説明

Fターム[4D006KE16]の内容

半透膜を用いた分離 (123,001) | 制御 (5,047) | 温度 (361)

Fターム[4D006KE16]に分類される特許

161 - 180 / 361


ゼロ廃水を得るための逆浸透システムを制御するためのシステムは、新たな水供給、逆浸透装置、濃縮物貯槽および浸透物貯槽、濃縮物ソレノイド弁および浸透物ソレノイド弁、浸透物ヒーター、施設用皿洗機および制御システムを含む。逆浸透装置は、新たな水供給から濃縮物すすぎ流および浸透物すすぎ流へ水をろ過する。濃縮物貯槽および浸透物貯槽は、逆浸透装置の下流にあり、そして濃縮物すすぎ流および浸透物すすぎ流、それぞれを受ける。濃縮物ソレノイド弁および浸透物ソレノイド弁は、それらのそれぞれの貯槽からの濃縮物すすぎ流および浸透物すすぎ流、それぞれの流れを制御する。浸透物ヒ−ターは、浸透物すすぎ流を所定の温度に加熱する。施設用皿洗機は、施設用皿洗機のすすぎサイクルの間に連続的に濃縮物すすぎ流および浸透物すすぎ流を受ける。
(もっと読む)


【課題】高温、高圧条件下においても安定的に使用でき、炭化水素の分離、特にオレフィン/パラフィン混合物の分離を行うことが出来る固体シリカ膜、それを用いた炭化水素分離膜及びその製造方法を提供する。
【解決手段】
固体シリカ膜は、不飽和炭化水素を選択的に透過させる多孔質であり、一価の炭化水素基を表面に有し、赤外吸収スペクトル測定で得られるシラノール基(Si−OH)の3000cm−1のピーク強度が、シロキサン結合(Si−O−Si)の1500cm−1のピーク強度の1/10以下である。炭化水素分離膜は、多孔性セラミックス支持体の表面に、上記固体シリカ膜が形成されている。本発明の炭化水素分離膜の製造方法は、酸素及び/又はオゾンと不活性ガスを含む混合ガスと、気化したシリカ源とを用いたCVD法によって、上記多孔性セラミックス支持体表面の細孔を閉塞するように上記固体シリカ膜を製膜する。 (もっと読む)


【課題】高い効率で逆浸透膜カートリッジから排出された高圧濃縮水が有するエネルギーを回収でき、膜分離装置の全体の消費電力量を最適に、且つ要求された希薄水の流量を、適切な水質を確保しつつ最適な制御で安定して供給できる膜分離装置及びその運転方法を提供すること。
【解決手段】容積形エネルギー回収装置5を用い、容積形エネルギー回収装置5で加圧された原水を高圧ライン10を流れる高圧原水に合流させる供給海水バイパスライン15と、ブースタポンプ6と、温度センサ43と、供給原水流量を制御する制御装置7を設け、制御装置7は、温度センサ43で検出された原水の温度、逆浸透膜カートリッジ4の逆浸透膜4aの温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、高圧ポンプ3及びブースタポンプ6の性能曲線の関係を用いて設定流量値の希薄水流量Q1が得られるように逆浸透膜カートリッジ4に供給する原水流量を制御する。 (もっと読む)


【課題】殺菌剤を用いることなく、菌類で汚染されにくいろ過装置を提供する。
【解決手段】逆浸透膜7、逆浸透膜7に供給される供給溶液が溜められる逆浸透膜用供給槽4、及び逆浸透膜用供給槽4に溜められる供給溶液を39℃以上、逆浸透膜7の耐熱温度以下に加熱する加熱器10を備える。発明者らは、供給溶液を39℃以上に加熱すると、供給溶液が菌類で汚染されにくくなることを見出した。したがって、供給溶液を39℃以上に加熱することにより、逆浸透膜7が菌類で汚染されにくくなる。 (もっと読む)


【課題】周囲温度の変動があった場合でも、酸素富化空気の供給量や酸素濃度が変動しにくい酸素富化装置を提供する。
【解決手段】酸素富化膜11を有し酸素富化空気を生成する酸素富化手段1と、酸素富化空気を供給する供給口2と、酸素富化手段1に接続され、酸素富化手段1で生成された酸素富化空気を供給口2に導入する流路A及びその分岐流路である流路Bを形成し、流路Bには上記流路Aより流動抵抗を高める流動抵抗部31が設けられる配管3と、液体流れにより真空圧を発生させ、その真空圧を酸素富化手段1に作用させて酸素富化手段1で生成された酸素富化空気を配管3を通して供給口2に導入する真空圧発生手段4と、前記配管3の流路Aと分岐流路Bを切り換える切換手段5と、配管3内の圧力又は酸素富化手段1の周囲温度を検知する検知手段6を備え、前記検知手段6で検知された圧力又は温度に応じて前記切換手段5により配管3の流路を切り換えて供給口2から供給される酸素富化空気の流量を制御する。 (もっと読む)


膜システムを通過する供給水流からのスケール形成及び堆積の阻害方法が開示される。本方法は:(a)供給水流のpHを約7.0〜約8.2の範囲に制御すること;(b)膜システムが逆浸透システム、ナノろ過システム、電気透析システム、電気脱イオン化システム又はそれらの組み合わせであるときに随意に供給水流の温度を約5℃〜約40℃の範囲に制御すること;(c)膜システムが膜蒸留システムであるときに、随意に供給水流の温度を約40℃〜約80℃の範囲に制御すること;及び(d)供給水流に有効量のAA−AMPS共重合体を含むスケール阻害剤を加えることを含む。 (もっと読む)


【課題】周囲温度の変動があった場合でも、酸素富化空気の供給量や酸素濃度が変動しにくい酸素富化装置を提供する。
【解決手段】酸素富化空気を生成する複数の酸素富化手段1a,1b,1c,1dと、酸素富化空気を供給する供給口2と、各酸素富化手段1a,1b,1c,1dに接続され、酸素富化空気を供給口2に導入する流路を形成する配管3と、液体流れにより真空圧を発生させる真空圧発生手段4と、前記配管3の流路を切り換える切換手段5と、配管3内の圧力又は酸素富化手段1a,1b,1c,1dの周囲温度を検知する検知手段6を備え、複数の酸素富化手段1a,1b,1c,1dはそれぞれ透過流量特性が異なる酸素富化膜11a,11b,11c,11dを有しており、前記検知手段6で検知された圧力又は温度に応じて前記切換手段5により配管3の流路を切り換えて供給口2から供給される酸素富化空気の流量を制御する。 (もっと読む)


液体組成物のpHおよび標的イオンレベルを制御する方法、より具体的には、反応器において生じる低分子荷電種を抽出するための逆電気強化透析(REED)の使用。より一層具体的には、本発明は、バイオリアクタにおけるpH制御方法および阻害物質制御方法に関する。 (もっと読む)


【課題】不純物が可及的に少ない再生めっき液を得ることにより、めっき特性を向上させると共に、ニッケル及びキレート等の有用成分のロスを防止し経済性を向上させる無電解ニッケルめっき液の再生方法及び装置を提供する。
【解決手段】無電解ニッケルめっき液の再生方法は、ニッケルイオン(Ni2+)を含有する次亜リン酸水溶液を主成分とする無電解ニッケルめっき液を原液とした無電解めっき1における副生物を含有した老化液を、圧力透析膜2で透析して前記副生物含有液に含まれる副生物を原液から分離し、副生物が除去された再生液は原液4に戻す。また、副生物を含んだ分離液にカルシウム塩又はカルシウム塩及びバリウム塩を添加して分離液中の副生物である亜リン酸イオン及び硫酸イオンを不溶性化合物として沈殿分離3し、沈殿した不溶性化合物が分離された再生液を前記原液に戻す。 (もっと読む)


【課題】
ろ過膜面にダメージを与えず、ろ過膜面の表面流速を保ち、さらに、曝気に要する空気量を調整することで、消費電力を小さくし、コストダウンが可能な汚泥の脱水濃縮方法及び装置を提供する。
【解決手段】
有機性汚泥4を、前凝集槽1にて凝集剤6添加を経て撹拌、凝集させ、その後、汚泥濃縮槽2にてろ過膜による脱水濃縮、および散気により該ろ過膜の洗浄を行う汚泥脱水濃縮方法において、該汚泥濃縮槽2中の有機性汚泥4の濃度、温度、粘度のうちの少なくとも一つの測定値を利用して、散気される空気の量を決定することを特徴とする汚泥脱水濃縮方法。 (もっと読む)


【課題】高温の水素雰囲気下の使用においても従来よりも水素透過性能が向上した、多孔質支持体上にPd合金水素分離膜が形成された水素分離体を提供する。
【解決手段】水素分離体1は、多孔質支持体2の表面層2c上にPd合金水素分離膜3が形成されてなり、混合ガスに含まれる水素を分離する。多孔質支持体2の膜接触層2dは、アルミナ及びシリカの割合が10mol%以下であるセラミックスからなる。多孔質支持体1の表面層2cのアルミナ及びシリカの量が少ないため、又は存在しないため、高温水素雰囲気下で水素分離体1を使用しても、Pd合金膜と、アルミナ又はシリカとの反応が起こりにくく、それらの金属間化合物が形成されることなく水素透過性能が低下しにくい。 (もっと読む)


【課題】水素分離性能に優れるとともに、耐久性にも優れた水素分離装置及び水素分離装置の運転方法を提供する。
【解決手段】原料流体が流動する第1流路7を形成する部材9及び第1流路7内に配置される部材の第1流路7内に露出する鉄含有金属表面21で、第1流路7内に存する流体の流動方向において水素選択透過性金属膜12の透過可能部15の下流端より少なくとも上流の位置にある部分を鉄成分飛散防止皮膜31で被覆することによって、水素選択透過性金属膜12の欠陥を引き起こす鉄含有物質の第1流路7内への飛散が防止され、水素分離性能及び耐久性に優れた水素分離装置1とすることができる。 (もっと読む)


【課題】高温耐性水素ガス分離材を提供する。
【解決手段】多層構造を有しない単層の多孔質セラミック支持体の外表面に、水素ガスを選択的に透過させる選択透過能を有する透過膜を備えた水素ガス分離膜であり、上記支持体は、高温条件下で透過膜に含まれる金属と相互に合金を形成する成分を含有しないものであり、650℃における水素透過性能が3×10−6mol/m/s/Pa以上であり、650℃を超える含水素混合ガスの高温高圧・多湿環境における少なくとも46時間の長時間の水素透過試験によっても透過膜の水素透過性能が劣化せず、高純度の水素のみを効率良く透過分離する選択的透過能を有する、高温耐性水素ガス分離材。
【効果】650℃を超える高温高圧・多湿環境の条件下で46時間を越える長時間の使用をよっても透過膜の水素透過性能が劣化しない高温耐性水素ガス分離材を提供することができる。 (もっと読む)


【課題】含油排水の濾過に適して分離膜モジュールを提供する。
【解決手段】高濁度あるいは/および高温の含油排水から非水溶性油分を分離する含油排水処理用の分離膜モジュールであって、PTFE(ポリテトラフルオロエチレン)、PSF(ポリスルホン)およびPES(ポリエーテルスルホン)から選択される耐アルカリ性を備えた多孔質膜からなり、抗張力が30N以上である中空糸膜を用い、該中空糸膜および該中空糸膜の端末封止材の熱変形温度は100℃以上であることを特徴とする。 (もっと読む)


【課題】原水の分散剤濃度を適正濃度に制御することにより、ろ過性能が低下するのを極力回避することのできる膜ろ過システムとその運転方法を実現する。
【解決手段】ステップS1で水温センサにより原水の温度を検出し、続くステップS2では水回収率テーブルを検索し、原水の水温に応じた水回収率ηを算出する。次に、ステップS3に進んで分散剤注入テーブルを検索し、水回収率ηに応じた分散剤2の注入量を算出する。次いで、ステップS4に進み、ステップS2で算出された水回収率ηに基づいて第1〜第3の排水弁を開閉制御し、さらに該水回収率ηに応じた分散剤濃度となるように注入ポンプで注入量を制御しながら原水中に分散剤を注入する。 (もっと読む)


【課題】膜分離と吸収液を組み合わせて、コンパクトで二酸化炭素分離性能が高く、かつ、二酸化炭素吸収液の酸化劣化を防止することにより二酸化炭素吸収性能の低下を抑制した二酸化炭素分離装置及びその方法を提供する。
【解決手段】二酸化炭素選択分離膜3を備え被処理ガスが供給される二酸化炭素吸収器1と、疎水性膜4を備えた二酸化炭素分離器2と、前記二酸化炭素吸収器1と前記二酸化炭素分離器2との間を循環する二酸化炭素吸収液7と、を有する。 (もっと読む)


【課題】SPM、nSPM等の大気中の浮遊物質を除去することが可能であり、且つ気体の透過性が十分である膜を形成することができる選択透過材料、及びそれを用いる空調システムを提供すること。
【解決手段】ポリエステル及び含フッ素ポリマーから選ばれるベースポリマーに固形添加剤が分散されてなる選択透過材料であって、前記選択透過材料から形成される膜に酸素及び窒素を透過させた場合に、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数(cm3・cm・sec-1・cm-2・cmHg-1)の関係が下記式(1)で表される、選択透過材料。なお、式中、P(O)は酸素の透過係数、P(N)は窒素の透過係数を示す。
(もっと読む)


ガス状化合物の混合物から少なくとも1つのフッ素含有化合物を含むガス状成分を回収するガス状成分回収方法。前記方法は、分離ゾーン(12)内において、少なくとも1つのフッ素含有構成成分を含むガス状構成成分の混合物を、ポリマー化合物を含むガス透過性分離媒質(16)と接触させるステップを含み、これにより、少なくとも1つのフッ素含有構成成分を含む第1のガス状成分が該ガス状構成成分の残りの部分を含む第2のガス状成分から分離される。前記第1のガス状成分は透過物(34)または透過残物として前記分離ゾーンから収集され、一方、前記第2のガス状成分は、前記第1のガス状成分が透過物として回収されるときには透過残物(26)として前記分離ゾーンから回収され、前記第1のガス状成分が透過残物として回収されるときには透過物として回収される。
(もっと読む)


【課題】 精製水製造装置の熱水殺菌を、より効率よく行なうことができるとともに、殺菌時間を短縮し、熱水に使用する熱エネルギーを減少して、経済的にも環境的にも優れた精製水の製造方法およびそのための精製水製造装置を提供する。
【解決手段】 原料水供給槽1を上流とし、上流側から活性炭処理部3、ナノ透過膜処理部4、逆浸透膜処理部5および精製水を貯留する精製水貯留槽6を主要構成要素とし、精製水貯留槽6は加熱手段7を具備し、加熱手段7によって加熱された精製水を、前記各処理部に送液を可能とするバイパス主管9と、バイパス主管9から分岐し、前記加熱精製水を、前記各処理部の上流側に個別に送液するバイパス支管9a,9b,9cが配設された精製水製造装置を使用し、前記各処理部を、上流側の処理部から所定温度と所定時間を保持させて順次消毒殺菌する。 (もっと読む)


【課題】有機性固形物から効率よく短期間で還元糖リッチ溶液やエタノールを製造する方法を提供する。
【解決手段】醗酵タンク本体と、タンク下方に設けられた固定濾過体と、該固定濾過体の上方に設けられ、上下動可能な可動濾過体と、醗酵タンク本体上部に設けられたエア導入部と、醗酵タンク本体に設けられた温度制御手段とを備える醗酵装置に、有機性固形物と微生物製剤を投入し、低位置にある可動濾過体上に載置された有機性固形物を加温水中浸漬状態で固液混合醗酵させ、次いで上方の高位置に移動させた可動濾過体上の有機性固形物にエアを吹き込みながら固体醗酵させると同時に、固体醗酵により生じる熱を可動濾過体下方の培養液に利用させながら液体醗酵させた後、可動濾過体を再度低位置に移動させ、低位置にある可動濾過体上の有機性固形物部分を冷却しながら固液混合醗酵させる。 (もっと読む)


161 - 180 / 361