による燃料噴射量の補正を抑制するためにフィードバック補正値を初期化する。 (もっと読む)


【課題】学習頻度が少なくとも、アイドル運転時のスロットル開度の学習を精度良く行うことのできる内燃機関の制御装置を提供する。
【解決手段】燃焼状態が悪化していないときには(S101:NO)、スロットル開度の学習に係る学習値として第1の学習値の更新を行い(S106)、燃焼状態が悪化しているときには(S101:YES)、スロットル開度の学習に係る学習値として第2の学習値の更新を行う(S103)とともに、アイドル運転時のスロットル開度制御に使用する学習値を燃焼状態に応じて使い分けることで、学習頻度が少なくとも、アイドル運転時のスロットル開度の学習を精度良く行えるようにした。 (もっと読む)


【課題】エンジンの制御装置に関し、目標トルクの好適な設定により吸気量を制御し、エンジンの耐エンスト性やエンジン回転収束性を向上させる。
【解決手段】エンジン10の目標回転数を演算する目標回転数演算手段1と、エンジン10の目標回転数での無負荷損失に相当する無負荷損失トルクを演算する無負荷損失トルク演算手段2と、を設ける。
また、エンジン10の実回転数に基づき、目標回転数で無負荷損失トルクを出力する状態と等馬力相当の第一目標トルクを演算する第一トルク演算手段3を設ける。
さらに、第一目標トルクを参酌してエンジン10に導入される吸気量を制御する吸気量制御手段5を設ける。 (もっと読む)


1 - 20 / 447