説明

Fターム[3G384ED06]の内容

内燃機関の複合的制御 (199,785) | 演算処理D(処理パターン) (12,391) | 四則演算(加減乗除) (1,111)

Fターム[3G384ED06]に分類される特許

41 - 60 / 1,111


【課題】噴射率パラメータの学習処理負荷の増大を抑制しつつ、現状の環境条件に応じた噴射率パラメータを用いて噴射状態を高精度で制御可能にする。
【解決手段】燃圧センサの検出値に基づき噴射率パラメータを算出する算出手段31と、その噴射率パラメータを学習する学習手段32と、学習した噴射率パラメータに基づき噴射指令信号を設定する設定手段33と、を備える燃料噴射制御装置において、燃料温度Th、燃料インターバルInt、筒内圧P(θ)等の環境値と噴射率パラメータとの相関を表した相関モデルMTh,MInt,MP(θ)をメモリに記憶させておく。そして、その相関モデル及び現状の環境値に基づき、前記算出手段31により算出した噴射率パラメータ(検出パラメータ)を、基準の環境値に対応した噴射率パラメータ(基準パラメータ)に変換して、前記学習手段32により学習させる。 (もっと読む)


【課題】 スロットル弁を備える機関の吸気系をより適切にモデル化するとともに、得られたモデルのモデル化誤差を適切に補正することにより、吸入空気量に関連する制御パラメータを高い精度で算出することができる内燃機関の制御装置を提供する。
【解決手段】 スロットル弁開度と該スロットル弁を通過する空気の流量との関係をモデル化した弁通過空気流量モデル式に検出スロットル弁開度を適用して、推定吸入空気流量が算出され、弁通過空気流量モデル式のモデル化誤差を示すモデル化誤差係数KTHERR及びKTHERRSが、検出される吸入空気流量を用いて算出される。モデル化誤差係数KTHERRS及びKTHERRを用いてモデル補正係数KMDLS及びKMDLLが算出され、モデル補正係数KMDLS及びKMDLLにより推定吸入空気流量が補正され、補正された推定吸入空気流量が機関制御パラメータの算出に適用される。 (もっと読む)


【課題】過渡運転時に着座ノイズがウィンドウに進入または退出した場合のノック誤検出を回避し、出力、燃費、運転性に悪影響を及ぼさない内燃機関のノック制御装置を提供する。
【解決手段】可変動弁の着座ノイズの発生タイミングによって着座ノイズ影響の有無判定を行う。そして、判定結果が影響無しから影響有りに変化したときのみ、ノイズ進入時モードで採用するBGLを、判定結果変化前のBGLに予め任意に設定可能な倍率値を乗じた値とすると共にBGLフィルタリング処理を解除する。そして、判定結果が影響有りから影響無しに変化したときのみ、ノイズ退出時モードで採用するBGLを、該判定結果変化前のBGLに予め任意に設定可能な倍率値の逆数を乗じた値とすると共にBGLフィルタリング処理を解除する。判定結果に変化がないときは、通常更新モードとする。 (もっと読む)


【課題】噴射制御の安定性向上、及び経年劣化を加味した制御の実現を可能にした燃料噴射状態検出装置を提供する。
【解決手段】降下近似直線Lα、及び上昇近似直線Lβの交点圧力Pαβを算出し、その交点圧力Pαβと基準圧力Pbaseとの圧力差ΔPγに基づき最大噴射率Rmaxを算出する最大噴射率算出手段S21,S22と、噴射率上昇に伴い生じた圧力降下量ΔPを検出する圧力降下量検出手段とを備える。そして、検出された圧力降下量ΔPの経年変化度合いを表した経年劣化率K(経年変化指数)を算出し、その経年劣化率Kから算出される補正比Kaに基づき、最大噴射率算出手段S22により算出される最大噴射率Rmaxを補正する補正手段S23を備える。 (もっと読む)


【課題】過給機のタービンによる攪拌の影響を抑制して検出精度を向上し、誤検出を防止する。
【課題手段】ウエストゲートバルブ27が開状態のときには、触媒前センサ17の検出値に基づいて気筒間空燃比ばらつき異常を検出し、ウエストゲートバルブ27が閉状態のときには、触媒後センサ18の検出値に基づいて気筒間空燃比ばらつき異常を検出する。触媒前センサ17に基づく検出では、ウエストゲート通路26を通過した排気が測定されるので、過給機25の排気タービン25bの影響による空燃比の平準化が抑制される。触媒後センサ18に基づく検出では、一部気筒で空燃比がリッチになる異常が生じた場合には排気中の水素量増加に伴いセンサ出力が正常時よりもリーン側になり、これによって検出を継続的に実行できる。 (もっと読む)


【課題】量産公差範囲内でのリラクタ寸法のバラツキによるエンジン負荷の検出精度の低下を防止する。
【解決手段】エンジン制御装置は、リラクタ4を検出してクランクパルスを出力するパルス発生器PCを有する。角速度算出部411は圧縮上死点TDC近傍の所定区間で出力される2つのクランクパルスの間隔に基づいて第1クランク角速度ω10を算出するとともに、オーバラップトップ上死点OLP近傍で第1クランク角速度ω10を算出したのと同じリラクタ4を検出して発生される2つのクランクパルスの間隔に基づいて第2クランク角速度ω20を算出する。エンジン負荷推定部412は、第2クランク角速度ω20に対する第1クランク角速度ω10の差分Δω360をエンジン負荷として算出する。エンジン負荷は、エンジン5による負の仕事を含めた1サイクル全体の図示平均有効圧力IMEPNETである。 (もっと読む)


【課題】燃料性状判定装置に関し、エンジンに供給される燃料の燃料性状を正確に把握する。
【解決手段】エンジン10の排気空燃比を検出する空燃比検出手段1aと、エンジン10のスロットル弁9の開度量を検出する開度量検出手段1cとを備える。また、開度量検出手段1cで検出された前記開度量の減少時に、空燃比検出手段1aで検出された前記排気空燃比に基づき、エンジン10に供給される燃料の燃料性状を判定する判定手段3を備える。 (もっと読む)


【課題】ケースの内圧の一時的な変化した場合であっても、大気圧計測センサの異常を誤判定することのない内燃機関の制御装置を提供する。
【解決手段】この発明による内燃機関の制御装置は、制御パラメータの一部に大気圧を用いて内燃機関を制御する制御回路と、前記大気圧を計測する大気圧計測センサと、前記制御回路のうちの少なくとも一部と前記大気圧計測センサを収納するケースと、前記大気圧計測センサが計測した大気圧計測値に基づいて前記大気圧計測センサの異常を判定する大気圧計測センサ異常判定手段とを備え、前記大気圧計測センサ異常判定手段を、前記大気圧計測値の単位時間当たりの変化量が所定値より大きく、かつ前記変化量が前記所定値より大きい状態が所定時間以上継続したとき、前記大気圧計測センサが異常であると判定するように構成したことを特徴とする。 (もっと読む)


【課題】実際にシリンダに吸入される空気量に対応した燃料噴射を行うエンジンの制御装置を提供する。
【解決手段】アクセルペダル開度に基づいてエンジンのシリンダに吸入される空気量を調整し、シリンダに吸入される実吸入空気量に基づいて応答遅れ時間を考慮して補正された燃料噴射量を算出する。そして、燃料噴射開始時から吸気弁が閉じるまでの時間が空気量調整手段の応答遅れ時間よりも長い場合に、燃料噴射開始時から吸気弁が閉じるまでの時間と応答遅れ時間との偏差に基づいて、燃料噴射弁の燃料噴射開始時期を、燃料噴射開始時から吸気弁が閉じるまでの時間が応答遅れ時間よりも短い場合よりも遅くする。 (もっと読む)


【課題】エンジンモデルが出力するセンサ予測値にも誤差が含まれていたとしても、センサの不良識別の精度を低下させない。
【解決手段】センサ値取得部104は、センサからセンサ値を取得する。模擬部103は、監視対象装置の模擬を行い、センサ値の予測値である予測センサ値を算出する。異常判定部は、所定の期間内におけるセンサ値差の出現率を用いて、模擬部103が出力した予測センサ値とセンサ値取得部104が取得したセンサ値とから算出されるセンサ値差の出現率が低い場合に監視対象装置のセンサが異常であると判定する。 (もっと読む)


【課題】内燃機関において、A/Fセンサのばらつきを的確に判定することができる方法および装置を提供することを目的とする。
【解決手段】ディーゼルエンジン100には、ECU40、エアフローメーター42、排気温センサ44、A/Fセンサ46、回転数センサ48が設けられる。ECU40は、指令噴射量および機関回転数(吸入空気量相当値)に基づいて決定される目標排気温(ステップS23)と、排気温センサ44によって検出される実排気温(ステップS24)との偏差に基づき、A/Fセンサ46のばらつきの有無を判定する(ステップS3)。 (もっと読む)


【課題】エンジンの制御装置に関し、簡素な構成でトルクベース制御に係るトルクの演算精度を向上させ、要求トルクに応じたエンジンのトルク挙動を精度よく実現する。
【解決手段】エンジン回転数とアクセル操作量とに基づき、アクセル要求トルクを演算する第一演算手段2aと、外部制御システム8,9から要求される外部要求トルクを演算する第二演算手段2e,2f,2gとを備える。また、前記アクセル要求トルク及び前記外部要求トルクに基づき、点火時期制御用の第一目標トルク及び吸気量制御用の第二目標トルクのそれぞれを演算する第三演算手段2kと、実充填効率にてエンジン10が発生可能な最大のトルクを実トルクとして演算する第四演算手段4cとを備える。
前記実トルク及び前記第一目標トルクに基づき、エンジン10の点火時期を制御手段1で制御する。 (もっと読む)


【課題】この発明は、最小限のセンサ数で筒内圧センサの異常を検出することのできる筒内圧センサの異常判定装置を提供することを目的とする。
【解決手段】内燃機関の筒内の圧力を検出する筒内圧センサを備え、前記筒内圧センサにより検出された筒内圧をP、その検出時における筒内容積をV、前記筒内のガスの比熱比をκとした場合のPVκ値を算出する。前記筒内で燃焼を発生させずに断熱圧縮膨張がなされるクランク角期間における前記PVκ値の変動幅を算出する。前記変動幅が閾値よりも大きい場合に前記筒内圧センサに異常が発生していると判定する。 (もっと読む)


【課題】排ガス流量が減少した後に、排ガス流量が少ない状態が継続する場合においても、DPF入口温度を目標温度に安定的に制御できる内燃機関の排ガス浄化装置を提供することを目的とする。
【解決手段】フィードフォワード制御手段47と、DPF7の目標温度に対する補正操作量を指令するフィードバック制御手段49と、フィードフォワード手段47からの基本操作量とフィードバック制御手段49からの補正操作量とを加算して操作量を算出する操作量加算手段51とを有し、排ガス流量が急減少したときにフィードバック制御手段49を構成する積分器の積分値をリセットする積分器リセット手段55、または排ガス流量に基づく信号によってフィードフォワード制御手段の基本操作量を算出する基本操作量算出手段の少なくとも一方を備えることを特徴とする。 (もっと読む)


【課題】位相振れ異常を検出することのできる内燃機関の可変動弁装置を提供する。
【解決手段】可変動弁装置は、油圧式のバルブタイミング可変機構と、同機構を構成するハウジングロータおよびベーンロータの間に形成される進角室および遅角室とを含む。また可変動弁装置には、遅角室の油圧を検出する遅角油圧センサと進角室の油圧を検出する進角油圧センサとが設けられている。そして、位相保持制御が行われているとき、かつ進角室油圧PSの最大値P3と遅角室油圧PTの最大値P4との差である油圧差DPが基準値よりも大きいとき、位相振れ異常が生じている旨判定する。 (もっと読む)


【課題】内燃機関において、周波数信号を出力とするエアフローセンサを採用する場合には、周波数信号を検出するタイミングと空気流量を演算するタイミングが異なる場合があり、吸入空気流量が過渡的に変化する条件下においては計測遅れが発生し、排気エミッションの悪化やトルクの低下の要因となる。
【解決手段】空気流量を演算するタイミング以前の複数の周期計測結果と、周波数信号を検出するタイミングと、空気流量を演算するタイミングを用いて空気流量測定値を補正することで、上記する課題を解決する。さらに、上記対策による補正誤差の影響を低減するために、燃料噴射量演算において、エアフローセンサを通過する空気流量とシリンダに流入する空気流量の位相差を補正することを目的として、過去のエアフローセンサを通過する空気流量を使用することに着目し、一回前の空気流量演算タイミングにおける空気流量演算値を、その一回前の空気流量演算タイミングの前後の周波数信号の計測値から補正して演算する。 (もっと読む)


【課題】燃料噴射弁に燃料を配送する配送路における燃料の圧力をより簡易な構成で低下可能とすると共に逆止弁の異常診断をより確実に実行する。
【解決手段】高圧燃料配管から燃料タンクに燃料を流出可能な位置に取り付けられたリーク用逆止弁の異常診断の実行条件が成立している状態で要求に応じて筒内用燃料噴射バルブによる燃料噴射を停止する際において、高圧燃料配管の燃圧Pfが異常診断用の目標燃圧Pf*未満のときには、高圧燃料配管の燃圧Pfが目標燃圧Pf*になるよう高圧燃料ポンプを制御し、燃圧Pfが目標燃圧Pf*となったときにリーク用逆止弁の異常診断を実行する。これにより、高圧燃料配管における燃料の圧力をより簡易な構成で低下可能とするリーク用逆止弁の異常診断をより確実に実行することができる。 (もっと読む)


【課題】差動機構を高回転化から保護しつつエンジントルク低下を補うことが可能な車両用動力伝達装置用制御装置を提供する。
【解決手段】許容回転速度設定手段96は、所定の加速操作量OPAC及びエンジン回転速度Neのときにエンジン14から出力されるエンジントルクTeが、エンジン14の出力トルク特性を示す予め設定された関係から上記所定の加速操作量OPAC及びエンジン回転速度Neに基づいて定まる基準エンジントルクTesよりも低いと判断された場合には、そうでない場合と比較して、差動機構である第1遊星歯車装置20の許容入力回転速度N1inを高く設定する。従って、許容入力回転速度N1inの制限によって第1遊星歯車装置20を高回転化から保護することが可能であると共に、許容入力回転速度N1inの変更に応じてエンジン回転速度Neを引き上げてエンジントルクTeを上昇させエンジントルク低下を補うことが可能となる。 (もっと読む)


【課題】減圧弁の応答遅れ時間を高精度で検出して、蓄圧容器の内部圧力を高精度で制御できる減圧弁制御装置を提供する。
【解決手段】コモンレール(蓄圧容器)に設けられた減圧弁と、コモンレールから燃料噴射弁の噴孔に至るまでの燃料供給経路に配置されて燃料圧力を検出する燃圧センサと、を備えた燃料噴射システムに適用され、減圧弁が開弁作動又は閉弁作動を開始したことに伴い燃圧センサの検出値に変化が生じた燃圧変化時期t12を検出する燃圧変化検出手段S20と、減圧弁へ開弁又は閉弁を指令する指令信号を出力した指令時期、及び燃圧変化検出手段により検出された燃圧変化時期t12に基づき、指令信号を出力してから減圧弁が開弁又は閉弁の作動を開始するまでの応答遅れ時間M1を算出する応答遅れ算出手段S24と、を備えることを特徴とする。 (もっと読む)


【課題】燃料噴射制御装置にてマイコンやメモリ等の構成要素に対する要求性能を低くする。
【解決手段】 エンジン13の各気筒のインジェクタIJ1〜IJ4には、それの燃料取込口に圧力センサSN1〜SN4が設けられており、各圧力センサからの燃料圧信号P1〜P4が、ECU11に入力される。ECU11では、燃料圧信号P1〜P4のうち、非噴射気筒の燃料圧信号Vbと噴射気筒の燃料圧信号Vaとの差を表す差分信号Vc(=Vb−Va)が、差動増幅回路33から出力され、積分回路35が、1噴射期間において差分信号Vcを積分し、その積分値を示す積分信号Vdがマイコン25に入力される。そして、マイコン25は、噴射終了後に、積分信号VdをA/D変換し、該A/D変換値と、噴射直前の燃料圧信号VbのA/D変換値とから、1回の実噴射量を算出し、その結果を燃料噴射制御にフィードバックする。このため、短い間隔でのA/D変換が不要。 (もっと読む)


41 - 60 / 1,111