説明

Fターム[4K001AA18]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Nb (57)

Fターム[4K001AA18]に分類される特許

41 - 57 / 57


【課題】高純度で、微細粒径および/または均一な集合組織(texture)を有するタンタル製品を得る要求に応える。
【解決手段】高純度の金属タンタルおよびそれを含む合金が記載されている。金属タンタルは好ましくは少くとも99.995%、そしてもっと好ましくは少くとも99.999%の純度を有する。加えて、約50μm以下の粒径、もしくは厚みの5%増分内の(100)強度がランダムな15より小さい集合組織、もしくは約−4.0より大きい(111):(100)強度の増分対数比、またはこれらの組合わせを有する金属タンタルもしくはその合金が記載されている。さらに金属タンタルからつくられる物品および部品について記載されている。さらに、高純度金属の製造方法が開示されており、タンタルを含有する塩を、この塩を還元してタンタル粉末および第2の塩とすることのできる少くとも1つの化合物と反応容器中で反応させる工程を含む。 (もっと読む)


【課題】ジルコニウム廃棄物から、より精製された汚染率の低いジルコニウムを回収することができる溶融塩電解を用いたジルコニウム廃棄物の処理方法を提供する。
【解決手段】溶融塩電解法を用いて放射性物質とジルコニウムとを分離するジルコニウム廃棄物処理方法において、使用済み燃料のチャンネルボックス及び/又は被覆管を陽極溶解し、ジルコニウムを陰極で析出させる第1の溶融塩電解工程と、第1の溶融塩電解工程で析出したジルコニウムを陽極に装架して陽極溶解し、再度ジルコニウムを陰極で析出させる第2の溶融塩電解工程と、を有することを特徴とするジルコニウム廃棄物処理方法。 (もっと読む)


ニオブ合金を製造する方法であって、A)ニオブ粉末、並びにイットリウム、アルミニウム、ハフニウム、チタン、ジルコニウム、トリウム、ランタン及びセリウムからなる群から選択される金属の粉末を含有する配合物を形成し、かつ該配合物を圧縮して、圧縮配合物を形成すること、B)圧縮配合物を、ニオブを含有する電極に結合すること、C)電極及び圧縮配合物を真空アーク再溶解条件下で溶融させ、かかる該配合物と溶融された電極とを混合すること、D)溶融された電極を冷却して、合金鋳塊を形成すること、かつE)その合金鋳塊に熱−機械的加工工程を適用して、展伸材を形成することを含む、ニオブ合金を製造する方法。本方法は、より微細なASTM5である粒度を有する完全に再結晶化されたニオブ展伸材を提供し、深絞りカップ及びスパッタリングターゲットを製造するために使用されうる。 (もっと読む)


【課題】金属の電子ビーム溶解方法において、歩留まり良く、しかも安定的に金属を溶解する方法を提供する。
【解決手段】原料フィーダー20から原料10を供給し、電子ビーム照射手段50によってハース40にて溶解し、鋳型6にて連続的に固化させる金属の電子ビーム溶解方法であって、ハース40内に保持した原料を溶解してなる溶湯11面から鉛直上方向に対して、ハース有効単位面積当たり200〜1000mm/mの範囲内に配置された原料フィーダー先端部より原料を供給する。また、原料を供給する原料フィーダーと、原料を溶解するハース、原料を連続的に固化させる鋳型、およびハースおよび鋳型を加熱する電子ビーム照射手段を備えた金属の電子ビーム溶解装置であって、ハース内に保持した原料を溶解してなる溶湯面から鉛直上方向に対して、ハース有効単位面積当たり200〜1000mm/mの範囲内に原料フィーダー先端部を配置する。 (もっと読む)


【課題】プラズマアーク溶解により、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類等の活性高融点金属元素を合金成分として含有する合金の長尺鋳塊を製造するさいに、成分偏析や中心部に引け巣およびボイド欠陥が発生するのを確実に阻止すること。
【解決手段】アルゴン雰囲気下で活性高融点金属を含有する合金をプラズマアーク溶解する方法において、30Torr〜200Torrのアルゴンヘリウム雰囲気を保持した状態のもとで、あらかじめ調製しておいた所定合金組成の原料棒をプラズマアークにより溶解し、その溶湯プールを水冷銅るつぼ内に保持しつつ冷却凝固させながら、銅るつぼの可動底盤を毎分2mm〜50mmの速度で下方へ引き抜くことを特徴とするプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。 (もっと読む)


一次高融点金属(例えば、一次タンタル金属)を粒状高融点金属酸化物(例えば、五酸化タンタル)と加熱されたガス(例えば、プラズマ)との接触によって製造する方法が記載されている。加熱されたガスは、水素ガスからなる。加熱されたガスの温度範囲および水素ガスと高融点金属酸化物との質量比は、〜のようにそれぞれ選択される。(i)加熱されたガスが原子状水素からなり;(ii)高融点金属酸化物の供給材料が実質的に熱力学的に安定されており(即ち、原子状水素によって還元されていない亜酸化物の同時の形成は、最少化されている);および(iii)高融点金属酸化物は、加熱されたガスとの接触によって還元され、それによって一次高融点金属(例えば、一次タンタル金属および/または一次ニオブ金属)が形成される。
(もっと読む)


本発明は、高純度と、大きい比表面積と、制御された含有量の酸素及び窒素と、コンデンサの製造に用いるのに適した形態とを有するニオブ粉末及び/又はタンタル粉末を製造する方法であって、ニオブ酸化物及び/又はタンタル酸化物(Nb、及び/又はTa(式中、x=1〜2且つy=1〜5))の制御された層であって、適切な純度の金属ニオブ及び/若しくは金属タンタル並びに/又はそれらの水素化物の粒子の上に慎重に形成された該層を、溶融塩の浴の中でアルカリ金属若しくはアルカリ土類金属及び/又はそれらの水素化物によって還元する唯一の工程と、その後に続く、水溶液に前記塩を溶解して、ニオブ粉末及び/又はタンタル粉末を回収する工程とを包含することを特徴とする該製造方法に関する。前記の方法を用いて生成されるこれら粒子は、小さい粒径と、大きい表面積と、スポンジ様形態とを有しており、そのために、コンデンサを製造するのに適している。
(もっと読む)


【課題】一貫したASTM粒度と十分な再結晶化を有するニオブ又はタンタルの薄板を、該薄板での平坦度及び/又は平滑度の問題を最小限にするか又は回避して製造する。
【解決手段】ケイ素を含有するニオブ又はタンタルの合金を製造するにあたり、
A)ニオブ粉末又はタンタル粉末とケイ素粉末とを含有する配合物を形成し、そして該配合物を圧縮して、圧縮配合物を形成し、
B)圧縮配合物をニオブ又はタンタルを含有する電極に接続し、
C)電極と圧縮配合物を真空アーク再溶解条件で溶融させ、こうして該配合物と溶融された電極とを混合し、
D)溶融された電極を冷却して、合金鋳塊を形成し、かつ
E)その合金鋳塊に熱−機械的加工工程を適用して、展伸材を形成する。 (もっと読む)


マグネシウムタンタレートまたはマグネシウムニオベートを含有する金属粉末を提供し、かつ粉末を不活性雰囲気中でマグネシウム、カルシウムおよび/またはアルミニウムの存在下で、粉末からマグネシウムタンタレートまたはマグネシウムニオベートを除去するのに十分な温度に加熱するか、および/または、粉末を真空下で、粉末からマグネシウムタンタレートまたはマグネシウムニオベートを除去するのに十分な温度に加熱し、その際、加熱工程は任意の順序で実施する。金属粉末は、適切な焼結温度で、ペレットに成形することができ、この場合、これらは、電解キャパシタに成形することができる。 (もっと読む)


【課題】 希土類磁石製造工程において生ずるスクラップ(希土類磁石の研磨過程において発生する切削屑など)のリサイクル法に関し、特に、携帯電波、自動料金支払システム、デジタル放送、室内の無線LAN等々で近年その使用量が増大しているGHz帯域のGHz帯域に電磁波吸収特性を有する磁性体粉末の製造方法及びこれを用いた電波吸収体の製造方法に関する。
【解決手段】 希土類金属と遷移金属との金属間化合物から構成された希土類磁石の製造時に発生するスクラップを原料の一部として用いることで、原料コストを大幅に減少することができ、これまでの技術で作製されたFe金属をベースとする電波吸収材がFe金属の低い磁気異方性のために数GHzの電波にのみ吸収を示すのに対して、本発明では、上記スクラップより簡便なプロセスで分離回収されるFe金属とTiとを化合化させ、結晶磁気異方性を有せしめることにより、数GHz以上の電波に対して良好な吸収特性を有する電波吸収材の作製が可能となる。 (もっと読む)


本発明は混合酸化物試料中に金属酸化物として含まれる金属の分離のための、(i)融解塩の電解質に混合酸化物を添加し、酸化物を陰極で電気分解すること(ここで陰極のポテンシャルが融解塩中に存在するカチオンからの金属の析出より酸素のイオン化を優先するように制御され、適用される電位差が他の金属酸化物を犠牲にして1金属酸化物の選択的還元を容易にするようなものである)、および(ii)遷移金属、ランタニドもしくはアクチニド系の少なくとも1種からの金属の酸化物を含んで成る残りの金属酸化物から金属を分離すること、を含んで成る方法を提供する。その方法は2種以上の金属酸化物の混合物を含んで成る混合酸化物試料に適用でき、そして特別の適用は混合ジルコニウムおよびハフニウム酸化物中に含まれるジルコニウムおよびハフニウムの分離にあり、そこでハフニウムの除去は原子力発電産業における使用のための燃料被覆加工におけるジルコニウムの使用を容易にする。 (もっと読む)


バルブメタル粉末をカルシウム、バリウム、ランタン、イットリウムまたはセリウムで処理することによる、バルブメタル粉末、殊にニオブ粉末、タンタル粉末またはこれらの合金の脱酸素、ならびに3ppm/10000μFV/g未満のナトリウム、カリウムおよびマグネシウムの含量の総和と比静電容量との比を示すバルブメタル粉末。 (もっと読む)


【課題】 酸性の湧出水から有益な金属を回収する金属回収方法を提供する。
【解決手段】 酸性の湧出水Wに含まれる金属Mを吸着材で吸着する吸着工程11と、吸着工程11により吸着材に吸着した金属Mを酸性水またはアルカリ性水を用いて吸着材から分離して回収する第一金属回収工程12と、を有することを特徴とする金属回収方法により、上記課題を解決する。また、酸性の湧出水Wが硫酸イオンを含有する場合に、酸性の湧出水Wに炭酸カルシウムまたは水酸化カルシウムを添加して中和する中和工程21と、中和工程21により生じた液体L2と沈殿物P2とを分離する分離工程22と、分離工程22により分離された沈殿物P2から金属Mを回収する第二金属回収工程23と、を有することを特徴とする金属回収方法により、上記課題を解決する。 (もっと読む)


本発明は、フッ素を使用せずに、酸化タンタルもしくは酸化ニオブを希釈塩中で還元して金属タンタルもしくはニオブを製造する方法において、Ca,Sr,Baの1種以上の塩化物の溶融希釈塩にNaもしくはLiを反応させて、生成するCa,Sr,Baを還元剤として使用する方法であり、微細な粉末を得ることができる。 (もっと読む)


気体状金属ハロゲン化物と還元剤とを反応させることにより固体金属組成物を製造するための方法および装置が記載される。この方法は、一般に、気体状金属ハロゲン化物と還元剤とを非固体状反応生成物を形成するために有効な様式で反応させる工程であって、ここでその金属ハロゲン化物は、式MXを有し、Mは、周期律表の遷移金属、アルミニウム、ケイ素、ホウ素、およびこれらの組合せより選択される金属であり、Xは、ハロゲンであり、iは0より大きく、そして上記還元剤は、水素、水素を放出する化合物、およびこれらの組合せより選択される気体状還元剤である工程;ならびにこの反応生成物を固化させ、それによってハロゲン化物を実質的に含まないMを含む金属組成物を形成する工程を包含する。別の局面では、金属サブハライドを、気体状還元剤との反応により還元して、非固体反応生成物を形成する、固体金属組成物を製造するための方法が提供される。 (もっと読む)


本発明は、焙焼および選択的浸出ステップを組み合わせることによって、酸化チタン含有組成物(例えば、低品位のまたは高度放射性TiO鉱石など)の選鉱を改善することに努める。 (もっと読む)


元素Ti、Zr、Hf、V、Nb、Ta及びCrの金属粉末もしくは金属水素化物粉末の製造方法が記載されており、前記方法の場合にこれらの元素の酸化物が還元剤と混合され、この混合物が炉中で、還元反応が開始するまで、場合により水素雰囲気下に(ついで金属水素化物が形成される)加熱され、反応生成物が浸出され、かつ引き続いて洗浄され、かつ乾燥され、その場合に使用された酸化物が0.5〜20μmの平均粒度、0.5〜20m/gのBETによる比表面積及び94質量%の最小含量を有する。 (もっと読む)


41 - 57 / 57