説明

Fターム[4G146QA05]の内容

炭素・炭素化合物 (72,636) | 装置 (144) | 連続処理装置 (14)

Fターム[4G146QA05]に分類される特許

1 - 14 / 14


【課題】連続した試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造するシステム及び方法を提供する。
【解決手段】第1の軸に沿ってレーザ光線11を照射するレーザ10と、第1の軸と垂直な方向から試薬流13を流し第1の相互作用ゾーン15でレーザ光線と交差するように構成された第1の注入装置と、第1の軸に沿って第1の相互作用ゾーンの下流側に第2の相互作用ゾーン15’を形成する第2の試薬流13’を与える第2の注入装置と、レーザ光線のエネルギーをレーザ光束の幅及び高さを独立して変更可能な光学部材12を備え、レーザ光密度が第1の相互作用ゾーンと第2の相互作用ゾーンにおいて同一の水準にすることが可能なシステムを用い、試薬流のレーザ熱分解によりナノメートルサイズまたはサブミクロンサイズの粉体を高いエネルギー収率で製造する。 (もっと読む)


【課題】微細かつ均一な粒径を有する品質の高い、珪素微粒子が炭化珪素に被覆されてなる珪素/炭化珪素複合微粒子を高い生産性で得ることができる製造方法を提供する。
【解決手段】本発明の珪素微粒子が炭化珪素で被覆された珪素/炭化珪素複合微粒子の製造方法は、酸化珪素の粉末を、炭素を含む液体状の物質に分散させてスラリーにし、このスラリーを液滴化させて酸素を含まない熱プラズマ炎中に供給して珪素/炭化珪素複合微粒子を得る。 (もっと読む)


【課題】溶液や廃液中のSiCやSiを排水汚濁なく回収可能し、研削材、砥粒、研磨材として利用可能な炭化珪素を製造する。
【解決手段】SiC微粒子及び/又はSi微粒子を少なくとも含む溶液又は廃液を、炭素粉及び酸化珪素粉を少なくとも含む分離助材を用いて固液分離して固体分を得るステップと、この固体分を必要に応じて炭素粉及び/又は酸化珪素粉を含む添加剤と混合するステップと、炭化珪素を得るために、この固体分又は添加剤と混合された固体分を、非酸化性雰囲気で1850℃を超えて2400℃未満に加熱反応させるステップとを少なくとも含んでなる炭化珪素の製造方法を提供する。 (もっと読む)


【課題】直接的且つ効率的に排水などの水(原水)から溶存硫化物を除去することが可能な溶存硫化物の除去方法及び溶存硫化物の除去装置を提供する。
【解決手段】処理槽5内に活性炭層6を備えてなる装置本体1と、処理槽5内に、硫化物が溶存する原水Wを供給して活性炭層6に流通させる原水供給手段2と、処理槽5内に酸素を含む気体Sを供給して活性炭層6に流通させる気体供給手段3とを備えて除去装置Aを構成する。そして、活性炭層6に原水Wと気体Sを同時に流通し、活性炭の触媒作用を利用して溶存硫化物を酸化させ、硫黄に転換して除去する。 (もっと読む)


【解決手段】
0.01重量%未満の総鉱物性不純物と選択的に決定された炭素:シリコンの比率を含む、シリコン、炭化ケイ素および窒化ケイ素などのシリコン含有生成物。その生成物は、少なくとも3重量%のシリカを含む、籾殻および稲藁などの植物に由来する。制御された温度、圧力および反応時間の下、固定炭素:シリカのモル比を調節しながら、シリコン含有植物を硫酸水溶液で浸出して鉱物および金属を除去し、次いで、制御された条件下、熱的に処理して所望の生成物を生産することを特徴とする、そのような高純度のシリコン含有生成物を作るための方法が提供される。 (もっと読む)


【課題】希望する組成を有し、かつ、使用特性に優れ、材料組成の選択により、各種機能を有する高効率の素子、デバイスを実現するのに好適なナノ球状粒子、粉末、工業的利用性を充分に満たす捕集率を実現しえるナノ球状粒子の製造方法を提供する。
【解決手段】アルゴン不活性ガス雰囲気中で、原料金属の溶融物を高速回転する皿ディスク上に供給し、遠心力を作用させて小滴として飛散させ、ガス雰囲気との接触により急冷して球状粒子とした後、得られた球状粒子に対し、プラズマ旋回流内31でアルゴンイオン34と衝突反応させて、原料金属の成分をナノサイズに分解すると同時に反応性のあるガス成分34又は蒸気成分と接触させるプラズマ反応結晶化処理をする。これにより、1μm未満の粒径を有し、真球度20%以内のナノコンポジット構造を有するナノ球状粒子、粉末が得られる。 (もっと読む)


本発明は、カーバイド製造方法及びそのシステムに関する。当該方法では、粉末状の炭素含有原料と粉末状のカルシウム含有原料を混合し、酸素含有雰囲気中で炭素含有原料の一部を燃焼しながら混合物を直接加熱することでカーバイドを製造する。また、炭素含有原料は石炭、コーライト又はコークスであってもよい。カルシウム含有原料は炭酸カルシウム、酸化カルシウム、水酸化カルシウム又はカーバイドスラグであってもよい。本発明に係るカーバイド製造システムは原料予熱ユニットと反応ユニットを含む。原料予熱ユニットにおける予熱器は流動床又は気流床であってもよい。また、反応ユニットにおける反応器は気流床であってもよい。本発明によれば、従来のカーバイド製造過程に存在する高エネルギー消費、高汚染などの欠陥を克服することができ、原料の選択範囲が広く、エネルギー利用率が高い、且つ、連続的な操作が可能であり、製造性が高いなどのメリットがある。また、製造過程中の副生成物であるCO又は補助燃料が空気で燃焼することで、原料を500〜1500℃まで予熱でき、カーバイド製造における炭素消費量及び酸素消費量を低減でき、さらに工程における省エネルギーを図ることができる。
(もっと読む)


本発明は、下記の工程:a) 金属凝集体(3)を金属酸化物基体(2)上に形成させる工程;および、b) ナノ構造体(1)を、金属凝集体で被覆した金属酸化物基体(2)上で気相成長させる工程を含み、上記基体を1種以上のプレカーサーガスの存在下に加熱し、ナノ構造体(1)の気相成長を金属凝集体(3)によって触媒する、ナノ構造体(1)の金属酸化物基体(2)上での製造方法に関する。本発明によれば、上記金属凝集体の形成工程a)は、上記金属酸化物基体の表面を還元性プラズマ処理によって還元して、上記基体(2)上に金属凝集体(3)の液滴を形成させる操作を含み;上記金属凝集体形成工程a)および上記ナノ構造体成長工程b)を単一の共用プラズマ反応器チャンバー(4)内で連続して実施し、上記ナノ構造体成長を金属凝集体(3)の液滴上で直接実施する。 (もっと読む)


【課題】空き缶から破砕および分別処理を通して得られるアルミチップ製品の純度を向上させること。
【解決手段】原料チップBMが炭化装置200に導入され、炭化装置200より炭化したアルミチップおよびスチールチップに炭化したゴミ類や異物の混じったものが炭化原料チップCMとして容器220に排出される。容器220から炭化原料チップCMは、スクリュー・コンベア224によって上方に位置する空き缶破砕物分別装置10に送られる。空き缶破砕物分別装置10は、炭化原料チップCMを磁性炭化チップCSと非磁性炭化チップCKとに分離する磁選部12と、この磁選部12で分別された非磁性炭化チップCKから炭化アルミチップCAを選別または分別する第1および第2炭化アルミチップ選別部14,16とを有している。 (もっと読む)


【課題】 ハロゲン類及び/又は揮発性重金属類を含む鉄ダスト類を資源化する還元・炭化処理において、汎用性のある還元・炭化処理を確立し、かつ、排気系統における従来対策を不要とするとともに燃料コストを低減する。
【解決手段】 流動層型反応炉を用いて、鉄ダスト類中の物質を資源化する方法において、(a)炉頂より鉄ダスト類を装入し、(b)炉内に、H2及びCH4を主成分とする廃棄物由来ガスを吹き込んで流動層を形成し、(c)鉄ダスト類中の鉄酸化物を選択的に還元及び/又は炭化することを特徴とする。 (もっと読む)


本発明は、レーザ(10)によって発せられる光線(11)と注入装置(14)によって放出される反応剤の流れ(13)との少なくとも1つの相互作用ゾーンにおいて、熱分解性レーザの作用により、連続流の中でナノメートルサイズ又はサブミクロンサイズの粉体を製造するためのシステムに関し、本システムでは、レーザの後に光学手段(12)が設けられており、レーザによって発せられた光線のエネルギーを、各反応剤の流れの軸に対して垂直な軸に沿って、前記少なくとも1つの相互作用ゾーン内で寸法が調節可能な細長い断面に分布させることができる。本発明は、前記粉体の製造方法にも関する。
(もっと読む)


【課題】 炭化珪素原料と成長している炭化珪素単結晶表面の温度を適切に保ちつつ、装填した原料を昇華ガスの供給源として有効に利用することのできる、炭化珪素単結晶製造方法を提供する。
【解決手段】 昇華再結晶法を用いて炭化珪素単結晶を作製する際に、昇華温度以上に加熱する領域を炭化珪素原料部の中で少なくとも1回移動させて、炭化珪素単結晶の成長を行うことで、結晶と原料の温度を適切に保つと同時に、原料を有効に昇華させることのできる加熱方法を用いる。 (もっと読む)


【解決手段】金属カーバイドと、該金属カーバイドをワンステップのプロセスによって合成する方法に関するものである。各種金属(例えば、Si、Ti、W、Hf、Zr、V、Cr、Ta、B、Nb、Al、Mn、Ni、Fe、Co及びMoであり、これらに限定されるものではない)の酸化物を、球状又は繊維状のナノ構造カーボン前駆物質と物理的に混合し、900〜1900℃の温度まで誘導加熱して、金属酸化物をカーボンと反応させて、異なる金属カーバイドを生成するものである。このプロセスでは、得られた金属カーバイドの中でカーボン前駆物質は元の形態が維持される。得られたナノサイズの金属カーバイドは、高結晶性である。金属カーバイド製品は、高温熱電装置、量子井戸、光電子装置、半導体、防護服、装甲車、触媒等の用途に用いられ、アルミニウム及びその他合金に不連続補強材として用いられる。 (もっと読む)


本発明は、基板上で金属M1の炭化物からナノロッドを合成する方法に関する。該発明の方法は、(a)基板上での、金属M1の酸化物のナノ結晶および金属M1とは異なる少なくとも1種の金属M2の酸化物のナノ結晶の層(M1金属酸化物ナノ結晶は、この層に分散している)を蒸着させるステップ、(b)金属M1およびM2の酸化物ナノ結晶を対応する金属に還元するステップ、および(c)金属M1のナノ結晶を選択的に成長させるステップよりなる。本発明は、また、基板上で前記材料のナノ結晶から金属M1の炭化物のナノロッドを成長させる方法、かくして得られた基板、およびそれらの用途、例えば化学的または生物学的機能性を含むミクロシステム、特にバイオセンサー、例えばフラットテレビまたはコンピュータスクリーンなどのための電子放射源の製造における用途にも関する。 (もっと読む)


1 - 14 / 14