説明

Fターム[4G072RR13]の内容

Fターム[4G072RR13]に分類される特許

61 - 80 / 167


【課題】ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を示すシリコン製造方法及びシリコン製造装置を提供すること。
【解決手段】本発明に係るシリコンの製造方法は、下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを得るためのものであって、薄膜状の溶融金属に前記ハロゲン化シランを含有する原料ガスを吹き付ける吹付工程を備えることを特徴とする。
SiH4−n (1)
[式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。] (もっと読む)


【課題】炉本体、支持台、上部ヒータ、および下部ヒータを備える加熱改良構造を有する結晶成長炉を提供する。
【解決手段】加熱改良構造を有する結晶成長炉は、炉本体1、支持台2、上部ヒータ3、および下部ヒータ4を含む。上部ヒータ周囲のシリコン材料が溶解すると、溶融シリコンスラリーはシリコン材料の粒子間の空間に直接流れ込む。これにより、シリコン材料の内部のエネルギー吸収が促進される。その結果、るつぼ7内のシリコン材料全体の溶解を促進する所望のサイクルが確立される。るつぼは、るつぼ内のシリコン材料の溶解効率を高め、結晶成長炉により消費されるエネルギーと時間を節減するように、下部ヒータにより直接底部で加熱される。さらに、上部ヒータと下部ヒータのどちらもが互いに対称であるため、るつぼを均一に加熱することができる。 (もっと読む)


【課題】リンを効率的に除去することができるシリコン再生方法を提供する。
【解決手段】本発明のシリコン再生方法は、砥粒とクーラントを含むスラリーを用いたシリコン塊又はシリコンウエハの切断又は研磨によって前記スラリーにシリコン屑が混入された廃スラリー又はその濃縮分を固液分離してシリコン屑を含有するシリコン回収用固形分を取得し、前記シリコン回収用固形分を酸溶液からなる洗浄液で洗浄し、前記洗浄後に200℃以上1000℃以下の温度で前記シリコン回収用固形分を焼成する工程を備えることを特徴とする。 (もっと読む)


【課題】酸化物等の介在物や不純物元素が鋳塊内に混入することなく高品質な鋳塊が得られるとともに、引き抜き速度を上昇させて生産効率を大幅に向上させることが可能な連続鋳造方法、連続鋳造装置及びこれにより得られる鋳塊を提供する。
【解決手段】溶湯1を一方向凝固させて得られた鋳塊2を連続的に製出する連続鋳造装置10であって、溶湯1を保持する溶湯保持部20と、水平方向一方側端部が溶湯保持部20の下方に位置させられた鋳型30と、を備え、鋳型30は、水平方向他方側に向かうにしたがい漸次下方に向かうように水平面に対して傾斜して延在する底面部31を有し、底面部31に冷却手段35が設けられており、溶湯保持部20から供給された溶湯1を冷却手段35によって一方向凝固させ、得られた鋳塊2を鋳型30の底面部31に沿って連続的に引き抜くことを特徴とする。 (もっと読む)


光ファイバーからSiClを含むかまたは含まないGeClを生成させるための方法が提供され、その方法は、ゲルマニウムおよび場合によってケイ素の酸化物を含む粉末状にした光ファイバーを、固体の炭素質還元剤、塩素およびホウ素化合物を含む反応物と、次の反応:2BCl(気体)+1.5GeO → 1.5GeCl(気体)+B;2BCl(気体)+1.5SiO → 1.5SiCl(気体)+BO;B+1.5C+3Cl → 2BCl(気体)+1.5CO;に従って反応させて、気体のGeCl、SiClおよび気体のBClを含む気体生成物を得るステップと、次に、該気体のGeCl、BClおよび場合によってSiClを、液体のGeCl、BClおよび場合によってSiClに凝縮させるステップとを含む。本発明は、光ファイバーの製造および廃棄した光ケーブルから得られるガラス質残分からSiCl(および場合によってGeCl)を生成させる方法をさらに提供する。その方法は、粉末状にしたガラス質残分を固体の炭素質還元剤、塩、ホウ素化合物を含む反応物と反応させて、SiCl、BCl、および場合によってGeClを含む気体生成物を得るステップと、次にその気体のSiCl、BCl(GeClを含むか含まない)を液体のSiCl、BClおよびGeClに凝縮するステップとを含む。SiOを含有する材料からSiClを製造する方法も提供される。
(もっと読む)


【課題】晶出物である固体シリコンの大きさによらず、従来よりも高速な回収が可能なシリコン精製装置および精製方法を提供する。
【解決手段】本発明に係るシリコン精製装置は、溶融シリコンを保持する坩堝と、略鉛直方向に延びる軸を回転中心軸として回転駆動可能かつ前記溶融シリコン内外へ移動可能に構成された回転冷却体3と、回転冷却体3の周面に晶出した固体シリコン5の側面に向かって前進してその先端が固体シリコン5の側面に衝突可能な棒状部材41を有する剥離装置40とを備えている。 (もっと読む)


【課題】高純度かつ高品質な合成石英粉の製造方法、並びに該合成石英粉を溶融してなる、泡が極めて少ないガラス成形体を提供する。
【解決手段】平均粒径10〜500μmのシリカゲルを、1000℃以上で10〜50時間、酸素含有雰囲気中で加熱処理して製造する合成石英粉の製造方法において、該酸素含有雰囲気中での加熱処理後、得られた合成石英粉にヘリウムガスを接触させることを特徴とする合成石英粉の製造方法および該製造方法により製造された合成石英粉を溶融し成型して得られることを特徴とするガラス成型体。 (もっと読む)


【課題】溶湯の供給が間欠的に行われる場合であっても、結晶の成長が連続した高品質の鋳塊を効率良く製出でき、かつ、比較的長尺の鋳塊を得ることが可能な鋳造方法及びこれに用いられる鋳造装置を提供する。
【解決手段】鋳型の一方側から溶湯を供給し、凝固して得られた鋳塊を前記鋳型の他方側へ向けて製出する鋳造方法であって、前記鋳型の他方側部分に鋳塊を配置する鋳塊配置工程S1と、前記鋳型の一方側から前記鋳型の他方側部分に配置された前記鋳塊を冷却する鋳塊冷却工程S2と、該鋳塊冷却工程S2の後に、前記鋳型の一方側から前記鋳塊を加熱して、前記鋳塊の一方側端部を融点直下まで昇温する鋳塊加熱工程S3と、該鋳塊加熱工程S3の後に、前記鋳型の一方側から前記溶湯を前記鋳型内に供給する溶湯供給工程S4と、供給された前記溶湯を前記他方側から前記一方側に向けて一方向凝固させる凝固工程S5と、を備えていることを特徴とする。 (もっと読む)


【課題】本発明は、シリコン原料の製造コストを好適に低減することのできる多結晶シリコンの新規な製造方法を提供することを目的とする。
【解決手段】無機ケイ酸塩と水と脂肪酸とを混合し、これをろ過することによって、脂肪酸塩とSi(OH)の脱水重合体とが互いに織り込まれるようにして固化した固形物を得る。当該固形物を加熱することによって、脂肪酸塩部分が加水分解する。この加水分解に起因してSiの多結晶化が促進される。また、別法としては、シリコーンオイルと脂肪酸塩とを混合することによって、脂肪酸塩とシリコーンオイルとが互いに織り込まれるようにして液状化した流体を得る。当該流体を所望の基体に塗布・充填するなどして成形したのち、加熱することによって、上述したのと同様に脂肪酸塩部分が加水分解し、この加水分解に起因してSiの多結晶化が促進される。 (もっと読む)


【課題】中空回転冷却体を用いるシリコン精製方法であって、大気雰囲気中で連続的にシリコン精製を行なうことを可能とするシリコンの精製方法を提供する。
【解決手段】原料シリコンを加熱して溶融シリコンとする溶融工程と、前記溶融シリコンを添加剤と接触させて、溶融状態において前記溶融シリコンよりも小さな比重を持つスラグを形成させる第1精製工程と、前記溶融シリコンの溶湯面の少なくとも一部が前記スラグにより覆われた被覆状態において、前記溶融シリコンに中空回転冷却体を浸漬する浸漬工程と、前記中空回転冷却体を回転させた状態において、前記中空回転冷却体の中空部に冷却流体を流すことにより前記中空回転冷却体の外周面に固体シリコンを晶出させる第2精製工程とを含むシリコン精製方法。 (もっと読む)


【解決手段】少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法に用いられる一酸化珪素の製造装置において、1,100〜1,600℃の一酸化珪素ガスが接触する構成部材(但し、該析出基体を除く)をC/Cコンポジット材で構成したことを特徴とする一酸化珪素の製造装置。
【効果】本発明の一酸化珪素の製造装置によれば、高純度な一酸化珪素を効率的かつ安定的に製造することができ、かつ、大型化も容易であり、工業的規模の生産にも十分に応えられるものである。 (もっと読む)


【課題】 低コストの原料シリコンを用いたとしても純度の高い結晶シリコン粒子を製造可能な結晶シリコンの製造方法を提供する。
【解決手段】 (1)バインダーを用いて前記原料シリコンを造粒し、原料シリコンの集合体を形成する工程と、(2)前記原料シリコンの集合体を坩堝内に入れて加熱溶融させることでシリコン融液を形成する工程と、(3)シリコン融液を凝固させて結晶シリコンを得る工程と、を具備する。 (もっと読む)


【課題】廃スラリーから簡易に多くのシリコンを回収することができるシリコン再生装置を提供する。
【解決手段】本発明のシリコン再生装置は、砥粒とクーラントを含むスラリーを使用してシリコンを切断する切断装置又は研磨する研磨装置から排出された廃スラリー、又は前記廃スラリーが濃縮された廃スラリー濃縮分を固液分離してシリコン回収用固形分を取得する固液分離部と、第1洗浄部からの前記シリコン回収用固形分を溶融及び固化してシリコン含有塊を得る溶融部と、前記シリコン含有塊を破砕してシリコン含有破砕体を取得する破砕部と、前記シリコン含有破砕体を酸水溶液で洗浄しその後に水で洗浄する第2洗浄部を備える。 (もっと読む)


【課題】安価でかつ効率的に金属状ケイ素を製造する方法を提供する。
【解決手段】珪石を還元することにより金属状ケイ素を製造する方法であって、金属状アルミニウムおよび/または金属状マグネシウムを還元剤とする珪石の自己燃焼還元反応により金属状ケイ素を生成させると共に、該自己燃焼還元反応により生じた熱を利用して、珪石と炭素源とから金属状ケイ素を生成させる反応を開始・進行させ、ここで、珪石の純度が90重量%以上でありかつその平均粒径が100μm以下であり、金属状アルミニウムおよびマグネシウムの平均粒径が500〜1000μmであり、炭素源の平均粒径が100μm以下であることを特徴とする。 (もっと読む)


【課題】余分な工程を必要とせず簡単に製造することができるスピネルの製造方法を提供することを目的とする。また、本発明は、製鋼用の脱酸剤を始め太陽電池、半導体部品等の原料として利用することのできる金属状ケイ素の製造方法を提供することを目的とする。
【解決手段】本願発明のスピネルまたは金属状ケイ素の製造方法は、2:2:1に従うモル比で、珪石(SiO)、金属状アルミニウムおよび金属状マグネシウムを反応させることにより、スピネルおよび金属状ケイ素を生成させ、ここで、珪石の純度が90重量%以上でありかつその平均粒径が100μm以下であり、金属状アルミニウムおよびマグネシウムの平均粒径が500〜1000μmであることを特徴とする。 (もっと読む)


【課題】金属シリコンの製造過程において、低エネルギーでかつ容易にホウ素およびリンを除去することができる方法を提供する。
【解決手段】本発明の太陽電池用高純度シリコンの製造方法は、金属状アルミニウムおよび/または金属状マグネシウムを還元剤として珪石(SiO)を還元することにより金属状シリコンを製造する方法において、上記還元反応と同時に、カルシウム化合物を、珪石に含まれるホウ素および/またはリンと反応させることにより、ホウ素および/またはリンを除去し、ここで、前記カルシウム化合物の添加量は、カルシウム化合物と、ホウ素および/またはリンとの化合物の生成理論モル量の1〜1.5倍であることを特徴とする。 (もっと読む)


少なくとも1つの不純物を含む低純度の冶金グレードシリコンを精製し、高純度の固体多結晶シリコンを得るためのプロセスが提供される。前記プロセスは、断熱底壁、断熱側壁、および開いた上面を持つ鋳型中に低純度の冶金グレードシリコンの溶融物を入れ、前記溶融物を電磁的に攪拌しながら前記鋳型の前記開いた上面から前記断熱底壁の方に向けた一方向凝固によって前記溶融物を凝固させ、前記一方向凝固の速度を制御し、前記溶融物が部分的に凝固した時点で前記一方向凝固を停止し、前記高純度の固体多結晶シリコンを含む外側シェル、および不純物が富化された液体シリコンを含む中央部を有するインゴットを作り、前記インゴットの前記外側シェルに開口を形成し、前記不純物が富化された液体シリコンを流出させ、前記高純度の固体多結晶シリコンを有する前記外側シェルを残すことを含む。
(もっと読む)


【課題】「棚吊り現象」を抑制しながら溶融対象物を急速に溶融できる高周波誘導炉およびそれを用いた溶融物製造方法を提供すること。
【解決手段】溶融対象物4を収容する収容凹部を有する円筒状の坩堝1と、該坩堝1の周囲に配置された高周波コイル2と、前記高周波コイル2からの高周波により誘導加熱を起こして坩堝1内の前記溶融対象物4を溶融する被加熱体3Aとを備え、前記被加熱体3Aは、坩堝1の前記収容凹部内または坩堝1を構成する周囲壁内において、溶融対象物4の溶融開始位置を規定する形状に形成されている、または前記溶融開始位置を規定する位置に設けられていることを特徴とする高周波誘導炉。 (もっと読む)


【課題】良好な生産効率を維持し、装置規模を削減し、コストを低減できる薄板製造装置および薄板製造方法を提供する。
【解決手段】薄板製造装置2000は、浸漬機構1500と、脱着機構と、チャンバー1100とを備えている。浸漬機構1500は、融液1102に下地板Sの表面を浸漬し、下地板Sの表面に融液1102が凝固した薄板Pを形成するためのものである。脱着機構は、下地板Sを浸漬機構1500に脱着するためのものである。チャンバー1100は、浸漬機構1500および脱着機構が内部に配置されている。チャンバー1100は、下地板Sをチャンバー1100の外部から内部に搬入するための第1の開口部1201と、下地板Sをチャンバー1100の内部から外部へ搬出するための第2の開口部1301とを有している。第1および第2の開口部1201、1301がチャンバー1100の内部の雰囲気ガスと大気との境界になるように構成されている。 (もっと読む)


【課題】一方向成長を利用したキャスト成長法で作製されるSiバルク多結晶インゴットにおいて、インゴット上部でも結晶品質の良い、高品質かつ高均質なSiバルク多結晶インゴットを得ることができる。これにより、通常は太陽電池特性が低下するインゴット上部においても太陽電池特性の劣化がなく、Siバルク多結晶インゴットの利用歩留まりを大幅に向上させることができる。
【解決手段】キャスト成長法を用いたSiバルク多結晶のインゴットの成長初期の段階に形成されるインゴット底部近傍のランダム粒界の割合が、全ての結晶粒界の30%以下になるよう作製される。 (もっと読む)


61 - 80 / 167