説明

Fターム[4G146NB05]の内容

炭素・炭素化合物 (72,636) | 炭化物、炭素・硫黄含有化合物の製造 (654) | 反応方式、反応操作 (268) | 気相反応、気相熱分解 (64) | 化学蒸着、プラズマCVD (34)

Fターム[4G146NB05]に分類される特許

21 - 34 / 34


【課題】本発明は、表面粗度が低い上記複合材料を基板として用いた場合にも、熱抵抗が小さい放熱構造を提供することを目的とする。
【解決手段】本発明に係る放熱構造は、少なくとも炭素及びアルミニウムを含む複合材料からなる基板と、該基板表面にウィスカーを主成分とする層が形成されていることを特徴とする。ウィスカーは炭化アルミニウムウィスカー又はアルミナウィスカーであり、基板表面から直接、外側に伸びるように成長していることが好ましい。基板は、Al-SiC、Al-炭素、又はAl-ダイヤモンド系複合材料であることを特徴とする。 (もっと読む)


本発明は、下記の工程:a) 金属凝集体(3)を金属酸化物基体(2)上に形成させる工程;および、b) ナノ構造体(1)を、金属凝集体で被覆した金属酸化物基体(2)上で気相成長させる工程を含み、上記基体を1種以上のプレカーサーガスの存在下に加熱し、ナノ構造体(1)の気相成長を金属凝集体(3)によって触媒する、ナノ構造体(1)の金属酸化物基体(2)上での製造方法に関する。本発明によれば、上記金属凝集体の形成工程a)は、上記金属酸化物基体の表面を還元性プラズマ処理によって還元して、上記基体(2)上に金属凝集体(3)の液滴を形成させる操作を含み;上記金属凝集体形成工程a)および上記ナノ構造体成長工程b)を単一の共用プラズマ反応器チャンバー(4)内で連続して実施し、上記ナノ構造体成長を金属凝集体(3)の液滴上で直接実施する。 (もっと読む)


【課題】本発明の主題は特に、多孔質アモルファス水素化シリコンカーバイド膜を製造可能にする方法である。
【解決手段】本発明は、
a)基板上に、酸化ケイ素貫通ナノワイヤが分散されたアモルファス水素化シリコンカーバイドマトリックスから成る膜を形成する段階と、
b)ステップa)において形成された膜に存在する酸化ケイ素ナノワイヤを、化学物質によって選択的に分解する段階と、を含む貫通孔を備えたアモルファス水素化シリコンカーバイド膜の製造方法に関する。
応用例:マイクロエレクトロニクスおよびマイクロテクノロジーにおけるエアギャップの形成、特に集積回路のエアギャップ相互接続の製造のための化学物質を透過する膜からの化学物質の拡散による犠牲材料の分解を含む全ての製造方法。 (もっと読む)


本発明は、ダイヤモンド基材と、炭化物形成元素の第1の炭化層と、第1の層からの炭化物形成元素を実質的に含まないである、W、Mo、Cr、Ni、Ta、Au、Pt、Pd、又はその任意の組合せ若しくは合金から選択される高融点金属の第2の層と、第2の層の金属が、オーバーコーティングの金属と異なる、Ag、Ni、Cu、Au、Pd、Pt、Rh、Os、Ir、Re、その任意の組合せ又は合金のオーバーコーティングとを含むコーティングされたダイヤモンドに関する。本発明は、さらに、このようなコーティングされたダイヤモンド及びこのようなコーティングされたダイヤモンドを含む研磨材含有工具の製造方法に関する。
(もっと読む)


【課題】炭化物内包カーボンナノカプセル及びその製造において,容易かつ効率よく製造する方法を提供することを解決すべき課題とする。
【解決手段】カーボンナノカプセルを形成する炭素を内包される炭化物粒子の周囲に均一に供給するべく,炭素供給源を出発原料の炭化物を構成する炭素とすることにより,内包される炭化物の合成とカーボンナノカプセルの形成を同時に行う。 (もっと読む)


【課題】1000℃を超える高温の還元性ガス雰囲気中においても、優れた還元性ガス反応抑制効果を発揮し、製品寿命を大きく延ばすことができる還元性雰囲気炉用炭素複合材料及びその製造方法を得る。
【解決手段】本発明の還元性雰囲気炉用炭素複合材料は、Ta微粒子を、Cを含む反応性ガス粒子と共に黒鉛基材表面に付着させることで、前記表面にTaC微粒子を積層してなる結晶組織のTaC被膜が形成され、かつ該被膜の組成比(Ta/C)が0.8〜1.2となる。また、本発明の還元性雰囲気炉用炭素複合材料の製造方法は、アークイオンプレーティング式反応性蒸着法により、金属Taの微粒子を、Cを含む反応ガスの粒子と共に黒鉛基材表面に付着させ、前記表面にTaC微粒子を積層してなる前記被膜を形成すると共に、黒鉛基材表面にTaC被膜をその組成比(Ta/C)が0.8〜1.2となるように形成する。 (もっと読む)


【課題】本発明は、従来と比べ非常に緻密で気孔がないSiC焼結体、SiC粒子及びSiC焼結体の製造方法を得ることを課題とする。
【解決手段】不純物として焼結体中に残留する焼結助剤無添加で製造され、かつ主となる立方晶の他に菱面体晶が含まれることを特徴とするSiC焼結体。 (もっと読む)


本発明は、ナノワイヤ構造およびかかる構造を含む相互接続型ナノワイヤネットワーク、ならびにその作製方法に関する。ナノワイヤ構造は、ナノワイヤコア、炭素主体層を備え、さらなる実施形態では炭素主体構造を、例えば、ナノワイヤコア上に形成され、該ネットワーク内のナノワイヤ構造を相互接続するグラフェンからなるナノグラファイト板を備える。該ネットワークは、膜または粒子に形成され得る多孔質構造である。ナノワイヤ構造およびこれを用いて形成されるネットワークは、触媒および電極適用用途、例えば燃料電池、ならびに電界放出デバイス、担持体基材およびクロマトグラフィー適用用途に有用である。 (もっと読む)


【課題】 炭化タンタル膜や炭窒化タンタル膜を化学気相成長法により形成するための原料として、供給しやすく、高い蒸気圧を有する化合物を提供し、さらに、その製造方法およびそれを用いた炭化タンタル膜または炭窒化タンタル膜の形成方法を提供する。
【解決手段】 TaCl5とNa(EtCp)とNaBH4とをTHF中で反応させ、未反応原料を水で失活させた後、溶媒留去し、真空蒸留することにより、蒸気圧が0.1Torr/95℃、融点が38℃である新規化合物ビス(エチルシクロペンタジエニル)トリヒドロタンタル(Ta(EtCp)23)が得られ、この化合物を原料として、化学気相成長法により、炭化タンタル膜または炭窒化タンタル膜を形成することができる。 (もっと読む)


ケイ素炭素化合物を形成する方法。ケイ素源が環境に導入される。ケイ素粒子がケイ素源から形成される。1つ又は複数の炭化水素がケイ素源とは別々に環境に導入され、それにより1つ又は複数のケイ素炭素化合物が形成される。ケイ素粒子が炭化水素源と一緒になる前にケイ素粒子のサイズを最小にするために、解離エンハンサーを環境に導入することができる。
(もっと読む)


【課題】 モノシラン(SiH)、ジシラン(Si)等の特殊高圧ガスに比べて安全性に優れたモノメチルシラン(SiHCH)等の有機シランを用いて、高品質の炭化珪素薄膜を得ることができる炭化珪素薄膜の成膜方法を提供する。
【解決手段】 シリコン基板の表面にCVD法によりSiC薄膜を成膜する方法であり、シリコン基板が載置された反応装置内にプロパン(C)ガスを導入する第1工程(I)と、反応装置内にプロパン(C)ガスとヘキサメチルジシラン(HMDS)とを導入する第2工程(II)と、反応装置内にヘキサメチルジシラン(HMDS)を導入する第3工程(III)とを有することを特徴とする。 (もっと読む)


【課題】本発明は、CVD−SiCの基材として、繰り返し使用でき、CVD−SiCから簡単に除去でき、CVD−SiCにクラック、割れ、不純物汚染を発生させたりしない基材を採用した、生産性に優れた炭化ケイ素部材の製造法を提供する。
【解決手段】基材上に薬液で溶解可能な中間層を形成後、前記中間層の表面にCVD法で炭化ケイ素膜を成膜して炭化ケイ素体とした後、前記中間層を薬液で溶解させて除去し前記基材から前記炭化ケイ素体を分離させることを特徴とする炭化ケイ素部材の製造法。 (もっと読む)


本発明は、基板上で金属M1の炭化物からナノロッドを合成する方法に関する。該発明の方法は、(a)基板上での、金属M1の酸化物のナノ結晶および金属M1とは異なる少なくとも1種の金属M2の酸化物のナノ結晶の層(M1金属酸化物ナノ結晶は、この層に分散している)を蒸着させるステップ、(b)金属M1およびM2の酸化物ナノ結晶を対応する金属に還元するステップ、および(c)金属M1のナノ結晶を選択的に成長させるステップよりなる。本発明は、また、基板上で前記材料のナノ結晶から金属M1の炭化物のナノロッドを成長させる方法、かくして得られた基板、およびそれらの用途、例えば化学的または生物学的機能性を含むミクロシステム、特にバイオセンサー、例えばフラットテレビまたはコンピュータスクリーンなどのための電子放射源の製造における用途にも関する。 (もっと読む)


オキシ炭化ケイ素コーティングは、(i)前記コーティングの屈折率が1.70あるいはそれ以上であるのみならず、(ii)前記コーティングの厚さが350Åあるいはそれ以上であるときに、約数ヶ月間というかなりの長期間親水性を維持する。
(もっと読む)


21 - 34 / 34