説明

Fターム[4G036AB22]の内容

Fターム[4G036AB22]に分類される特許

61 - 75 / 75


【課題】微小容器の底部から液面まで音響流によって広範囲に液体を均一に攪拌することが可能な攪拌装置及び攪拌装置を備えた分析装置を提供すること。
【解決手段】液体を音波によって攪拌する攪拌装置及び攪拌装置を備えた分析装置。攪拌装置は、液体を保持する液体保持部と、非対称な強度分布を有する音波を、液体保持部の保持する液体に向けて照射する単一の音響素子21とを具備し、非対称な強度の音波により液体中に発生する音響流を利用して、液体保持部に保持された液体を攪拌する。音響素子21は、圧電基板21a上に形成され、圧電基板に沿って異なる方向に音波を発生する単一の音源21bと、音源が発生した音波を音源の中心Cに対して非対称な強度分布にする強度変化部21cとを含む。 (もっと読む)


【課題】複数又は多数の孔を備える部材を介して互いに隣接する液相と気相において、その気相を媒体として音波を供給することにより、両相間の状態を変化させることができる技術、特に、液相側への気泡の発生、液相側に発生している気泡の微細化及びその発生、微細化、流量、生成動力の制御又は調整を可能にする技術を提供する。
【解決手段】液相Lと気相Gとの間に配置する多孔質体に対してその気相を媒体として音波を供給することにより、液相Lと気相Gとの間の相状態を変化させる。 (もっと読む)


【課題】振動子が一つであっても液体に出射する音波の出射位置を変化させて効率良く攪拌することができ、構成が簡単で安価、かつ、小型な攪拌装置、攪拌方法、反応容器及び攪拌装置を備えた分析装置を提供すること。
【解決手段】容器7に保持された液体を音波によって攪拌する攪拌装置、攪拌方法、反応容器及び攪拌装置を備えた分析装置。攪拌装置20は、音波を発生する少なくとも一つの発音部21bを有する音波発生素子21と、音波発生素子の駆動信号の周波数を制御する制御部23を有する駆動回路22とを備え、制御部によって駆動信号の周波数を制御することにより、同一の発音部が発生した音波が液体中へ出射する出射位置を変化させて攪拌する。 (もっと読む)


超音波処理装置(5)に、電磁バルブ(V1)、表示器(20)、送出ポンプ(9)を介して液体界面活性剤貯蔵タンク(1)を接続、電磁バルブ(V2)、表示器(21)、送水ポンプ(10)を介して貯水タンク(2)を接続、電磁バルブ(V3)、表示器(22)、送出ポンプ(11)を介して有害廃棄物貯蔵タンク(3)を接続、次に電磁バルブ(V4)、表示器(23)、送出ポンプ(12)を接続し、超音波処理装置(5)と電気溶融炉(6)との間に、電磁バルブ(V5)、送入ポンプ(13)等を接続し、電気溶融炉(6)と排気用煙突(8)間に、電磁バルブ(V6)、排気用ポンプ(14、15)と排気処理装置(17)を接続し、電気溶融炉(6)にスラグ排出口(6B)を接続、各電磁バルブ(V1、V2、V3、V4、V5、V6)に電磁バルブ制御部(16)を接続した事である。
(もっと読む)


【課題】 容器内の残存ガスを除去し、目的ガスに置換することが可能なガス圧入装置及びガス圧入方法を提供する。
【解決手段】 液体を充填した耐圧容器内の気相中へガスを圧入するガス圧入装置であって、前記容器内へ挿入する有孔針を有する高圧シリンジ1と、該シリンジ1内に挿入されたプランジャを摺動させる駆動手段2と、前記プランジャに接続する切替弁3と、前記耐圧容器内の液体に攪拌及び超音波振動を与える超音波発振攪拌装置5とを備え、前記プランジャは前記切替弁を介してガス供給源に接続し、前記切替弁の切替えによって前記耐圧容器内のガスを排気するように構成されてなることを特徴とするガス圧入装置。及び、それを用いたガス圧入方法。 (もっと読む)


【課題】 液体中のマイクロバブルの圧壊を促進し、液体中にナノバルブを短時間で大量に生成する。
【解決手段】 マイクロバブルを含む液体を貯留槽1に供給し、この供給されたマイクロバブルを含む液体に対し超音波振動装置6により超音波振動を印加することにより、液体中のマイクロバブルを圧壊し、液体中にナノバブルを生成する。 (もっと読む)


【課題】 粒子の平均粒子径がナノメートルの範囲内にある、超微粒子懸濁液及び超微粒子を穏やかに製造する方法を提供する。
【解決手段】 本発明は、平均粒子径50nm〜1000nmの粒子を極めて効果的かつ保存的方法で製造するための多段階の工程を記載する。この工程において、固体物質(活性物質)は溶媒に溶解され、この前記固体物質(活性物質)を溶解された状態で含む液体は、その後かなり迅速に冷凍される。用いた溶媒又は複数の溶媒は、任意に、(凍結)乾燥工程(凍結乾燥工程)において、得られた冷凍したマトリックスから除去され、或いは冷凍したマトリックスは、更に直接処理され、固体マトリックス(凍結したもの又は凍結乾燥されたもの)は、外相、即ち液体の媒体に分散される。前記液体の媒体は、水、水と水溶性液体との混合物又は非水性液体である。その後生じた分散体は、素早く高剪断及び/又はキャビテーションの力の作用を受け、加えられた力によって、生じた粒子はナノメートルの範囲で安定化し及び粉砕される。記載した方法は、生成物にかなり穏やかな方法で実施されうるので、易熱性の感受性のある物質を処理することにおいて特に適している。更に、必要なサイクル数の減少により又は加えられる力密度の低減により、使用される装置の磨耗を著しく減少させることができる。得られたナノ粒子は、さまざまな分野において、例えば、化粧品産業、食品産業、繊維産業及びその他の産業分野において使用されうる。 (もっと読む)


【課題】本発明は、あらゆる種類の被攪拌材をより好適に攪拌・脱泡することのできる超音波を用いた被攪拌材の攪拌・脱泡方法とその装置を提供することを課題とする。
【手段】被攪拌材の収納された容器を容器受けに載置し、駆動手段を用いて該容器受けを自転駆動するとともに容器受けの設けられたアーム体を公転駆動することにより被攪拌材に攪拌作用及び脱泡作用を行う被攪拌材の攪拌・脱泡方法であって、前記容器内の被攪拌材に超音波を照射しその振動により被攪拌材を脱泡することである。 (もっと読む)


【課題】より短時間かつ省電力でサンプルおよび試薬を攪拌混合することを可能とし、効率的に被攪拌物の攪拌できる機構を備えた化学分析装置を提供する。
【解決手段】分析対象物となるサンプルと試薬とを反応容器102内に注入し、反応容器102へ音波を照射して攪拌する化学分析装置において、音波を発生する圧電素子と、該圧電素子を駆動する駆動ドライバ504と、を備え、音波は反応容器102内に間欠的に照射される。 (もっと読む)


【課題】 径が小さく、かつ、径のばらつきが小さいマイクロバブルを定常的に発生可能なマイクロバブル発生方法、およびマイクロバブル発生装置を提案すること。
【解決手段】 マイクロバブル発生装置Aは、アスピレータやポンプ装置などの気体混合液供給装置10と、気体混合液が流れる管体2と、超音波振動発生装置3と、管体2の内部に配置された複数枚のメッシュ板4とを有しており、液体に気体を混合した気体混合液を多孔質体4に通す際、多孔質体4に超音波振動を付与してマイクロバブルを発生させる。 (もっと読む)


【課題】超音波を利用して液体を高能率に撹拌できる液体処理方法、装置を提供する。
【解決手段】超音波振動子4に連接されたホーン2に、その先端面から側面に抜ける流路9を形成し、該ホーン2を、その先端面が撹拌容器1内の台座5に所定の間隙で対向配置されるように配設する。撹拌容器1内に、給水管7を通じて水を所定量供給した後、ホーン2から超音波照射を行い、その先端面と台座5との間隙でキャビテーションを集中的に発生させて、そのポンピング作用で、水を流路9内に吸上げると共に、遮蔽板10に衝突させて撹拌容器1に還流し、この循環する水に粉末粒子6を投入して撹拌し、その後、撹拌容器1を回転ユニット11により回転させて、遮蔽板10に代えて輸送管12を前記口部9aに接近させ、ホーン2からの超音波照射を継続して、処理液を輸送管12を経て、他の処理設備へ輸送する。 (もっと読む)


【課題】メカニカルキャビテーション作用を利用した高純度・低コストのバイオディーゼル燃料の製造方法を提供する。
【解決手段】混合・反応作用に優れたメカニカルキャビテーション作用と、電場の形成による反応促進及び凝集・分離作用をBDF(バイオディーゼル燃料)製造工程に複合的に適用し、反応速度を速め、低コスト化を実現するとともに、高純度のBDFを製造する。 (もっと読む)


【課題】攪拌装置や分析装置におけるエネルギーの伝達効率を向上させると共に、攪拌装置や分析装置の構造を簡単にし、小型化とメンテナンス性の向上を可能にする攪拌容器を提供すること。
【解決手段】保持した液体を音波によって攪拌する攪拌容器5。音波を発生する音波発生部材24が攪拌容器5と一体に設けられている。攪拌容器5は、光学的に透明な素材からなる底壁5dと複数の側壁5cとを有し、複数の側壁5cのうち互いに対向する側壁の一部は、攪拌された液体を光学的に測定する測光用の窓5bである。音波発生部材24は、複数の側壁5cのうちの測光用の窓5bが存在する側壁5cに設けられる。 (もっと読む)


(i)水と混和性の有機溶媒中に実質的に水に不溶性の物質を含む第一溶液を、(ii)水および任意に安定化剤を含む水相と、混ぜ合わせて、非晶質微粒子の分散液を形成すること;ならびに(iii)非晶質微粒子の分散液を実質的に水に不溶性の物質の結晶性ナノ−微粒子を形成するのに十分な時間超音波処理することを含む、水性媒体中の結晶性ナノ−微粒子の分散液の調製方法。本方法は1ミクロン未満、特に300nm未満、の平均流体力学的直径を持つナノ−結晶を提供しそして医薬物質のナノ−結晶性分散液の調製に特に有用である。 (もっと読む)


本発明は、ソノトロードを用いて流動性媒体内に超音波を導入する装置及び方法に関する。ここで、流動性媒体はソノトロードとは直接接触することはない。開示は、以下のステップからなる方法である。フィルム(8)をソノトロード(4)の上に、ソノトロード(4)に押しつけられるフィルム(8)による接触力が常に、フィルム(8)が対応する周波数と振幅でのソノトロード(4)の上昇動作に追随することが出来る大きとなるように、配置する。フィルム(8)を介して超音波力を媒体(2)に適用し、摩耗現象をフィルム(8)に転嫁させる。
(もっと読む)


61 - 75 / 75