説明

Fターム[4G048AC03]の内容

重金属無機化合物 (15,216) | 有用性 (2,690) | 磁性 (112)

Fターム[4G048AC03]に分類される特許

61 - 80 / 112


【課題】サイズ選別過程なしで、単分散で結晶性に優れた金属、複合金属合金、単金属酸化物及び複合金属酸化物のナノ粒子を直接合成する方法を提供すること。
【解決手段】代表的な方法は、容器内の溶媒に金属前駆体、酸化剤、界面活性剤を添加して混合溶液を準備した後、加熱処理を行うことにより、単分散金属酸化物ナノ粒子を合成する段階と、貧溶媒を添加してから遠心分離して、金属酸化物ナノ粒子の形成を完了する段階とを含んでなり、その結果として得られるナノ粒子は多様な用途に適した優れた磁気特性を有する。 (もっと読む)


【課題】基板上に結晶化したAサイト秩序型ペロブスカイトMn酸化物の薄膜形成を可能にする製造方法を提供する。
【解決手段】基板上に形成された組成式RBaMn2O6-d(RイオンとBaイオンはペロブスカイト型構造(AMnO3型))のAサイトを占め、層状に交互に規則配列した結晶構造を持つことを特徴とするAサイト層状秩序ペロブスカイト型マンガン酸化物(式中、RはY, La, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Hoの少なくとも1種類より選ばれる3価イオンであり、さらに、BaはCaやSrによって一部置換されていても良く、MnサイトにはCrやRu等の金属イオンが微量置換されていても良い。) から成る薄膜を形成させる方法において、上記物質の各構成元素を含む有機金属薄膜を、熱分解してアモルファス化させた後、不活性気体中で、500℃〜800℃の温度に保持し、紫外レーザを照射して結晶化させることを特徴とするAサイト層状秩序型ペロブスカイトマンガン酸化物薄膜の製造方法。 (もっと読む)


【課題】鉛フリーの磁性ガーネット単結晶において、光吸収が小さく且つ膜厚を200μm以上にでき、光通信におけるファラデー回転子等に用いることができるように45°損失を0.1dB以下に低減できるようにする。
【解決手段】LPE法により育成される磁性ガーネット単結晶であって、一般式がBix Nay Caz M13-x-y-z Fe5-v-w Ptv M2w O12で表され、M1は、Y,La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luから選択される1種類以上の元素、M2は、Ga,Al,Inから選択される1種類以上の元素であり、0.8<x≦1.5、0<y<0.02、0.01<z<0.09、0.04<v<0.19、0≦w<1.5で、且つz/y≧4、z/v≧0.3である。 (もっと読む)


【課題】
鉄含有ナノ粉末粒子を製造する方法を提供する。
【解決手段】
鉄含有ナノ粉末粒子の一製造方法は、鉄含有成分と、コロイド安定化剤と、所定量の水とから熱分解法により製造するものである。この方法では、鉄含有成分と、コロイド安定化剤と、所定量の水とからなる混合物を鉄含有ナノ粉末形成に適した温度に加熱した後、鉄含有ナノ粉末を分離する。鉄含有ナノ粉末粒子のもう一つの製造方法は、反復シェル成長法を用いるものであり、第1の量の鉄含有成分とコロイド安定化剤とからなる混合物を作成し、この混合物を鉄含有ナノ粉末形成に適した温度に加熱し、室温まで冷却する。冷却した混合物に別の量の鉄含有成分を添加し、反応温度に再加熱し、分離される鉄含有ナノ粉末粒子の粒径が所望の大きさになるまでこの工程を繰り返す。 (もっと読む)


本発明は、下記一般式(1)で表される物質をバルク状態における第1の結晶構造と異なる第2の結晶構造を有する膜で製造し、
RMnO(R=ランタン系列の元素) ・・・(1)
既存の多強体物質より向上された多強体的な特性を獲得することにより、多強体特性が要求される多様な分野においてより効果的に用いられ得る。
(もっと読む)


【課題】MR素子を用いた高感度の読み取り磁気ヘッドに適する磁気記録媒体を得るために,磁気記録用磁性粉の特性を改善する。
【解決手段】Co,Al,R(希土類元素,Yを含む)を下記の範囲で含有したFeを主成分とする針状粒子からなり,Co/Fe=10〜50 at.%,固溶Al/(Fe+Co)=5〜50 at.%,R/(Fe+Co)=2〜25 at.%,酸素含有量=25wt%以下で且つ針状粒子の平均長軸径が25〜80nmで飽和磁化量σsが10〜130emu/g であるMRヘッド対応磁気記録用の磁性粉である。 (もっと読む)


【課題】Coの含有量を従来よりも少なくしても、従来のSr、La及びCoを含有する六方晶M型フェライト磁性材料と同等の磁気特性を安定して得ることを目的とする。
【解決手段】Sr、La、R、Fe及びCoを構成元素として含む六方晶構造を有するフェライトを主成分とし、この主相におけるSr、La、R、Fe及びCoそれぞれの金属元素の総計の構成比率が、組成式:Sr1−(x+m)LaFe(12−y)zCoで示され、この組成式で示される主成分に対して、副成分としてAl成分をAl換算で0.03〜0.6wt%含有することを特徴とするフェライト磁性材料。
ただし、上記組成式において、RはPr及びNdの1種又は2種であり、m、x、y及びzは、0<m≦0.10、0.07≦x≦0.20、0.07≦y≦0.12、0.90<z<1.10である。 (もっと読む)


【課題】−40〜85℃という広い温度域において、33A/mの高直流磁界が印加された下でも高い実効透磁率μを常に維持することができるMnCoZnフェライトと、そのフェライトからなるトランス用磁心を提供する。
【解決手段】基本成分と添加成分と不可避的不純物とからなるフェライトであって、基本成分が、Fe:51.0〜54.0mol%、ZnO:13.0〜18.0mol%、CoO:0.04〜0.60mol%、残部MnOの組成からなり、添加成分として全フェライトに対してSiO:0.005〜0.040mass%およびCaO:0.020〜0.400mass%を含有し、不純物として全フェライトに対して3massppm未満のPを含み、平均結晶粒径が3〜8μmであることを特徴とするMnCoZnフェライト。 (もっと読む)


【課題】極めて安定なペロブスカイト構造を有し、強磁性及び強誘電性を併有する材料を、超高圧等の特殊環境を要せず安価で比較的容易に製造し、半導体メモリに適用する。
【解決手段】組成式がABO3の結晶格子を有する強磁性・強誘電性材料であって、AサイトにBiイオン及び少なくとも1種の希土類陽イオンを、Bサイトに陽イオンであって超交換相互作用を示す複数種の磁性イオンをそれぞれ含み、強磁性及び強誘電性を併有する材料をキャパシタ膜3に適用し、MFIS−FETを構成する。 (もっと読む)


【課題】1GHz以上の高周波帯域における優れた電波吸収性能を、従来より薄いシート厚で実現し得る電波吸収体用磁性粉体を提供する。
【解決手段】下記A成分、下記M成分およびFeと、酸素で構成され、M成分とFeのモル比を、M成分:Fe=x:24とするとき、1.2≦x≦2.5が成立する組成のZ型六方晶フェライトの粉体であって、当該粉体を構成する前記Z型六方晶フェライト粒子の平均アスペクト比が4以上である電波吸収体用磁性粉体。ただし、A成分はアルカリ土類金属元素およびPbの1種以上、M成分は2価のFeを除く金属元素の1種以上からなる。このような平均アスペクト比の大きいZ型六方晶フェライト粉体は、フラックス機能を有する金属塩化物を原料に配合すること、および焼成後の粉砕工程をハンマーミルによる衝撃粉砕あるいはさらに湿式粉砕で行うことによって実現できる。 (もっと読む)


【課題】 直流重畳特性の飛躍的な向上が図れるフェライトおよびそれを用いた電子部品を提供する。
【解決手段】 主成分として酸化鉄がFe23換算で45.0〜49.0モル%、酸化銅がCuO換算で5.0〜14.0モル%、酸化亜鉛がZnO換算で1.0〜32.0モル%、酸化ニッケルがNiO換算で残部モル%含有されて構成されるNiCuZn系フェライトであって、
前記主成分に対して、酸化ビスマスがBi23換算で0.25〜0.40重量%(ただし、0.25重量%を含まない)、酸化錫がSnO2換算で1.00〜2.50重量%含有されてなるように構成される。 (もっと読む)


【課題】 強磁性を示し、可視光に透明で紫外線を吸収するZnO又はTiO2系磁性粉末微粒子を、簡便かつ低コストで製造する方法を提供する。
【解決手段】 ZnO系化合物又はTiO2系化合物と、Fe,V,Cr,Mn,Co及びNiの群から選ばれる1種以上の遷移元素との混合物を、ボールミル内で100〜700回転/分、かつ30〜120分間処理する工程を有する粒径5〜20nmの磁性粉末微粒子の製造方法であって、遷移元素記ZnO系化合物又はTiO2系化合物中のZn又はTiの1〜50原子%を置換する割合で混合されている。 (もっと読む)


【課題】 高いQを維持しつつインダクタンスの相対温度係数を改善し、かつPbOを含有しない添加成分及び添加物量を選択した酸化物磁性材料を提供する。
【解決手段】 高周波帯で使用する酸化物磁性材料であって、酸化物換算で、Feを10〜50mol%,CuOを0〜8mol%(0を含まず),NiOを37〜89.5mol%,CoOを0.5〜2mol%及びAlを0〜5mol%(0を含まず)を主成分として含有し、かつ、Biを5〜15wt%、SiOを0.3〜3wt%を添加成分として含有する。 (もっと読む)


【課題】スピネル型フェリ磁性体粒子の微粒子化を図りつつ、さらなる磁気特性の向上、特に大きな保磁力を有する磁性粒子粉を得ること。
【解決手段】組成式(CoO)(NiO)y−z(M0.5z・n/2Fe(MはCr又はY)において、Feと(Co+Ni+M)との比n(Fe/(Co+Ni+M))の値が、2.2<n<3.0であり、0.65<x<0.9、0.08<y<0.3、0.008<z<0.025、x+y+z=1であるスピネル型フェリ磁性微粒子粉末である。 (もっと読む)


【課題】小さい平均板径、適切な板径の変動係数、板状比および抗磁力を有する六方晶マグネトプランバイト型フェライトおよびその製造方法を提供し、該フェライトを磁性層に使用し、MRヘッドを使用して再生したとき短波長出力が高く、媒体ノイズが低い磁気記録媒体を提供する。
【解決手段】逆ミセル法により所望の六方晶マグネトプランバイト型フェライト組成の共沈物を形成し、得られた共沈物をマイクロ波照射し、150〜300℃に加熱し、平均板径10〜30nm、板径の変動係数5〜25%、板状比1.5〜4.5、かつ抗磁力125〜400kA/mの六方晶マグネトプランバイト型フェライトを得る。また該フェライトを磁性粉末として磁性層に含有させ、磁気記録媒体を得る。 (もっと読む)


【課題】小さい平均板径、適切な板径の変動係数、板状比および抗磁力を有する六方晶マグネトプランバイト型フェライトおよびその製造方法を提供し、該フェライトを磁性層に使用し、MRヘッドを使用して再生したとき短波長出力が高く、媒体ノイズが低い磁気記録媒体を提供する。
【解決手段】逆ミセル法により所望の六方晶マグネトプランバイト型フェライト組成の共沈物を形成し、この表面をアルカリ土類金属化合物で被覆し、被覆物を空気中550〜650℃で加熱し、続いて650〜900℃で加熱しフェライト化し、得られた生成物を洗浄し、平均板径10〜30nm、板径の変動係数5〜25%、板状比1.5〜4.5、かつ抗磁力125〜400kA/mの六方晶マグネトプランバイト型フェライトを得る。また該フェライトを磁性粉末として磁性層に含有させ、磁気記録媒体を得る。 (もっと読む)


【課題】 高周波材料としての適用を好適に求めることができる、高周波特性の改善が図られた新規酸化物磁性組成物及び高周波用材料を提供する。
【解決手段】 一般式(Sr1-XBaX2Co2Fe1222によって表される組成から成る六方晶型の結晶構造を有する酸化物フェライトを主成分とする酸化物磁性組成物において、前記酸化物フェライトが0<X≦1で置換されていることを特徴とする。また、該酸化物磁性組成物が高周波用材料として高周波用部品に使用されるものであることを特徴とする。 (もっと読む)


【課題】 均質かつ粒径の細かいナノサイズ、或いは平板状の形状を有しその厚さがナノサイズのY型フェライト粉末を簡易かつ効率よく提供を提供する。
【解決手段】 Y型フェライトを含有するフェライト粉末の製造方法であって、前記Y型フェライトの構成成分元素を含有する金属塩の水溶液にアルカリ源を添加する工程と、前記水溶液にマイクロ波を照射して加熱し、反応させる工程を有することを特徴とする。さらには、前記水溶液に沸点の高い水溶性溶媒を添加して、マイクロ波を照射することを特徴とする。 (もっと読む)


【課題】 フェライトめっき法によって均質な膜を得ることができるフェライト膜の製造装置を提供すること。
【解決手段】 少なくとも第一鉄イオンを含む反応液および少なくとも酸化剤を含む酸化液を加熱された基体1に供給する機構と、その反応液および酸化液を前記基体から除去する機構とを有するフェライト膜の製造装置であり、その基体1の加熱は少なくとも製造装置内の雰囲気を加熱する手段を備えてなされる。また、加熱した気体を基体1の周りに導入することによって基体1の加熱を行う。また、その加熱した気体は水を含む液体を発熱体に接触させて発生させた蒸気とする。 (もっと読む)


【課題】分散性がよく粒度分布の幅が狭く塗布による機能性薄膜の作製に適した六方晶フェライト微粉末を、より容易に作製できる製造方法を提供する。
【解決手段】六方晶フェライト微粉末の構成元素を含む原料成分とガラス形成成分とを混合して加熱溶融し、得られた溶融物を急冷して非晶質体を作製し、次いでこの非晶質体に熱処理を施してガラス母相六方晶フェライトの微結晶を析出させた後、洗浄処理を施してガラス母相を溶解し六方晶フェライト微粉末を分離抽出し、この際のガラス形成成分には、(イ)一般式R2 O(ただし、RはNaおよびΚの中から選択される少なくとも1種の元素を表す。)で示される塩基性酸化物と(ロ)B23 およびP2 5 の中から選択される少なくとも1種の酸性酸化物とを用いる。 (もっと読む)


61 - 80 / 112