説明

Fターム[4D002AA15]の内容

廃ガス処理 (43,622) | 被処理成分 (6,599) | シアン化合物 (27)

Fターム[4D002AA15]に分類される特許

1 - 20 / 27


【課題】不純物のHS含有酸性ガスを流体の流れから遊離し、酸性ガスの流れを高い圧力水準に調節できる経済的な方法の提供。
【解決手段】HSのモル含量が酸性ガスの全体量に対して50モル%以上である流体の流れから酸性ガスを除去して3〜30バールの圧力下にある酸性ガス流を取得する方法において、
a)吸収工程で流体の流れを液状の吸収剤と接触させ、酸性ガスが十分に除去された流体の流れおよび酸性ガスが負荷された吸収剤を製造し、
b)前記流体の流れと前記吸収剤とを分離し、
c)前記吸収剤を加熱し、3〜30バールの圧力を有する酸性ガスの流れと再生された吸収剤とに分離し、
d)再生された吸収剤を熱交換器中に導入し、前記熱交換器中で前記吸収剤を冷却し、吸収剤の熱エネルギーの一部分を用いて、吸収剤を加熱し、
e)再生された液状の吸収剤を工程a)中に返送する方法。 (もっと読む)


【課題】 ランニングコストを抑え、かつ安定的な運転を可能とするガス分解装置およびシステムを提供する。
【解決手段】 所定のガスを分解するために用いられるガス分解装置であって、前記所定のガスを含む第1の気体が導入される第1電極、固体電解質、および第2の気体が導入される第2電極によって構成されるMEA(Membrane Electrode Assembly)を含む電気化学反応装置と、前記電気化学反応装置の温度を高めるためのヒータと、前記電気化学反応装置および前記ヒータを収納する筐体と、前記筐体内に設けられた蓄熱体とを備えるようにした。 (もっと読む)


【課題】ピペラジンと少なくとも1のアルカノールアミンとを含有し、その凝固点ができる限り低い、吸着剤のための濃縮された前混合物を提供する。
【解決手段】流体流から酸性ガスを除去するための吸着剤を製造するための前混合物は、少なくとも1のアルカノールアミン、ピペラジン、および水を含有しており、その際、該前混合物は、65質量%を上回る全アミン含有率を有しており、かつ該前混合物中の水対ピペラジンのモル比は、1.6〜4.8である。該前混合物は、低い凝固点により優れている。該前混合物は、水および/またはアルカノールアミンによって、即時使用可能な吸着剤へと希釈される。 (もっと読む)


【課題】ランニングコストを抑え、コンパクトな構成で安全性を高め、高いエネルギー効率の、ガス分解システムを提供する。
【解決手段】このシステム50は、所定のガスを含む第1の気体が導入されるアノード2、固体電解質1、およびカソード5構成されるMEA7を含むガス分解素子10と、ヒータ41とを備え、ガス分解素子10では、第1の気体中の少なくとも所定のガスの一つおよび第2の気体が電気化学反応することで発電を生じ、該発電で生じた電力をヒータ41に投入することを特徴とする。 (もっと読む)


【課題】アクリロニトリルまたはメタクリロニトリルの製造中に利用されるシアン化水素の回収を改善する。
【解決手段】プロピレン又はイソブチレンのアンモ酸化反応の反応器流出液から得られるプロセスフレア材料から、HCN回収ユニットを通して、廃棄有機物、主としてシアン化水素(HCN)及びアクリロニトリルを回収する。 (もっと読む)


a)流体流を、少なくとも1種のアミンと、ストリッピング助剤と水とを含む吸収液で処理し、その際にストリッピング助剤は、常圧での沸騰温度が水の沸騰温度よりも低い水混和性液体の中から選択されており、b)処理された流体流を液体水相で処理して、飛沫同伴されたストリッピング助剤を少なくとも部分的に水相へ移動させ、c)負荷された水相を加熱して、ストリッピング助剤を少なくとも部分的に追い出し、かつd)こうして再生された水相を冷却し、かつ少なくとも部分的に工程b)へ返送することによる、流体流から酸性ガスを除去する方法。ストリッピング助剤は、ストリッピングによる吸収剤の再生を促進する。処理された流体流を介してのストリッピング助剤の排出は、処理された流体流が液体水相で洗浄されることによって回避される。
(もっと読む)


本発明は、(i)NH、HS、CO、ならびに場合によってHCN、COSおよびCSの1つ以上を含む第1のオフガス流れ80を提供するステップ;(ii)第1のオフガス流れ80を焼成炉300に通し、NH、HS、ならびに場合によってHCN、COSおよびCSの1つ以上を酸化し、N、HO、SOおよびCOを含む第2のオフガス流れ310を提供するステップ;(iii)苛性スクラバー350内で第1の水性アルカリ流れ380、876aを用いて第2のオフガス流れ310を洗浄し、第2のオフガス流れからSOおよび一部のCOを分離し、炭酸塩ならびに亜硫酸塩および重亜硫酸塩の一方または両方を含む廃苛性流れ360、ならびにNおよびCOを含む苛性スクラバーオフガス流れ370を提供するステップ;および(iv)亜硫酸塩および重亜硫酸塩を硫酸塩に生物学的に酸化するために、酸素の存在下で硫黄酸化細菌を含むエアレーター900に廃苛性流れ360を通し、硫酸塩流れ910を提供するステップを含む、NHおよびHSを含むオフガス流れ80を処理して硫酸塩流れ910を提供する方法を提供する。
(もっと読む)


流体流から酸性ガスを除去するための吸収剤は、A)第三級アミン基及び/又は立体障害した第二級アミン基のみを有する、少なくとも1の環式アミン化合物、及びB)少なくとも1の立体障害していない第二級アミン基を有する、少なくとも1の環式アミン化合物の溶液を含む。この吸収剤は、例えば、A)1−ヒドロキシエチルピペリジン及び/又はトリエチレンジアミン及びB)ピペラジンの水溶液を含む。この吸収剤は、特に、煙道ガスからの二酸化炭素の分離のために適しており、かつ、次の基準を満たす:(i)低いCO2分圧での十分な収容能;(ii)低いCO2分圧での十分に迅速な吸収率;(iii)酸素に対する安定性:(iv)溶媒損失の減少のための低い蒸気圧:及び(v)吸収剤の再生のための低いエネルギー要求。
(もっと読む)


本発明は、特に二酸化炭素及び硫化水素を含有する酸性ガスを分離するため、溶媒化合物を用いて工業ガスをガス洗浄する工程に関連するものである。発明に関する溶媒化合物はアミン水溶液から成り、前記水溶液はCOの吸収を改善するためにアンモニアを含有する。第一級及び第二級アミン基は、一又は二の置換基を有するアミンのいかなる種類も含んでいる。発明に関する溶媒化合物の成分として特に適しているのは、ピペラジン及びピペラジン誘導体である。 (もっと読む)


【課題】新たな設備や複数のポンプの設置が不要であり、優れた脱気機能を実現することが可能な液相酸化湿式脱硫装置を提供する。
【解決手段】本発明によれば、コークス炉ガス中の被酸化物を吸収液で吸収除去する吸収塔102と、吸収塔から供給された吸収液中に含まれる被酸化物を酸化し、吸収液を再生させて排出する酸化塔104と、を備える液相酸化湿式脱硫装置10において、上記の酸化塔104には、吸収液の供給から排出に至る吸収液の流動経路上に、酸化塔104の底部から立設され吸収液中に含まれる気泡を浮上させる堰板136と、下端が底部から離隔するように設けられ吸収液中に含まれる気泡を浮上させる仕切板138とが、少なくとも1枚ずつ交互に設けられる。 (もっと読む)


流体の流れから二酸化炭素を除去する方法において、a) 流体の流れを、アンモニアおよび少なくとも1つのアミノカルボン酸および/またはアミノスルホン酸の溶液を含有する吸収剤と接触させ、その際、負荷された吸収剤を得て、b) 二酸化炭素を解放しながら、負荷された吸収剤を再生することによる方法。アミノカルボン酸もしくはアミノスルホン酸の併用が、吸収剤の循環吸収容量を高める。
(もっと読む)


本発明は、次の連続した工程:a)予備処理工程;b)圧縮工程;c)精製CO2富化ガス流れを液体、ガスまたは超臨界の状態で回収する工程;を含むCO2、並びに水、SOxおよびNOxから選択される少なくとも1つの不純物を含む供給ガス流れの精製方法に関する。本発明は、精製工程が水の少なくとも部分的な除去を与える吸着特性を有するNOxおよび/またはSox−中性吸着材の少なくとも第1床が用いて、工程a)とb)の間でなされることを特徴とする。 (もっと読む)


本発明は、CO2および少なくとも1つの不純物を含む供給流れの精製方法に関し、次の連続する工程:a)予熱する工程;b)圧縮工程;c)前記圧縮ガス流に含まれ、窒素、酸素、アルゴンおよび希ガスから選ばれる少なくとも1つの不純物の除去を冷却サイクル、すなわち温度<5℃、好ましくはゼロを下回る、中で分離器と組み合わされる交換器を用いることを含む工程;d)CO2富化精製ガス流れが液体、ガスまたは超臨界の形態で回収する工程を含む。本発明は、精製工程が窒素酸化物および水から選択される少なくとも1つの不純物を少なくとも部分的に除去するために工程a)とc)の間で遂行される。 (もっと読む)


【課題】 バキュームカーボネート法を採用しながらシアン化水素の重合物の発生を効果的に低減させることのできるガスの脱硫方法および脱硫設備を提供する。
【解決手段】 吸収液を用いる硫化水素およびシアン化水素の吸収塔1がガスの流路に設置され、当該吸収液から硫化水素を主成分とする酸性ガスを発生させる再生塔4が、真空ポンプ8に接続されて上記吸収塔1に併設されている。シアン化水素を分解させる分解装置10を、上記再生塔4と真空ポンプ8との間に接続する。 (もっと読む)


【課題】高い分解効率で、シアン化合物を含む廃液の廃液処理を行うことができる廃液処理装置および廃液処理方法の提供
【解決手段】 シアン化合物を含有する廃液を分解処理する廃液処理装置であって、シアン化合物を含有する廃液を収容し、収容した廃液中にオゾンガスを導入する機構を有するHCN気相化器2と、気相化したHCNとオゾンガスとの反応を促進させる気相反応器4と、残存したHCNを吸収するHCN吸収器5と、残存したオゾンを分解するオゾン分解器7とを備えたことを特徴とする廃液処理装置。 (もっと読む)


【課題】多額の初期投資及び大規模な追加設備を必要とせずに有害微量元素の含有率が高い安価な石炭種を使用するために集塵装置の集塵効率を向上する方法を提供する。
【解決手段】排ガス中の有害微量元素を捕捉する方法は、石炭を燃焼させる微粉炭燃焼部16と、微粉炭燃焼部16の下流に設けられ石炭灰のうちフライアッシュを集塵する集塵装置182と、を備えた微粉炭燃焼施設1において、石炭灰を微粉炭燃焼部16に供給する石炭供給工程S10から集塵装置182によってフライアッシュが集塵される排水・排ガス処理工程までの間の系内に移送する。 (もっと読む)


【課題】排ガス処理塔内で排ガス処理を行った処理水に対し、処理水循環配管系にてアルカリを添加してpH調整を行い、繰り返し排ガス処理に用いるときに、pH調整のためのアルカリ量の低減、適正なpH調整、及び配管系の汚れ及び閉塞の防止を可能にする。
【解決手段】塔本体2の1段目35において処理水と排ガスを気液接触させて排ガス中の有害成分を除去し、2段目36において排ガスを冷却洗浄して塔本体2の上部の排ガス出口7から処理済み排ガスを排気する排ガス処理塔において、2段目36における排ガス処理水の一部を排水タンク20に、残りの一部を循環タンク4にそれぞれ導き、循環タンク4に貯留された処理水3を処理水循環配管27を介して1段目35に導いて排ガス処理に利用するとともに、循環タンク4にアルカリ液を投入して循環タンク4内の処理水のpHを調整する。 (もっと読む)


【課題】下水汚泥などの有機性廃棄物を熱分解した排ガスを処理するための熱分解ガスの処理方法を提供する。
【解決手段】炉から排出された排ガスに高温のままアルカリ剤スラリーを供給する。次いで、得られた生成物を高温セラミックフィルター1で除去処理する。その後、このフィルター1より排出される排ガスを洗浄塔2へ導入してコバルト化合物を含むアルカリ洗浄水で洗浄する。次いで、この洗浄水を循環槽3で曝気しつつ一部を洗浄塔2へ循環する。一方、循環槽3からの排出水は酸化塔4へ導いて触媒オゾン処理をする。 (もっと読む)


【課題】比較的少ないエネルギでかつ比較的簡単なプロセスで、混合ガスから酸性ガスを液体状態で分離回収し、この分離回収された酸性ガスを効率良く貯蔵し或いは輸送する。
【解決手段】所定の圧力及び温度に維持した吸収塔13の上部に、吸収液を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させる。これにより酸性ガスを吸収液に吸収させて、非酸性ガスを酸性ガスから分離して吸収塔13から回収する。吸収塔13内の温度より高い温度に維持した再生手段17の上部に、酸性ガスを吸収した吸収液を供給する。これにより吸収液から酸性ガスの大部分を放出させて回収し、吸収液を再生する。再生された吸収液を減圧して吸収液に残存する酸性ガスを放出させることにより、吸収液から酸性ガスを放出させて回収し、この吸収液を吸収塔13の上部に供給する。 (もっと読む)


【課題】被処理ガス6中に含まれる除去対象ガスを効率的に除去する。
【解決手段】水処理プロセスで生じた汚泥を脱水、乾燥した後炭化炉で炭化して得られた汚泥炭化物を吸着塔2に収納し、この吸着塔に除去対象ガスを含む被処理ガス6を通流させて、この被処理ガスが吸着塔内を通流する過程で被処理ガスに含まれる除去対象ガス成分を汚泥炭化物に吸着させて、除去対象ガス成分が除去された処理済ガス12を吸着塔から出力させる汚泥炭化物によるガス処理方法において、
吸着塔2に収納する汚泥炭化物にアルカリ性薬剤及び酸性薬剤の少なくともいずれか一方の薬剤を添着する。 (もっと読む)


1 - 20 / 27