説明

Fターム[4D015BB12]の内容

凝集又は沈殿 (21,364) | 凝集剤の使用の有無、併用の有無 (2,369) | 凝集剤の併用 (832) | 無機化合物と有機高分子 (639)

Fターム[4D015BB12]の下位に属するFターム

Fターム[4D015BB12]に分類される特許

121 - 140 / 382


【課題】 従来のプリコート式真空濾過装置において、異物等が混入している廃水にも対応可能であると共に、掻取り刃の摩耗が濾過面の場所にかかわらず均一に生ずることで、真空濾過装置の運転効率を向上させること。
【解決手段】 原液槽36とフィルタドラム38とスクレーパ手段46(48)とを備えたプリコート式の真空濾過装置。フィルタドラム38は、外筒部58の内側に同心的に内筒部56を配し、内筒部56と外筒部58との円環状空間を仕切り板60で等分割して複数個の濾室62を形成する。該各濾室62には仕切り板60の回転方向側内側面の付近においては回転軸を兼ねる濾過主管64より分岐される枝管66に接続する。スクレーパ手段46は、濾過面に対して前進可能なホルダ78に薄肉の掻き取り刃48を先端部側逃げ可能に弾性押圧して支持して構成する。 (もっと読む)


【課題】排水と有機性残渣を効率的に処理することが可能な複合処理方法を提供する。
【解決手段】排水と有機性残渣の複合処理方法であって、
(i)凝集剤を添加した排水を固形分と液体分に分離する、固液分離工程、
(ii)前記工程(i)において得られた固形分を、有機性残渣と共にメタン発酵に供する、メタン発酵処理工程を含み、
前記工程(ii)のメタン発酵処理工程で発生するメタン発酵残渣を引き抜いて固液分離した後、得られた固形分の少なくとも一部をメタン発酵処理工程に再度導入することを特徴とする方法。 (もっと読む)


【課題】界面活性剤、分散剤などの薬品が混入していても、被処理水の懸濁物質を取り除き、濁度の低い回収水を得ると共に、電気伝導度の低い回収水を得ることができる排水処理方法等を提供する。
【解決手段】被処理水に含まれる懸濁物質を無機凝集剤およびカチオン系有機凝結剤を共に添加することにより凝集させる工程と、無機凝集剤およびカチオン系有機凝結剤を添加し懸濁物質を凝集させた被処理水のpHを調整する工程と、凝集した懸濁物質を分離する工程と、を有することを特徴とする排水処理方法。 (もっと読む)


【課題】
下水処理場における下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、脱水ケーキ含水率低下の要求を満足し、同時に架橋あるいは分岐した水溶性高分子の難点とされる薬剤添加量の増加にも対応でき、コスト増加を抑制可能な汚泥脱水剤を提供する。
【解決手段】
定義1あるいは定義2で表される電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)、アミジン系水溶性高分子(B)、カチオン性水溶性高分子(C)、両性水溶性高分子(D)および酸性物質(E)からなる水溶性高分子組成物であって、前記水溶性カチオン性高分子(A)は、特定の単量体と高分子構造改質剤からなる共重合物であり、これら水溶性高分子の配合物によって達成できる。
(もっと読む)


【課題】分離効率を向上して処理時間を短縮するとともに、設置スペースを縮小する。
【解決手段】原水ポンプ10で発生した水流を利用して流れる原水に、原水に含まれる固形物を凝集してフロックを形成する凝集剤を注入する凝集剤注入装置12と、水流を利用して、凝集剤が注入された原水を攪拌して送出する第1攪拌装置13と、攪拌された原水を流入すると、流入した原水を滞留してフロックを形成するとともに、水流を利用して送出するフロック形成槽14と、フロックを含む原水を流入すると、水流を利用して流入した原水を旋回するとともに、遠心力によって固形物であるフロックと処理水とに分離する遠心分離装置15とを備える。 (もっと読む)


【課題】固液分離システムにおける分離効率を向上して処理時間を短縮するとともに、設置スペースを低減する。
【解決手段】原水に原水中の固体を凝集する凝集剤を注入する凝集剤注入装置13と、凝集剤が注入された原水に凝集剤で形成されるフロックを硬化又は強化する凝集助剤を注入する第1凝集助剤注入装置16と、凝集助剤が注入された原水を内部で旋回して原水中の固体をフロックにするフロック形成部及び当該フロック形成部よりも高速に原水を旋回して原水からフロックを分離する固体回収部とを有する遠心分離装置18とを備える。 (もっと読む)


【課題】Au,Ag,Cuメッキに由来するシアン水洗水から、メッキ工場での既存の装置および簡単な作業で、かつ有価物としての価値を有するAu,Ag,Cuリサイクルスラッジを製造する方法の提供。
【解決手段】複数のメッキラインが並列されるエリアを設けるとともに、同エリアまたは同エリアに隣接して、Au,Ag,Cuリサイクルスラッジ化処理ラインと、Niリサイクルスラッジ化処理ラインとを設け、前者ラインでは、Au,Ag,Cuを含むシアン水洗水を、水酸化ナトリウム、硫酸、次亜塩素酸ナトリウムの投入によりシアン分解処理する工程の最終段階において、活性炭を注入することによりそれにAu,Ag,Cuを吸着させ、pH調整工程においては、水酸化ナトリウムの投入とともに、後者ラインで得られたNi,Cu濃縮汚泥を凝集剤として添加することにより脱水性を向上させ、高分子凝集剤を添加して沈降槽で沈下させた汚泥を脱水する。 (もっと読む)


【課題】効果的、効率的に塩水中のカルシウム,マグネシウム及び重金属類を除去できる方法を提供する。
【解決の手段】塩水中のカルシウム,マグネシウム及び重金属類の各々を、炭酸カルシウム,水酸化マグネシウム及び重金属類の水酸化物に転化して除去する方法において、反応槽に炭酸ナトリウム,水酸化ナトリウム及び無機系凝集剤を添加した後、有機系凝集剤を添加して凝集フロックを成長させ、該凝集フロックを沈降分離槽にて除去する、イオン交換膜法食塩電解の塩水精製方法を用いる。 (もっと読む)


【課題】
下水処理場における下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、スクリュープレス型あるいはロータリープレス型脱水機を使用して脱水する場合、どのような物性の水溶性高分子からなる脱水剤を適用すれば良いかを検討し、提供する。
【解決手段】
定義)で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、特定の構造を有する単量体を必須として含有する単量体と構造改質剤からなる混合物を重合した水溶性高分子を使用することによって達成できる。
(もっと読む)


【課題】
汚水に凝集剤と磁性粉を投入し、生成した磁性フロックを除去する凝集磁気分離による水処理において、簡素な装置構成で連続的に高効率で汚泥から磁性粉を回収し、その磁性粉を再利用できる水処理装置を提供する。
【解決手段】
被処理水に対し、凝集剤と磁性粉を添加して磁性フロックを形成させ、磁気的に磁性フロックを回収して被処理水を浄化しつつ、同時に発生する磁性フロックからなる汚泥を加圧送液し、高温高圧下で反応器で加熱し、背圧弁を通過後の汚泥から磁性粉を回収し、再度その磁性粉を利用する装置を備える。 (もっと読む)


【課題】 池、沼、河川、湖、港、井戸、上・下水道施設及び養魚場等の水の浄化処理に使用され、とりわけ磁性体結合ポリマー製凝集剤を用いた凝集物回収装置であって、汚濁物質を周囲に拡散する事なく効率よく回収する。
【解決手段】 被処理水A中に沈められて被処理水Aを収容し得る回収箱2と、回収箱2を昇降させる為の昇降手段3と、回収箱2に磁性体結合ポリマー製凝集剤Bを噴射供給して被処理水Aと攪拌混合し得る供給手段4と、回収箱2に設けられて磁性体結合ポリマー製凝集剤Bに依り凝集された凝集物Dを磁着し得る電磁石5とで構成する。 (もっと読む)


【課題】汚泥を含む被処理水を低コストでかつ簡便に処理でき、かつ硬い脱水ケーキを得ることができる方法を提供する。
【解決手段】汚泥を凝集させる際、水に塩基性化合物およびカルボキシ基を有する単量体(a)に由来する構成単位と式(1)の単量体(b1)または式(2)の単量体(b2)に由来する構成単位とを有する重合体からなる両性高分子凝集剤を溶解させた脱水剤と、特定の無機塩を用いる。


=水素原子、メチル基;R、R=水素原子、炭素数1〜4のアルキル基;R=炭素数1〜4のアルキル基、ベンジル基;Z=Cl、1/2SO2−(もっと読む)


【課題】清澄な処理水が得られまた閉塞が抑制できるろ過装置及びそれを用いた水処理装置を提供する。
【解決手段】円筒状のろ過槽11と、該ろ過槽11に充填され被処理水中の濁質を捕捉するろ過体12とを有するろ過装置本体4を具備するろ過装置10であって、前記ろ過体12は、前記ろ過槽11の通水方向の少なくとも一端に接続される芯材13と一部が前記芯材13に固定されると共に前記ろ過槽11の内壁面に向かって広がるように設けられている紐状の濁質捕捉部14とを有し、前記ろ過槽11の内径が45〜600mmで、前記ろ過体12の径が50〜500mmであり、前記ろ過槽11の内径/前記ろ過体の径が0.9〜1.2である。 (もっと読む)


【課題】汚濁廃水の浄化に用いられ、粗大な沈降フロックの生成を促進し、清澄な処理水が取得できる凝集剤及びそれを用いる汚濁廃水の処理方法を提供する。
【解決手段】 有機高分子凝集剤粉末と硫酸アルミニウム粉末と石膏粉末と炭酸ソーダ粉末と珪酸ナトリウム粉末との混合物よりなる凝集剤であって、その成分配合組成が、(1)有機高分子凝集剤粉末3〜6w%、(2)石膏粉末45〜60w%、(3)炭酸ソーダ粉末15〜30w%、(4)硫酸アルミニウム粉末12〜20w%、(5)珪酸ナトリウム粉末4〜10w%、である凝集剤。
該凝集剤を、懸濁物(SS)濃度が50〜20,000mg/1リットルの汚濁廃水に、高速攪拌下に100〜30,000ppmの範囲で添加・混合させた後、静置して懸濁物(SS)を粗大フロックとして沈降分離して清澄水を得る。 (もっと読む)


【課題】高速で大量に汚水中の有機酸を除く凝集剤を提供すること。
【解決手段】有機酸5を含む汚水にアミノ基を有する水溶性高分子6を添加することにより、有機酸5とアミノ基を有する水溶性高分子6からなるイオン結合7が生成する。次に、カルボキシル基を有する水溶性高分子8の添加により、カルボキシル基を有する水溶性高分子8のカルボキシル基とアミノ基を有する水溶性高分子6のアミノ基からなるイオン結合9が形成される。これにより、有機酸をトラップした凝集物10として析出する。有機酸をトラップした凝集物10は、濾過槽を通すことで分離する。 (もっと読む)


【課題】排水中に溶解している金属を高効率で除去する手段を提供すること。
【解決手段】金属の塩1が溶解している排水に、カルボキシル基を有する水溶性高分子2を添加する。これにより、金属イオン酸性基を有する水溶性高分子からなるイオン結合3が生成する。次に、アミノ基を有する水溶性高分子4の溶液を加える。アミノ基を有する水溶性高分子添加により、酸性基を有する水溶性高分子の酸性基とアミノ基を有する水溶性高分子のアミノ基からなるイオン結合5が形成される。このイオン結合形成により、アミノ基を有する水溶性高分子と酸性基を有する水溶性高分子が架橋する。この架橋物は水に溶解できなくなり、金属イオンをトラップした凝集物6として析出する。 (もっと読む)


本発明は、処理設備における不純物を含む原水を処理するための方法に関し、この方法は少なくとも、撹拌事前接触領域(2)において、水を粉末吸着剤と接触させるステップと、バラスト凝集のステップと、沈降のステップと、沈降領域(5)の底部から、スラッジと、バラストと、粉末吸着剤との混合物を抽出するステップと、混合物を液体サイクロン(11)に挿入するステップと、スラッジと粉末吸着性試薬との混合物からなるオーバーフローを、前記液体サイクロン(11)から移行領域(14)へと輸送するステップとを含む。この方法はまた、事前接触領域(2)において、移行領域(14)からのスラッジと粉末吸着剤との混合物を再利用するステップと、事前接触領域(2)において、粉末吸着剤の濃度を示す少なくとも1つのデータを連続的に測定するステップと、事前接触領域(2)における粉末吸着剤の濃度が所定のしきい値を下回る場合に、上流で新たな粉末吸着剤水性溶媒懸濁液を注入するステップと、ならびに前記吸着剤懸濁液を酸性化するステップとを含む。
(もっと読む)


【課題】
下水処理場における下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、脱水ケーキ含水率低下の要求を満足し、同時に架橋あるいは分岐した水溶性高分子の難点とされる薬剤添加量の増加にも対応でき、コスト増加を抑制可能な汚泥脱水剤を提供する。
【解決手段】
定義1で表示される電荷内包率50%以上90%以下の水溶性カチオン性高分子(A)、電荷内包率50以上、90%以下の水溶性両性高分子(B)および酸性物質(C)を組み合わせた水溶性高分子組成物であって、前記水溶性カチオン性高分子(A)および前記水溶性両性高分子(B)は、特定の単量体と高分子構造改質剤からなる共重合物であり、これら水溶性高分子の配合物によって達成できる。
(もっと読む)


【課題】硝酸イオンや亜硝酸イオンを含む低有機物濃度排水や、無機凝集剤として鉄系凝集剤を用いる低有機物濃度排水の凝集沈殿処理におけるフロックの浮上や処理水の着色を防止して安定した凝集沈降効果で高水質の処理水を得る。
【解決手段】COD1000mg/L以下かつBOD200mg/L以下の低有機物濃度排水を凝集沈殿処理する方法において、該低有機物濃度排水に、亜塩素酸(塩)を200mg/L以下添加して凝集沈殿処理する。亜塩素酸(塩)を添加することにより、汚泥中の脱窒菌の活性を抑え、沈殿槽での窒素ガスの発生を抑制して汚泥の浮上、流出による処理水SSの悪化を防止することができる。また、汚泥の腐敗を抑制して鉄系凝集剤の還元による処理水の着色を防止して、清澄な処理水を安定に得ることができる。 (もっと読む)


【課題】加圧浮上装置の性能を格段に引き上げることが可能となると共に次工程処理装置の性能をも向上させることができる水処理装置および水処理方法を提供する。
【解決手段】この水処理装置では、マイクロナノバブル発生機54から凝集付着槽4にマイクロナノバブルを供給することによって、凝集付着槽4において形成される凝集フロックにマイクロナノバブルを付着させる。さらに、加圧タンク16から加圧浮上槽9の下部混合部10に供給する微細気泡も上記凝集フロックに付着させる。よって、加圧浮上槽9では、マイクロナノバブルと微細気泡の両方でもって上記凝集フロックを短時間で浮上分離することができる。また、マイクロナノバブル発生槽31に界面活性剤タンク18から界面活性剤を添加することで、このマイクロナノバブル発生槽31において、多量でサイズの小さいマイクロナノバブルやナノバブルを含有した2次処理水を作製できる。 (もっと読む)


121 - 140 / 382