説明

Fターム[4D020DA03]の内容

吸収による気体分離 (12,080) | 制御、検知、数値限定 (804) | 数値限定 (418)

Fターム[4D020DA03]に分類される特許

141 - 160 / 418


【課題】吸収液再生のためのエネルギー量を大幅に低減することができるCO2回収装置及び方法を提供する。
【解決手段】排ガス中のCO2を除去するCO2吸収塔と、CO2を吸収したリッチ溶液17中のCO2を除去し、再生する再生塔18と、再生塔18でCO2を除去したリーン溶液15を前記CO2吸収塔で再利用するCO2回収装置であって、リッチ溶液17とリーン溶液15とを熱交換する熱交換器23と、再生塔18から水蒸気を同伴したCO2ガス26aとして持ち出されるエンタルピー(E1)と、熱交換器23においてリッチ溶液17と熱交換された後のリーン溶液15のエンタルピー(E2)との和(E1+E2)が最小限となるように、リッチ溶液17の一部のリッチ溶液17−2を抜き出し、熱交換器23を迂回して熱交換せずに再生塔18の塔頂部側へ一部のリッチ溶液17−2を供給する制御を行う制御手段40とを有する。 (もっと読む)


a)流体流を、少なくとも1種のアミンと、ストリッピング助剤と水とを含む吸収液で処理し、その際にストリッピング助剤は、常圧での沸騰温度が水の沸騰温度よりも低い水混和性液体の中から選択されており、b)処理された流体流を液体水相で処理して、飛沫同伴されたストリッピング助剤を少なくとも部分的に水相へ移動させ、c)負荷された水相を加熱して、ストリッピング助剤を少なくとも部分的に追い出し、かつd)こうして再生された水相を冷却し、かつ少なくとも部分的に工程b)へ返送することによる、流体流から酸性ガスを除去する方法。ストリッピング助剤は、ストリッピングによる吸収剤の再生を促進する。処理された流体流を介してのストリッピング助剤の排出は、処理された流体流が液体水相で洗浄されることによって回避される。
(もっと読む)


再生カラム(8)を出る希薄な水性のCO吸収剤から1つ(または複数)のCO吸収化学物質を再生利用するための方法であって、そこで、希薄な吸収剤(30)が抜き取られ、圧縮され(34)、再生カラムに剥離器気体(37)として戻される蒸発気を発生させるように急流され、そこで、希薄な吸収剤の一部(20)は、その中で希薄な吸収剤が抜き取られ、抜き取られて再生カラムに再生利用される吸収剤として戻される気相(23)、および不純物を含有する液相(24)を発生させるように煮沸される再生利用器(21)に導入され、そこで、再生利用器から抜き取られる気相が、再生カラム内における圧力よりも低い再生利用器内における圧力を発生させるように、希薄な吸収剤の急流からの蒸発気部分(33)と共に圧縮される(34)方法、および、当該方法を実行するための再沸器(11)が記載される。 (もっと読む)


CO2は、ガス混合物から、ガス混合物を、水と2,3−ジヒドロ−2,2,4,6−テトラメチルピリジンとを含む吸収媒体と接触させることにより吸収される。本発明による吸収は、水と、2,3−ジヒドロ−2,2,4,6−テトラメチルピリジンと、少なくとも1種の有機溶剤とを均一相で含む。ガス混合物からCO2を分離するための本発明による装置は、吸収ユニットと、脱離ユニットと、循環される本発明による吸収媒体とを含む。 (もっと読む)


流体から二酸化炭素を除去する方法において、(a)流体を、第1の吸収領域で、その後第2の吸収領域で、液体吸収剤と向流接触させることによって処理し、前記流体に含有された二酸化炭素の少なくとも1部を前記吸収剤に吸収させる工程;(b)負荷された吸収剤を減圧して第1の二酸化炭素の流れを放出させ且つ部分的に再生した吸収剤を得る工程;(c)第1の部分的に再生した吸収剤の流れを第1の吸収領域中に再循環させる工程;(d)第2の部分的に再生した吸収剤の流れを加熱して第2の二酸化炭素の流れを放出させ且つ再生した吸収剤を得る工程;(e)再生した吸収剤を第2の吸収領域中に再循環させる工程;(f)第2の二酸化炭素の流れを冷却し且つ回収された熱の少なくとも1部を部分的に再生した吸収剤に間接熱交換により伝達することによって、第2の二酸化炭素の流れに同伴された水蒸気を凝縮する工程を含む、前記方法。本発明は、2段階の二酸化炭素回収方法において、二酸化炭素の回収に要求される全エネルギーを削減する及び/又は二酸化炭素の少なくとも1部が大気圧よりも高い圧力で回収されて二酸化炭素の圧縮、例えば、分離に要求されるエネルギーを削減する、前記回収方法を提供する。液体から二酸化炭素を除去するためのプラントも開示されている。
(もっと読む)


本発明は、塩溶融物に溶解した金属酸化物を吸収剤として使用する、廃ガスからの二酸化炭素取り込みに関する。 (もっと読む)


【課題】 従来の技術は面構造の磁器充填物であるため吸収塔の塔径が大きく、酸霧の捕捉を吸収塔で行っていたため充填高も高く、従って充填容積が大きくまたレンガ張りの塔を用いていたために充填物重量および塔重量が大きく、基礎の負荷も大きいとう問題があった。
【解決手段】 本発明では線構造のフッ素樹脂充填物を用いたため吸収塔塔径の低減を可能とし、三酸化硫黄酸霧の捕捉を酸霧除去設備で別途行う組み合わせをしたために、充填高の低減を可能にした。従って充填容積の低減を実現し、さらに従来の磁器充填物では傷つけるために用いられなかったフッ素樹脂ライニングを施工することで塔重量の低減、基礎の負荷の低減を可能とした。それにより、従来の大型で重量のある三酸化硫黄の捕捉システムの軽量化を図った。 (もっと読む)


流体の流れから酸性ガスを除去するための吸収剤は、a)少なくとも1つのアミン水溶液およびb)少なくとも1つのホスホン酸水溶液を含み、この場合a)に対するb)のモル比は、0.0005〜1.0の範囲内にある。ホスホン酸は、例えば1−ヒドロキシエタン−1,1−ジホスホン酸である。この吸収剤は、アミンまたはアミン/促進剤組合せ物をベースとする吸収剤と比較して減少された再生エネルギー需要を示し、この場合には、酸性ガスに対する前記溶液の吸収能が本質的に減少されることはない。
(もっと読む)


本発明は、硫化水素捕捉添加剤に関し、炭化水素中の硫化水素を捕捉可能であり、水可溶性の捕捉生成物を形成し、前記捕捉生成物は酸性pHでも炭化水素から分離され、ファリング問題も分解問題も生じることなく、前記捕捉添加剤がアルデヒドとポリエチレングリコール(PEG)を含み、前記アルデヒドがグリオキシル酸である。本発明はまた本発明の硫化水素捕捉添加剤を適用する硫化水素捕捉方法に関する。 (もっと読む)


【課題】イオン液体を用いた物理吸収法によるCO分離回収方法を提供する。
【解決手段】イオン液体吸収液を用いた物理吸収法により、CO−N系とHS、又はCO−N系と低級の炭化水素系ガスを含む多成分混合ガスから、COとHS、又はCOを分離回収するCO分離回収方法、CO−N系とHSを含む多成分混合ガスから、COとHSを同時に分離回収し、又は、CO−N系と低級の炭化水素系ガスを含む多成分混合ガスからCOのみを選択的に分離回収する、及び流通式ガス分離装置を用いた連続プロセスにより、多成分混合ガスからCOを分離回収する、前記のCO分離回収方法。
【効果】室温近辺の温度領域で3成分以上の多成分混合ガスからCOを分離回収することができる。 (もっと読む)


(a)供給合成ガスをシフトさせて、HSおよびCOが富化された、シフトした合成ガスを得るステップ;(b)シフトした合成ガスを吸収液と接触させて、半精製合成ガス、ならびにHSおよびCOに富む吸収液を得るステップ;(c)このHSおよびCOに富む吸収液を加熱および除圧して、これによりCOに富むフラッシュガス、およびHSに富む吸収液を得るステップ;(d)HSに富む吸収液をストリッピングに掛けて、再生した吸収液、およびHSに富むストリッピングガスを得るステップ;(e)ストリッピングガス中のHSを、元素硫黄に変換するステップ;(f)半精製合成ガスを、水性アルカリ性洗浄液と接触させて、HSが激減した合成ガス、および硫化物を含む水性流を得るステップ;(g)硫化物を含む水性流を、硫化物酸化性細菌と接触させて、硫黄スラリーおよび再生した水性アルカリ性洗浄液を得るステップを含む、供給合成ガスから、精製した合成ガスを製造する方法。
(もっと読む)


本発明は、ガスストリームからガス状汚染物を除去するシステム及び方法に係る。特に、本発明は、ガスストリームからガス状汚染物を除去する方法であって、ガスストリームを洗浄溶液と接触させて、洗浄溶液への吸収によって、ガスストリームからガス状汚染物を除去し;及び使用済み洗浄溶液を再生して、使用済み洗浄溶液からガス状汚染物を除去し、これによって、再生済み洗浄溶液及び除去された汚染物を含んでなるガスを提供することを含んでなり、第1の再生ステージにおいて、除去された汚染物を含んでなるガスを冷却して、再生工程からの水蒸気の損失を最小にするガス状汚染物の除去法に係る。
(もっと読む)


本発明は、(a)供給合成ガス流を、水および/もしくは水蒸気の存在下においてシフト反応器内の水性ガスシフト触媒と接触させて、少なくとも一部の一酸化炭素を二酸化炭素および水素へと、少なくとも一部のシアン化水素をアンモニアへと、および/または少なくとも一部の硫化カルボニルを硫化水素へと反応させて、H2SおよびCOが富化された、場合によってアンモニアを含むシフトした合成ガス流を得るステップ;(b)シフトした合成ガス流を吸収液と接触させることにより、このシフトした合成ガス流からHSおよびCOを除去して、半精製合成ガス、ならびにHSおよびCOに富む吸収液を得るステップ;(c)少なくとも一部の、このHSおよびCOに富む吸収液を加熱装置内で加熱して、H2SおよびCOに富む加熱された吸収液を得るステップ;(d)このHSおよびCOに富む加熱された吸収液をフラッシュ室内で除圧して、これによりCOに富むフラッシュガス、およびHSに富む吸収液を得るステップ;(e)HSに富む吸収液を、高温でストリッピングガスと接触させて、これによりHSをストリッピングガスに移動させて、再生した吸収液、およびHSに富むストリッピングガスを得るステップ;(f)HSに富むストリッピングガス中のHSを、元素硫黄に変換するステップ;(g)半精製合成ガス中のHSを元素硫黄に変換することにより、半精製合成ガスからHSを除去して、精製した合成ガスを得るステップを含む、主成分である一酸化炭素および水素以外に、硫化水素、硫化カルボニルおよび/またはシアン化水素ならびに場合によってアンモニアも含む供給合成ガス流から精製した合成ガス流を製造する方法を提供する。
(もっと読む)


本発明は、上部還元域(16)と下部冷却域(18)を有する垂直反応炉(12)で直接還元鉄を製造する方法であって、該方法は酸化鉄供給材料(20)を垂直反応炉(12)の上部(22)に供給するステップと、前記酸化鉄供給材料(20)が垂直反応炉(12)の下部(24)の材料排出部に重力により流れる負荷を形成するようにするステップと、垂直反応炉(12)の還元域(16)の下部(26)に高温還元ガスを供給し、該高温還元ガスが垂直反応炉(12)の上部(22)のガス排出口に向かって負荷に対する逆流として流れるようにするステップと、垂直反応炉(12)の下部(24)で直接還元鉄を回収するステップと、垂直反応炉(12)の上部(22)で上部ガスを回収するステップと、該回収上部ガスの少なくとも1部を再利用プロセスにかけるステップと、該再利用上部ガスを垂直反応炉(12)に送り戻すステップとを含む。本発明の重要な観点によれば、再利用プロセスは回収上部ガスを予備加熱装置にて加熱した後、改質装置(36)に送り、改質装置(36)に揮発性炭素含有物質(38)を送り、該揮発性炭素含有物質(38)をして脱揮発成分処理しそして前記回収上部ガスと反応せしめ、脱硫剤を改質装置(36)内又は上流の前記回収上部ガスに送り込み、改質装置(36)を加熱し、改質装置(36)から回収された改質上部ガスを、硫黄含有物質(45)を除くため、粒子分離装置(46)に送り通して成る。
(もっと読む)


【課題】生成する炭酸カルシウムの粒成長を制御できる炭酸ガスの処理方法を提供する。
【解決手段】pH7以上のカルシウム溶液に炭酸ガスを接触させて、炭酸カルシウムを生成させる炭酸ガスの処理方法において、カルシウム溶液を、炭酸カルシウムの粒成長の促進・抑制がpHに依存するカルシウム濃度に維持すると共に、カルシウム溶液のpHを所定の範囲に維持して、炭酸カルシウムの粒成長を制御する。 (もっと読む)


物理的溶媒が、超希薄溶媒を生成するためにフラッシングおよびストリッピングプロセスを用いて再生される。特に好ましい態様では、フラッシングされたC1〜C3炭化水素は、吸収器に再循環され、一方でC4+炭化水素は、溶媒から除去されたCO2から回収される。濃厚溶媒の減圧が、冷凍負荷のほとんどをもたらすことがさらに好ましい。
(もっと読む)


本発明は、少なくとも1種の酸性ガスを含むガス混合物から少なくとも1種の酸性ガスを分離する方法であって、前記ガス混合物を、前記少なくとも1種の酸性ガスを吸着し、少なくとも1種の金属イオンに配位する少なくとも1種の少なくとも二座の有機化合物を含む多孔質の有機金属骨格材料と接触させる工程を含み、且つ前記多孔質の有機金属骨格材料にはガス洗浄に好適なアミンが含浸されていることを特徴とする分離方法に関する。本発明はまたこのような含浸した有機金属骨格材料を提供する。 (もっと読む)


酸性汚染物質や同様の汚染物質を少なくとも部分的に除去するための、化石燃料燃焼ボイラー(2)や燃焼プロセス等から出る煙道ガス流等のガス流(DG)処理に有用な大気質管理システム(AQCS)(4)。該大気質管理システム(4)は、乾式スクラバーシステム(8)及び織布フィルタ(10)の両方を備えた複数の集積部品(12)を備えている。このような大気質管理システム(4)では、「ターンダウン」能力が強化され、これにより、効率性の向上が図られる。
(もっと読む)


【課題】本方法は、吸収溶液を用いた、ゾーンB1における吸収段階、およびカラムGにおける吸収溶液再生段階を実施することによって、ガス1、例えば燃焼排ガスまたは天然ガス中に含まれるCO2およびH2Sなどの酸性化合物の捕獲を提供する。
【解決手段】本発明によれば、酸性化合物が除去されたガス32が、所定の温度を有する液体水の流れ17と接触することによって、洗浄セクションB3において洗浄および冷却され、その結果、温度が処理される前記ガス2の温度より低い、洗浄されたガス18を得、再生して得られた、酸性化合物に富むガス状流出物22中に含まれる、ある量の水がプロセスから排出される。 (もっと読む)


ヘンリー法則定数の差が大きいことを利用して、大気と地表水、大気と沈殿物または大気と土壌など、すべての種類のポイントソース(point−source)から目標ガスを取り出す方法およびシステムが開示されている。水の中に溶けるガスの場合、ヘンリー法則定数はたとえばN、Oのような燃焼排ガスの主要成分と比較してCOをより多く溶解する。主な原理は、ガスを溶かし、非溶解部分を逃がし、溶解したガスを液体から取り出すことである。溶解したガスは目標ガスで濃縮されている。前もって決められているレベルの目標ガス濃度に到達するために、さらなるステップを用いることができる。 (もっと読む)


141 - 160 / 418