説明

Fターム[3G384FA06]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | アクセル操作、アクセル開度 (4,869)

Fターム[3G384FA06]の下位に属するFターム

Fターム[3G384FA06]に分類される特許

141 - 160 / 4,713


【課題】内燃機関およびモータを動力源として有する車両において、単純かつ安価な方法により、車両の走行中に大気圧を精度良く推定することができる大気圧の推定装置を提供する。
【解決手段】車両は、エンジンおよびモータを動力源として有し、エンジンが停止した状態でモータの動力によって走行することが可能である。推定装置によれば、車両Vの走行中において、エンジン回転数NE=0のときに検出された吸気圧PBAを、推定大気圧HPAとして設定する(ステップ5)。また、車両Vの走行中において、エンジン回転数NE>0のときには、機関運転時走行距離DISTENGが所定距離DREFよりも大きいことを条件として、検出されたスロットル弁開度ATHおよび吸気圧PBAに基づいて算出した更新用大気圧HPACALを用い、推定大気圧HPAを更新する(ステップ15)。 (もっと読む)


【課題】多気筒内燃機関において、迅速に、空然比の異常のある気筒を特定すると共に、その気筒での空燃比がいずれの側にずれているのかを特定する。
【解決手段】本発明に係る多気筒内燃機関の気筒間空燃比ばらつき異常検出装置は、所定の対象気筒の燃料噴射量を強制的に所定量変更する燃料噴射量変更制御を実行する燃料噴射量変更制御手段と、前記所定の対象気筒に関する出力変動を表す値を導出する値導出手段と、該値導出手段により導出された前記燃料噴射量変更制御の非実行時の値と、該値導出手段により導出された前記燃料噴射量変更制御の実行時の値との比較結果に基づいて、前記所定の対象気筒に関する空燃比の異常および該異常の種類を検出する検出手段とを備える。 (もっと読む)


【課題】この発明は、アルコール燃料の噴射量が増量される場合に、燃料カットを適切なタイミングで実行及び禁止することを目的とする。
【解決手段】ECU60は、燃料中のアルコール濃度Eとエンジン水温Twとに基いて燃料増量値Hを算出し、この燃料増量値Hを燃料噴射量に反映させる。また、エンジンの予測回転数Rが上限判定値以上R1である場合には、燃料増量値H及び予測回転数Rが小さくなる許可領域のみにおいて燃料カットを許可し、燃料増量値Hまたは予測回転数Rが許可領域から外れる禁止領域において燃料カットを禁止する。これにより、多量の未燃燃料が触媒24に付着し易い領域では燃料カットを禁止し、未燃燃料の後燃え等により触媒24が過熱状態となるのを防止することができる。従って、触媒24を劣化や損傷から保護し、FFV等の排気エミッションを向上させることができる。 (もっと読む)


【課題】 複数のアクチュエータへの電圧供給用としてコンデンサを有する昇圧回路を用いて、複数のアクチュエータによる内燃機関の適切な制御を実行できるとともに、製造コストを抑制することができる内燃機関の制御装置を提供することを目的とする。
【解決手段】 車両Vに搭載された内燃機関2を、電源VBから供給された電圧により駆動される複数のアクチュエータ4〜6によって制御する内燃機関の制御装置1であって、検出された車両Vの運転状態に応じて、複数のアクチュエータ4〜6の優先順位を決定し、決定した優先順位に応じて、複数のアクチュエータ4〜6への電圧供給用としてコンデンサC2を有する昇圧回路15により昇圧された電圧を、複数のアクチュエータ4〜6のうちの少なくとも1つに供給し、複数のアクチュエータ4〜6の少なくとも1つを駆動する。 (もっと読む)


【課題】気筒間空燃比がばらついて空燃比のリッチ化を実行する場合の排気エミッション悪化を抑制する。
【解決手段】本発明に係る内燃機関の制御装置は、気筒間空燃比のばらつき度合いを表すパラメータを検出する検出手段と、内燃機関の排気通路に設けられた触媒の吸蔵酸素量を計測する計測手段と、検出手段により所定値以上のパラメータが検出されたとき、計測手段により計測された吸蔵酸素量に応じて、空燃比をリッチ化するためのリッチ制御を実行または停止するリッチ制御手段とを備える。 (もっと読む)


【課題】 高温燃焼を実現しつつ排気中の窒素酸化物を低減可能なエンジンシステムを提供する。
【解決手段】 エンジンシステム10では、EGR装置15から供給される排気と外気とがサージタンク23で混合され、エンジン11の気筒18に供給される。ECU17は、酸素ガス噴射弁装置49の作動を制御して酸素ガス供給装置16から第2通路36に供給する酸素ガス供給量を調整することでエンジン11の気筒18内の酸素濃度を調整する。この構成では、外気より窒素濃度が低い排気と外気とが混合され、適宜酸素ガスが付加された混合ガスをエンジン11の気筒18に取り込む。よって、エンジン11の気筒18に取り込まれるガス中の窒素量を外気より減らしつつ酸素量を増やすことが可能である。これにより、エンジン11の高温燃焼を実現しつつ排気中の窒素酸化物を低減することができる。 (もっと読む)


【課題】低速領域において過給限界を高負荷側に移動することにより、RawNOxの生成抑制と低燃費との両立に有利な運転領域を拡大させた過給機付リーンバーンエンジンを実現する。
【解決手段】制御器(PCM10)は、エンジン本体1が少なくとも暖機後でかつ、運転状態が低速領域にあるときにおいて、第1負荷領域にあるときには、作動ガス燃料比G/Fを30以上に設定し、第2負荷領域にあるときには、EGR手段による既燃ガスの導入を停止すると共に、空気燃料比A/Fを30以上に設定し、全開負荷を含む第3負荷領域にあるときには、空気燃料比を理論空燃比に設定すると共に、EGR手段による既燃ガスの導入を行う。 (もっと読む)


【課題】本発明は、エンジンの運転状態に応じて必要量の燃料を燃焼室内に確実に導入することのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジンの運転状態に基づき燃料噴射割合を決定し(S10,S12)、燃料噴射時期及びエンジン回転速度に基づき吸気行程噴射モードの付着率Kstick_intと気化率Kevapo_intとを算出し(S14,S16)、更にエンジンの冷却水温度に基づき排気行程噴射モードの付着率Kstick_exhと気化率Kevapo_exhとを算出する(S18,S20)。そして付着率Kstick_intと気化率Kevapo_intと燃料噴射割合とを考慮して吸気行程噴射モードの燃料噴射量Qn_intを、付着率Kstick_exhと気化率Kevapo_exhと燃料噴射割合とを考慮して排気行程噴射モードの燃料噴射量Qn_exhをそれぞれ決定する(S22,S24)。そして、燃料噴射量Qn_int,Qn_exhより燃料噴射量Qnを決定する(S26)。 (もっと読む)


【課題】空燃比フィードバック制御を実行可能な多気筒内燃機関において、気筒間空燃比ばらつき異常をより適切に検出する。
【解決手段】燃料噴射量を変更(S805,S829)したときの回転変動に基づき気筒間空燃比ばらつき異常を検出(S813)するばらつき異常検出処理と、気筒別の空燃比を所定の目標空燃比に追従させるように、燃料噴射量を気筒別にフィードバック補正する空燃比フィードバック制御処理とを実行するようにした装置において、ばらつき異常検出処理では、フィードバック補正の補正量を考慮してばらつき異常を検出する(S811)。吸気系または燃料供給系の動作の不健全さを放置し温存する傾向を助長することなく、通常の運転動作を維持しながら、気筒間空燃比ばらつき異常として検出することができ、気筒間空燃比ばらつき異常をより適切に検出することができる。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、新規な点火時期制御を可能とする内燃機関の制御装置を提供することを目的とする。
【解決手段】本発明においては、混合気の燃焼速度の推定値を規定する特性マップを用いて点火時期を決定する。混合気の燃焼速度は、気筒外の要因により変化する混合気の状態を代表するものであるので、その推定値を規定した特性マップを用いれば、高精度に点火時期を決定できる。 (もっと読む)


【課題】 内燃機関の燃料供給を停止したときに取得される酸素センサの出力値を用いて、酸素センサの出力特性と酸素濃度との関係を精度良く較正可能な酸素センサ制御装置を提供する。
【解決手段】CPU2は燃料断が実行されたとき、所定間隔毎に取得される酸素センサ20の現在の出力対応値(濃度対応値)Iprが所定の第1範囲R1の範囲内にあるか否かを判断する。現在の出力対応値Iprが第1範囲R1の範囲内にあると判断された場合、現在の出力対応値のデジタルフィルタ値と、前回に第1範囲R1の範囲内にあると判断された前回の出力対応値のデジタルフィルタ値との変化量(差分値)が許容量内にあるか否かを判断する。そして、順次許容量内にあると判断された出力対応値Iprをもとに平均出力値Ipavを算出し、平均出力値Ipavと予め設定した基準出力値とを用いることで、酸素センサ20の実出力値Ipを補正するための補正係数を求める。 (もっと読む)


【課題】内燃機関から熱負荷を受ける部品を適切に保護することができる内燃機関の燃料噴射制御装置を提供する。
【解決手段】内燃機関EGから熱負荷を受ける部品127の温度を推定する温度推定手段11と、前記部品の推定温度に基づいて前記部品に印加された熱負荷による被害度を演算する被害度演算手段11と、前記被害度が所定値以上に達した場合に前記内燃機関に対する燃料噴射量を増量する制御手段11と、を備え、被害度が大きいほど燃料噴射量の増量値を大きく設定する。 (もっと読む)


【課題】ストール回避制御が実装された多気筒内燃機関において、気筒間空燃比ばらつき異常を適切に検出する。
【解決手段】燃料噴射量を強制的に変更したときの出力変動に基づき気筒間空燃比ばらつき異常を検出するばらつき異常検出制御と、エンジンの所定の出力に基づいてエンジンがストールしないようにトルク増大制御を実行するストール回避制御と、を実行する気筒間空燃比ばらつき異常検出装置において、ばらつき異常検出の目的で燃料噴射量を変更(増大又は減少)しているとき(S801)にトルク増大制御(S804)の実行を抑制する(S805)。トルク増大処理による回転数の回復が抑制されるため、空燃比ばらつき異常をより適切に検出することができる。 (もっと読む)


【課題】スロットルバルブが開側に駆動され続けて、全開位置に達するような異常が生じた場合であっても、エンジン出力を抑制できるようにすること。
【解決手段】スロットルバルブ3の全開側の開度を制限する全開ストッパ7の位置を、スロットルバルブ3が吸気管2を全開とする開度を越えて、再び吸気管2の流路を絞る開度となる位置に設定した。これにより、スロットルバルブ3が開側に駆動され続けて、全開位置に達するような異常が生じた場合であっても、その全開位置は、スロットルバルブ3が吸気管2の流路を絞る開度となる位置に設定されているので、エンジン出力を抑制することができる。 (もっと読む)


【課題】燃料のセタン価の推定精度を高く維持しつつ、低セタン価燃料の補給を早期に検知することのできるセタン価推定装置を提供する。
【解決手段】この装置は、実行条件の成立を条件に(S201:YES)、予め定めた量でのディーゼル機関への燃料噴射を実行するとともに(S202,S203)、同燃料噴射の実行時における回転変動量ΣΔNEを検出する(S204)。直近の所定期間における回転変動量ΣΔNEの平均値AVE(S206)と標準偏差σ(S207)とを算出する。そして、標準偏差σの三倍を平均値AVEから減算した値より回転変動量ΣΔNEの最新の値Rが小さいときには(S208:YES)、低セタン価領域を選択する(S211)。最新の値Rが標準偏差σの三倍を平均値AVEから減算した値以上であるときには(S208:NO)、平均値AVEに基づいてセタン価領域を特定する。 (もっと読む)


【課題】燃料カット終了直後の燃焼を安定化させる。
【解決手段】燃料カットから復帰して燃料供給を再開するとき、気筒への燃料噴射を複数回に分けて行う過渡制御を実施し、成層燃焼により燃焼の安定化を図りつつ燃焼室内の温度を上昇させる。過渡制御における、二回目以降に噴射する燃料の噴射量とそれ以前に噴射する燃料の噴射量との割合は、燃料カットからの復帰の際のEGR率またはEGR量に応じて設定することとし、そのEGR率またはEGR量が大きいほど前者の噴射量の割合を増加させる。 (もっと読む)


【課題】 着火遅れおよび着火時期のばらつきを抑制可能な内燃機関を提供する。
【解決手段】ECU50は、通常運転を行う条件である通常運転条件を満たす場合、燃料噴射装置14により第1所定量の燃料を噴射する通常噴射を行い、通常噴射により噴射された燃料と空気との混合気がピストン13の移動によって圧縮されることで得られた熱量により、混合気を自着火させる。また、ECU50は、通常運転条件とは異なる条件である特定運転条件を満たす場合、燃料噴射装置14により、通常噴射の後、第2所定量の燃料を噴射する追加噴射を行い、点火装置により追加噴射された燃料を着火させて得られた熱量により、混合気を自着火させる。 (もっと読む)


【課題】この発明は、燃料中のアルコール濃度が高い場合でも、触媒の劣化とアルコール被毒の両方を防止することを目的とする。
【解決手段】エンジン10は、弁停止機構となる可変動弁機構36,38を有する。ECU60は、少なくとも吸入空気量と燃料中のアルコール濃度とに基いて触媒24のHC被毒量を推定し、被毒解除要求を発生させる。そして、燃料カットを行うべき条件が成立した場合には、被毒解除要求の有無に基いて弁作動燃料カットと弁停止燃料カットとを使い分ける。弁作動燃料カットでは、吸気バルブ32と排気バルブ34とを作動させた状態で燃料カットを実行し、触媒24のHC被毒を解除する。一方、弁停止燃料カットでは、バルブ32,34の少なくとも一方を弁停止した状態で燃料カットを実行し、触媒24の劣化を抑制する。 (もっと読む)


【課題】排気浄化装置の上流部分におけるPM堆積量と下流部分におけるPM堆積量とのそれぞれをより高い精度で推定することを目的とする。
【解決手段】本発明では、排気浄化装置の上流部分と下流部分とにおける単位時間当たりのPMの付着量である単位PM付着量を内燃機関の温度に基づいてそれぞれ算出する。そして、各単位PM付着量に基づいて排気浄化装置の上流部分と下流部分とにおけるPM堆積量をそれぞれ算出する。このときに、内燃機関の温度が低いほど、排気浄化装置の上流部分と下流部分とにおける単位PM付着量を多く算出し、且つ、内燃機関の温度を同一とした場合、排気浄化装置の上流部分における単位PM付着量cinfrをその下流部分における単位PM付着量cinrrよりも多く算出する。 (もっと読む)


【課題】ドループ制御とアイソクロナス制御の円滑な切替を可能とする。
【解決手段】電子制御ユニット4は、ドループ制御、又は、アイソクロナス制御への切替要求が入力されたと判定された際(S104)、アイソクロナス制御において実行されるPID制御における積分項の値を、切替直前の目標燃料噴射量により初期化すると共に(S106)、切替直前のエンジン回転制御モードの実行時のアクセル開度におけるエンジン3の回転状態に対応するエンジン回転制御モード切替後におけるアクセル開度を疑似アクセル開度として所定の演算式により算出し(S108)、その算出された疑似アクセル開度が実際のアクセル開度を越えていると判定された場合に(S110)、エンジン回転制御モードの切替を行うと共に疑似アクセル開度を用いてアイソクロナス制御を実行するものとなっている(S112)。 (もっと読む)


141 - 160 / 4,713