説明

Fターム[4K001AA09]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Cu (597)

Fターム[4K001AA09]に分類される特許

441 - 460 / 597


【課題】粉状または粒状の白金族元素(Pt, Pd, Rh, Ru, Ir, Os)を含有するリサイクル原料を自溶炉に装入して白金族元素を回収すると、スラグへの損失が発生して、白金族元素の回収率が低下する。
【解決手段】転炉あるいは精製炉10の羽口からリサイクル原料を炉内に吹込み、白カワまたは粗銅7に直接接触、反応させることにより白金族元素を粗銅中に濃縮する。 (もっと読む)


【課題】酸性塩化浴から電解精製又は電解採取によって得られる電着銅中に含有される塩素を効率的に除去する方法を提供する。
【解決手段】酸性塩化浴から電解精製又は電解採取によって得られる電着銅を、非酸化性ガス雰囲気下に500〜800℃の温度で加熱処理に付し、次いで硫酸洗浄処理に付すこと、さらに、前記硫酸洗浄処理の後に、水洗浄処理に付すこと、前記加熱処理に先だって、電着銅を希塩酸又は塩化ナトリウム水溶液を用いた洗浄処理に付し、次いで水洗浄処理に付すことを特徴とする。 (もっと読む)


【課題】自熔炉の反応塔の頂部に設けられた精鉱バーナーから反応塔内に装入された乾鉱の着火が、該乾鉱の装入量を増加させたときにも、安定的に迅速に行なわれることにより、反応塔内で製錬反応を完結させることができる精鉱バーナーと、自熔炉での煙灰発生率とカラミ中のマグネタイト濃度を低減することにより効率的な操業を行なうことができる、該精鉱バーナーを用いた自熔炉の操業方法を提供する。
【解決手段】自熔炉の反応塔の頂部に設けられる精鉱バーナーにおいて、その中央部に垂直に設置された重油バーナー又は酸素燃料バーナーの先端部に位置する重油噴出孔23の外側近傍に、該重油噴出孔から反応塔内に噴出される重油18の燃焼を促進する燃焼用酸素19を供給するための少なくとも1個の燃焼用酸素噴出孔22を配設する。 (もっと読む)


【課題】圧力浸出操作を介しての硫黄含有材料からの比較的希薄な硫酸の生成、およびメタルバリュー(例えば、銅および貴金属)の回収のためのプロセスを提供する。
【解決手段】高温圧力浸出プロセスの種々の局面に従って、硫黄含有材料は、圧力浸出操作(例えば、中程度の温度で行われる操作)からの残渣を含み得る。本プロセスを有利に使用して、このような硫黄含有材料を圧力浸出により硫酸に変換し得る。このように生成された硫酸を、他の鉱物処理操作(例えば、硫酸が生成される部位での操作)において有利に使用し得る。硫黄含有材料内に含まれる金属(例えば、貴金属)は、確立された貴金属回収技術によって、処理生成物から有利に回収され得る。 (もっと読む)


【課題】貴金属を含有する廃棄物等から経済的に効率よく貴金属を回収する方法を提供する。
【解決手段】触媒廃棄物または電子機器材料廃棄物などの貴金属含有物を、銅含有物、フラックス、還元剤と共に加熱して貴金属を溶出させると共に金属銅溶融層を形成し、溶出した貴金属を上記金属銅溶融層に吸収させる溶融工程と、貴金属を含有する金属銅溶融層からスラグ層を分離するスラグ分離工程、次いで貴金属含有金属銅を回収する工程を有する方法において、銅含有物として銅アノード残基を用いることを特徴とする貴金属の回収方法。 (もっと読む)


【課題】 転炉や自熔炉等の熔錬炉内からの銅を含む廃レンガをそのまま廃棄することなく、銅製錬工程からのカラミと破砕混合して、廃レンガを含むカラミから銅を高い回収率で回収する方法を提供する。
【解決手段】 銅製錬工程の中間産物であるカラミに銅製錬設備である熔錬炉内の廃レンガを破砕混合し、浮選処理して銅を回収する際に、浮選処理に供給するカラミと廃レンガのスラリーのpHを8.5以上12.0以下に制御すると共に、スラリー中のカラミと廃レンガの合計に対する廃レンガの割合を5重量%以下とする。 (もっと読む)


【課題】溶融飛灰中のCuや貴金属をそれらの金属の製錬に利用可能な濃度で含有する製錬原料として回収する溶融飛灰の再資源化処理方法を提供すること。
【解決手段】銅を含有する溶融飛灰と水とアルカリとを含むスラリーを形成し、該スラリーの固液分離操作、洗浄によってハロゲン濃度が1質量%以下である残渣を回収し、回収した残渣を還元剤、スラグ調整剤及びマット形成剤と混合して混合物とすること、この際に、マット形成剤中のSと溶融飛灰中のSとの合計量と溶融飛灰中のCuとの原子比が(S/Cu)≧0.2となる量でマット形成剤を配合すること、該混合物を還元型灰溶融炉中で1450℃以上で熱処理することによって銅をマットの形態として回収することからなる溶融飛灰の再資源化処理方法。 (もっと読む)


【課題】 本発明は、ボイラーチューブへのダスト溶着を防止すると共に、ボイラーチューブの損傷を防止することを目的とする。
【解決手段】 水冷壁等で構成したフード部の後に廃熱ボイラーを設置する場合において、
当該フードと廃熱ボイラーの間に壁面がボイラー構造ではなく、かつ内部が空洞構造であるチャンバーを配置する転炉排ガス処理装置。 (もっと読む)


【課題】従来の処理技術より減少した費用で高い銅回収率を可能にする、銅含有物質から銅(特に黄銅鉱および輝銅鉱のような硫化銅から銅)を回収するための効果的かつ効率的な方法を提供すること。
【解決手段】本発明は、一般的に、25ミクロン未満に粒子サイズを減少する制御された超微粉砕および中程度温度(140〜180℃)圧力浸出を使用して、金属含有物質から銅および他の金属バリューを回収するためのプロセスに関する。本発明の局面を使用するプロセスは、金属保有材料から金属(例えば、銅、金、銀、ニッケル、コバルト、モリブデン、レニウム、亜鉛、ウラン、および白金族金属)を回収することについて利益があり得、硫化銅鉱石および濃縮物からの銅の抽出とともに特定の有用性を見出す。 (もっと読む)


【課題】金属性ペースト廃棄物に存在する高分子樹脂またはフリットガラスと高分子樹脂を親環境で且つ容易に除去することができる金属性粉末の再生方法を提供する。
【解決手段】本発明は、金属性ペースト廃棄物と酸性またはアルカリ性水溶液とを混合、攪拌してスラリーを形成し、前記金属性ペースト廃棄物に含有された高分子樹脂成分またはフリットガラスと高分子樹脂成分を除去する化学的処理工程と、スラリーを攪拌しながら超音波振動子を用いてスラリーに超音波を走査することによって、前記高分子樹脂の原子間結合が断絶されるようにして化学反応を促進し、前記スラリー内の気泡が破裂する時の衝撃波により前記金属性粉末の周辺のフリットガラスまたは高分子樹脂を剥離させる超音波処理工程を用いて金属性粉末を再生する方法に関する。 (もっと読む)


【課題】本発明は、上記の環境低負荷型金属回収方法において、時間を要していたシアンの分解・無毒化工程をより短時間で行うことにより、効率的に繰り返し実施が可能な改良された環境低負荷型金属回収方法を提供する。
【解決手段】シアン生成及び分解細菌を用いた金属含有材料から金属を回収する方法であって、(1)富栄養状態の培地でシアン生成及び分解細菌を培養してシアンを生成する工程、(2)上記工程(1)で生成したシアンを用いて金属含有材料から金属を溶解する工程、(3)該培地にグルタミン酸誘導体及び/又はセリン誘導体とグルコースとを添加して栄養枯渇状態の培地に変えて、該シアン生成及び分解細菌を培養して上記工程(2)で残留したシアンを分解する工程、及び(4)上記工程(2)又は(3)の金属の溶解液から金属を回収する工程、を含むことを特徴とする金属回収方法。 (もっと読む)


本発明は、一般的には、銅および他の金属分を金属含有鉱石、濃縮物、またはその他金属物質から、加圧浸出および直接電解採取を用いて回収する工程に関する。より具体的には、本発明は、加圧浸出および直接電解採取を、浸出、溶媒/溶液抽出、および電解採取操作と組み合わせて用い、黄銅鉱含有鉱石から銅を回収するための実質的な酸の自己生産工程に関する。前記操作の一つの局面によれば、加圧浸出操作からの残留物の少なくとも一部は、ヒープ浸出、ストックパイル浸出、または他の浸出操作に向けられる。
(もっと読む)


【課題】Placer Domeの特許プロセスは、多くの状況において有用であるが、操作コストを減少させることが所望される場合、および/または特定の場所で金属含有鉱がこのような状態を保証しない場合には、このような希釈が必要とされないプロセスにおいて高い金属回収を獲得する方法を提供することを、本発明の課題とする。
【解決手段】以下の工程:(i)銅含有物質を含む供給流を提供する工程;(ii)銅含有供給流を加圧浸出して、銅含有溶液を得る工程;および(iii)銅含有溶液を有意に希釈することなく、溶媒抽出および電解抽出を使用して、銅含有溶液からカソード銅を回収する工程、を包含する方法を提供することによって、上記課題が解決した。 (もっと読む)


【課題】 小規模で、かつ簡便な処理でアンモニア系銅エッチング廃液から高純度銅を製造する方法の提供。
【解決手段】 その製造する方法は、銅アンモニア錯イオンを主成分とし塩化アンモニウムを含有するアンモニア系銅エッチング廃液と硫酸とを混合して固体銅化合物を析出し、固液分離する第1工程と、前記第1工程の固液分離後における、銅アンモニア錯イオン、硫酸イオン及び塩素イオンを含有する分離液を電解して陰極に金属銅粉を析出させると共にアンモニア性窒素を分解する第2工程と、前記両工程で得られた固体銅化合物及び金属銅粉を硫酸又は硫酸アンモニウムに溶解し、得られた硫酸銅溶液又は銅アンモニア錯塩溶液を電解して高純度金属銅を析出させる第3工程とを有することを特徴とする。 (もっと読む)


【課題】鉄の品位低下を防止すると共に高亜鉛濃度のダストを回収可能とする。
【解決手段】炉2内に供給する亜鉛含有酸化鉄に対して、還元材として効果的であると共に還元に必要な熱量を発生する廃棄物であるASR、家電シュレッダーダスト、廃プラスチック、廃棄物から得られるRDF、RPFのうちの少なくとも一つを炉2内に導入し、これ以外の還元材を用いない状態で、加熱処理することで亜鉛含有酸化鉄から亜鉛を還元して分離すると共に酸化鉄を還元して金属鉄を得、このとき、炉2の還元温度を800〜1080°Cとすることで、融点が1083°Cの銅が溶融し鉄に付着するということを防止して鉄の品位低下を防止すると共に、亜鉛含有酸化鉄から分離した亜鉛を揮発させて微粒径のダストとして飛散させ、酸化亜鉛として亜鉛が濃縮した高亜鉛濃度のダストとして回収可能とする。 (もっと読む)


【課題】 本発明の目的は、乾式精錬において、粗銅中の錫含有量を低レベル化できるようにし、また、錫の含有量を0.33mass-%以下とすることが可能である乾式精錬による粗銅中の錫除去方法を提供する。
【解決の手段】 銅、及び金、銀、白金、パラジウム、ロジウム、ルテニウムの内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップ原料と溶剤及び還元剤とともに溶融還元し、還元スラグと還元メタルは分離後、
溶融還元メタルに空気を0.5〜3L/min/kg-メタルの流量にて0.5〜7時間酸化粗精製し、
酸化粗精製後の粗銅中の錫品位が4mass %未満の場合、粗銅中の錫に対して、水酸化ナトリウムを4.5当量以上添加し、酸素を含有するガスを3L/min/kg−メタル以下の流量で0.5〜3時間溶融酸化し、
粗銅中の錫を銅の電解精製が可能な品位以下まで除去する銅の乾式精錬方法。 (もっと読む)


【課題】特殊な水粉水を使用しなくとも良好なCd溶出性をもつ銅製錬スラグを再現性よく産出できる製錬方法を提供する。
【解決手段】自溶炉及び転炉を用いる銅製錬法において、自溶炉への装入原料のCd濃度を0.015質量%以下に抑制することにより、自溶炉スラグのCd溶出量を環境庁告示基準の0.01mg/L以下とする。 (もっと読む)


【課題】 高負荷操業においても十分な冷却性能を発揮することができ、しかもシャフト反応ガスの流れを阻害することがないような自溶炉の炉体水冷構造を提供する。
【解決手段】 シャフト2とセットラ3との連結部A又はアップテイク4とセットラ3との連結部Bに上方から下方側に行くにつれて次第に湾曲しながら拡開したフレア状の水冷ジャケット10を配置して構成され、水冷ジャケット10は、複数に分割されると共に、熱による膨張収縮に伴って可動するように吊下げ支持され、それにより水冷ジャケット10に対する熱による負荷を制御するようにしたことを特徴とする。 (もっと読む)


本発明は、浮遊溶解炉(1)における固形物含有プロセスガス(7)を処理する方法に関するものであり、プロセスガスを浮遊溶解炉の反応シャフト(2)から下部炉(3)に向けて、さらに立ち上りシャフト(4)を通して廃熱ボイラ(6)に向けて導いてプロセスガスを冷却する工程を含み、これによって、酸化ガス(9)が、下部炉頂部壁(12)に設置された1つ以上のガスノズル(8)を通って、下部炉(3)を流れるプロセスガス(7)に供給され、それによって、酸化ガス量がそのプロセスの間に調節されて、廃熱ボイラ(6)に導かれるプロセスガスの固形物に含まれる硫化物量が最少化される。また、本発明は、その装置に関するものでもある。

(もっと読む)


【課題】各種の破砕粒子からなるシュレッダーダストを適切に分別回収できるようにして、資源の有効活用を図る。
【解決手段】シュレッダーダストを構成する多数の粒子を静電力によって分別回収するシュレッダーダスト静電選別装置であって、供給されるシュレッダーダストを受け止める、正側又は負側の電圧が加えられた導電性材料製の回転ドラムと、この回転ドラムの対向位置に、この回転ドラムの側線に沿って張設され、負側又は正側の電圧が加えられて、前記回転ドラムとの間で放電を生じさせ、この放電によって生じる荷電粒子によって、前記シュレッダーダスト中の前記各粒子を前記回転ドラムとは逆極性に帯電させて、これらの粒子を前記回転ドラムに吸着させる、放電線と、を備え、前記吸着状態において、前記各粒子の保有する前記荷電粒子を、前記粒子の導電性に応じた速度で前記回転ドラムに移動させ、これにより前記各粒子の前記回転ドラムへの吸着力に差異をもたせて、前記各粒子を分別回収するようにした。 (もっと読む)


441 - 460 / 597