説明

Fターム[4G072RR23]の内容

Fターム[4G072RR23]に分類される特許

1 - 20 / 90


【課題】シリコン原料の初期溶解時において溶融シリコンの差し込みを発生させることなく、多結晶シリコンインゴットの円滑な引き下げを可能とする多結晶シリコンの連続鋳造方法および連続鋳造装置を提供する。
【解決手段】シリコン原料の初期溶解時に、無底冷却ルツボ内のダミーブロックと前記無底冷却ルツボ側壁とで形成される隙間に不燃性部材を装入する。前記不燃性部材を石英ウールとすれば、不燃性部材による溶融シリコン中への汚染を最小限にすることができる。この方法は、前記ダミーブロックと前記無底ルツボとで形成される隙間に、不燃性部材が装入されていることを特徴とする本発明の多結晶シリコンの連続鋳造装置により容易に実施することができる。 (もっと読む)


【課題】高品質な多結晶シリコンインゴットを作製する。
【解決手段】坩堝20の周囲に配置された3n個(nは自然数)の抵抗加熱ヒータに3相交流を供給し、3相交流によって生じる回転磁場を作用させつつ、坩堝20内のシリコンを加熱して溶解させる加熱工程と、上記回転磁場を作用させつつ、坩堝20の底部から上部に向けて冷却してシリコンを凝固させる冷却工程と備える。 (もっと読む)


【課題】本発明は、珪藻土粒子の微小形態と多孔構造を利用し、高機能材料となる金属シリコンの製造方法を提供する。
【解決手段】本発明の金属シリコンの製造方法は、珪藻土の細孔内部に、炭素物質、難分解性有機塩素化合物又は有機物を混合又は吸収させ、不活性ガス、水素ガス、窒素ガス、空気又は真空雰囲気下で加熱することにより、炭素源と二酸化珪素の接触面積を増大させ、効率よく金属シリコンを製造することができる。また、前記有機物が、使用済珪藻土濾過助剤に充填された有機物である。 (もっと読む)


【課題】溶融シリコンの異物汚染を抑制できるシリコンインゴットの電磁鋳造方法の提供。
【解決手段】チャンバー1内を真空引きする際、シャッター30によって無底冷却ルツボ10の上端開口を遮蔽し、不活性ガス導入管4の遮断弁5を閉にし、通気管20、真空引き用配管23の各遮断弁21、25を開にした状態で、排気管7の排気ポンプ8を作動させることなく、真空引き用配管23の真空ポンプ24を作動させ、その後にチャンバー1内を不活性ガスで満たす際、ガス導入管4の遮断弁5を開に切り換えた状態にし、その後にシリコン原料14を溶解しながら連続鋳造する際、シャッター30を退避させてルツボ10の上端開口を開放し、通気管20、真空引き用配管23の各遮断弁21、25を閉に切り換えた状態で、排気ポンプ8を作動させ、その後にチャンバー1内でインゴット19を冷却する際、通気管20の遮断弁21を開に切り換えた状態にする。 (もっと読む)


【課題】金属級シリコン材料からボロンおよびその他の不純物を効率的に除去でき、且つ連続的な処理が可能で、且つコンパクトな装置構成で、高純度シリコンの量産が可能なシリコンの精製方法を提供する。
【解決手段】金属級シリコンまたはシリカ粉末1を、2400℃程度のオゾン含有酸素ガス雰囲気のプラズマ領域8に投入し、前記粉末に含まれるボロンを酸化して気化物として除去し、粉末1aとして回収し、ボロン除去後の粉末1aを、還元性雰囲気のプラズマ領域28に投入し、還元処理により酸素を除去して、シリコン粉末1bとして回収し、前記シリコン粉末を加熱して溶湯1cとなし、電磁石35の磁場中に前記溶湯を流すことで、金属不純物元素をトラップして除去する。さらに、金属不純物元素を除去したシリコンの溶湯1cを、遠心噴霧によりシリコンの粉末1dとなして回収する。 (もっと読む)


【課題】モールド内に投入した原料の落下に伴う溶融シリコンの跳ね上げによるプラズマトーチの先端へのシリコンの付着を抑制し、サイドアークの発生を防止することができる多結晶シリコンの連続鋳造方法を提供する。
【解決手段】電磁誘導加熱とプラズマアーク加熱を併用する連続鋳造方法であって、プラズマトーチを、原料3の投入方向に対して垂直の方向に走査させるか、または、モールド2の断面における2本の対角線により形成される4つの角のうちの角度がθの2つの角に含まれるいずれか一の方向もしくは二以上の方向に走査させるとともに、原料のモールド内への投入を、当該投入側のモールド側壁に対して直角の方向で、かつ、投入する原料がモールドの中心にあるプラズマトーチに衝突する(原料の落下点がモールドの中心から外れる)ように、投入角度および高さを調整して行う。 (もっと読む)


【課題】シリコン溶湯の表面に噴射ガスを噴射してSiOxナノ粉末を大量に生産できる揮発性に優れた高純度SiOxナノ粉末の製造方法及びその製造装置について開示する。
【解決手段】本発明にかかるSiOxナノ粉末の製造装置は、真空チャンバ;前記真空チャンバの内部に装着され、シリコンが装入される黒鉛るつぼ;前記黒鉛るつぼに装入されたシリコンを誘導加熱してシリコン溶湯を形成させる誘導溶融部;前記黒鉛るつぼの内部で前記シリコン溶湯の表面と直接接触するように噴射ガスを噴射するガス噴射部;及び前記黒鉛るつぼと離隔された上部に配置され、前記シリコン溶湯と前記噴射ガスとの反応によって揮発するSiOx蒸気を捕集する捕集部;を含むことを特徴とする。 (もっと読む)


【課題】本発明の目的は、太陽電池の基板として用いることにより、太陽電池の変換効率を向上した多結晶ウェーハ及びその製造方法を提供することにある。また、かような多結晶ウェーハを得るための、多結晶材料の鋳造方法を提供することも目的とする。
【解決手段】本発明の多結晶ウェーハは、ウェーハ中のCu濃度を所定の範囲としたものである。 (もっと読む)


【課題】本発明の目的は、強度の高い多結晶インゴットを得ることのできる多結晶材料の鋳造方法を提供することにある。また、本発明は、スライス工程において、低い割れの発生率で製造でき、且つ上記のセル工程、モジュール工程での割れの発生率も低い多結晶ウェーハを提供することも目的とする。
【解決手段】本発明の多結晶材料の鋳造方法は、電磁鋳造法において、融液の冷却速度を制御することを特徴とする。また、本発明の多結晶ウェーハは、縁取り部の強度(ビッカース硬度)が中心部対比で高いことを特徴とする。 (もっと読む)


【課題】電磁鋳造方法により多結晶シリコンを製造するに際し、最終凝固部における異物析出範囲を縮小させ、クラックの発生を防止することができる電磁鋳造方法および電磁鋳造装置を提供する。
【解決手段】鋳造の終盤においてインゴットの引下げ速度を低下させ、最終凝固工程(鋳造終了の直後からモールド内の未凝固の溶融シリコンを凝固させるまでの工程)開始前の固液界面深さを浅くする。インゴットの引下げ速度の低下を毎時0.05〜0.2mm/minの割合で直線的に行なうこととすれば、最終凝固部における異物析出範囲を縮小させ、クラックの発生を効果的に防止することができる。この方法は、インゴットの引下げ速度を鋳造ストロークに応じて変動させる引下げ速度制御装置13を有する本発明の電磁鋳造装置により容易に実施することができる。 (もっと読む)


【課題】比較的低純度のシリコン原料からボロンおよびその他の不純物を効率的に除去でき、且つ連続的な処理が可能で、且つコンパクトな装置構成で量産が可能なシリコン原料の精製方法を提供する。
【解決手段】原料となるシリコンまたはシリカの粉末1を落下させ、その粉末をオゾンを含む高温領域8を通過させる。高温領域中のオゾンにより粉末に含まれるボロンが酸化され、酸化物として気化して除去される。高温領域8を通過した粉末が冷却され、ボロンを除去した粉末として回収する。高温領域8を高周波誘導熱プラズマまたはレーザビーム照射にて形成する。また、ボロンを除去した粉末を水素を含む高温領域28を通過させ、高温領域中の水素により粉末に含まれる二酸化硅素成分を還元してシリコンとなす。 (もっと読む)


【課題】原料のルツボ内への供給時における金属の持ち込みを極力少なくすることができる多結晶シリコンの鋳造方法を提供する。
【解決手段】無底の冷却ルツボを用い、電磁誘導により多結晶シリコンを連続的に鋳造する多結晶シリコンの鋳造方法であって、原料として、高純度シリコンの粒径が0.6mm〜3mmの原料と粒径が3mmを超え40mm以下の原料を全原料の70〜100質量%として混合し、かつ両者の混合比を比較した場合に、粒径が0.6mm〜3mmのものが0〜40質量%、粒径が3mmを超え40mm以下のものが100〜60質量%である高純度シリコンを使用する。これにより、重金属による汚染が少なく、良好な変換効率を維持できる太陽電池の基板材としての多結晶シリコンを、簡素で小型の原料供給配管を採用した電磁鋳造装置を使用して容易に製造することができる。 (もっと読む)


【課題】エネルギー効率に優れ、ナノ粒子を低コストで製造可能なナノ粒子の製造方法およびその製造方法に好適なナノ粒子製造装置を提供する。
【解決手段】例えば、電磁波を透過する材料からなる中空状の反応器(11)と、その内部に原料ガスを供給する原料供給手段(15)と、反応器(11)中の原料ガスに高周波交番磁界を印加する高周波誘導コイル(12)とを備えた装置(10)を用い、反応器(11)内に導入した原料ガスに高周波交番磁界を印加またはマイクロ波を照射し、原料ガスを分解および/または反応させてナノ粒子を製造する。 (もっと読む)


【課題】シリコンインゴットの鋳造を行ったチャンバー内を清掃する際に、粉塵爆発が発生する危険性を低減することができるシリコンインゴットの電磁鋳造方法を提供する。
【解決手段】不活性ガス雰囲気に維持されるチャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を投入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを鋳造する方法において、リンがドープされたシリコンインゴットの鋳造を行ったチャンバー内を清掃する際に不活性ガス雰囲気の温度を200℃以下にした状態でチャンバーを開放して清掃することを特徴とする。また、ボロンがドープされたシリコンインゴットの鋳造を行ったチャンバー内を清掃する際に不活性ガス雰囲気の温度を400℃以下にした状態でチャンバーを開放して清掃する。 (もっと読む)


【課題】鋳造の対象をn型とp型の間で変更するに際し、装置内の清掃を短時間で行い、得られる多結晶シリコンの抵抗率のバラツキの低く抑えることができる多結晶シリコンの電磁鋳造装置および電磁鋳造方法を提供する。
【解決手段】(1)無底冷却モールド1と、このモールドを取り囲む誘導コイル2を有し、電磁誘導加熱により溶融したシリコンを凝固させ、インゴット3として取り出す、n型多結晶シリコンの製造に適した多結晶シリコンインゴットの電磁鋳造装置であって、メインチャンバー7−1の上部に雰囲気ガスを引き込む開口11a、12aを有し、サブチャンバー7−2の下部に前記引き込んだ雰囲気ガスを導入する開口11b、12bを有する還流配管11、12を少なくとも2系統備える電磁鋳造装置。(2)この装置を使用し、多結晶シリコンの導電型に応じてあらかじめ定めた還流配管を使用する電磁鋳造方法。 (もっと読む)


【課題】初期溶解時に用いるダミーバーに起因して発生する異物の混入を防止して、歩留りを改善することができる多結晶シリコンの製造方法を提供する。
【解決手段】電磁誘導法による多結晶シリコンの製造方法において、モールド2内のシリコン原料を初期溶解する際に当該シリコン原料を支持するためのダミーバー4として、ダミーバー本体4aの上面にシリコン5が結合されたダミーバーを使用する。前記ダミーバーとして、鋳造終了後に、インゴットと結合したダミーバーの当該結合部よりも上のインゴットの部分で切断することにより、ダミーバー本体の上面にシリコンを存在させたダミーバー、さらには、これに酸による洗浄等の処理を施したダミーバーを使用する実施形態を採ることとすれば、従来のカーボンダミーバーを使用した場合における窒化ケイ素の異物の混入を抑制し、歩留りの向上等、種々の改善を図ることができる。 (もっと読む)


【課題】シリコンインゴットを電磁鋳造する際に、インゴットの最終凝固部位で割れの発生を防止しつつ、炭素濃度の増大を防止できる電磁鋳造方法を提供する。
【解決手段】無底冷却ルツボ7にシリコン原料11を投入し、誘導コイル8からの電磁誘導加熱、およびルツボ7の上部に挿入されたプラズマトーチ13からのプラズマアーク加熱によりシリコン原料11を溶解させ、この溶融シリコン12をルツボ7から引き下げながら凝固させてインゴット3を連続鋳造する電磁鋳造方法において、シリコン原料11をルツボ7に投入し溶解させるとともに凝固させる定常期には、プラズマトーチ13を当該トーチの電極と溶融シリコン12との間にプラズマアークを発生させる移行式とし、シリコン原料11の投入を停止して溶融シリコン12を凝固させる鋳造最終期には、プラズマトーチ13を当該トーチの電極間にプラズマアークを発生させる非移行式とする。 (もっと読む)


【課題】シリコン細棒の製造における欠点を回避して従来技術を改善する。
【解決手段】シリコン細棒(1)の製造方法であって、a)多結晶シリコン製のロッドを準備して、これから前記多結晶シリコン製のロッドに対して縮小された断面積を有する少なくとも2つの細棒(11,12)を分離する工程;b)前記分離された少なくとも2つの細棒(11,12)を、材料侵食性液状媒体での処理によって清浄化する工程;c)前記清浄化された少なくとも2つの細棒(11,12)を溶接して、1つのより長い細棒(1)とする工程;d)前記のより長い細棒(1)をチューブラフィルム(100)中にパッケージングする工程を含む前記製造方法によって解決される。 (もっと読む)


【課題】n型シリコンインゴットを電磁鋳造する際に、蒸発し易いドーパントを用いる場合であっても、インゴットの長手方向で抵抗率を均一化することができる電磁鋳造方法を提供する。
【解決手段】チャンバー1内に配置した導電性を有する無底冷却ルツボ7にシリコン原料11およびドーパントを投入し、ルツボ7を囲繞する誘導コイル8からの電磁誘導加熱によりシリコン原料11およびドーパントを溶解させ、この溶融シリコン12をルツボ7から引き下げながら凝固させてn型のシリコンインゴットを連続鋳造する電磁鋳造方法において、チャンバー1内を常圧よりも高い圧力に維持して電磁鋳造を行う。 (もっと読む)


【課題】鋳造されたインゴットが不純物で汚染されるのを低減できるとともに、冷却ルツボの内面が損傷するのを軽減できるシリコンインゴットの連続鋳造方法を提供する。
【解決手段】軸方向の一部が周方向で複数に分割された無底の冷却ルツボ7を誘導コイル8内に配置し、誘導コイル8による電磁誘導加熱により、冷却ルツボ7内に溶融シリコン13を形成し、冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する方法において、冷却ルツボ7として、その内面7aのうちの溶融シリコンの外面13aおよびシリコンインゴットの外面3aと対向する部分7bに、Ni−B合金めっきが施されたものを用いることを特徴とするシリコンインゴットの連続鋳造方法である。 (もっと読む)


1 - 20 / 90