説明

Fターム[4K013EA29]の内容

溶融状態での鋼の処理 (7,585) | 処理剤、添加剤それ自体 (1,656) | 非金属を含むもの (78)

Fターム[4K013EA29]の下位に属するFターム

Fターム[4K013EA29]に分類される特許

1 - 20 / 20


【課題】窒素含有率のばらつきを小さく抑えることができるとともに操業効率を向上させることができる。
【解決手段】精錬容器2内で精錬した溶鋼3を循環脱ガス処理によってさらに精錬する高窒素鋼の製造方法において、循環脱ガス処理に先立って精錬容器2中に最大粒径1mm以下の窒化珪素鉄1を投入する。 (もっと読む)


【課題】金属カルシウムを用いる脱硫剤で、水素爆発の原因となる空気中の水分との反応を防止でき、取扱いを容易とし、さらに簡単に製造でき、しかも低い温度で容易に且つ効率よく脱硫できる鉄系金属の脱硫剤を提供する。
【解決手段】金属カルシウムの表面に、有機物及び/又は無機物の皮膜又は層を表面に形成した脱硫剤として用いる。金属カルシウムの粒径0.5〜30ミリメートルの粒子であり、有機物が熱硬化性樹脂又は熱可塑性樹脂であり、前無機物が金属、珪酸ソーダ、又は公知の脱硫剤である。有機物又は無機物は、これを溶液又は溶融した状態とし、この中に金属カルシウムを浸漬することにより、表面に有機物又は無機物の皮膜又は層を形成する。 (もっと読む)


【課題】優れた切削加工精度、切削性、耐食性、環境性のいずれをも同時に満足することのできる精密加工用快削ステンレス鋼素材とその製造方法を提供する。
【解決手段】ミクロンメーターレベルの切削による成形を行う精密加工用快削ステンレス鋼素材であって、前記快削性付与材がh−BN粒子であり、鋼中に単体状態で分散していることを特徴とする構成を採用した。また、その製造方法として、h−BN粒子が析出している精密加工用快削ステンレス鋼素材を加熱した後に急冷して、h−BN粒子を固溶消滅させ、その後焼もどしを行うことにより、h−BN粒子を再度素材中に均一に分散析出させることを特徴とする構成を採用した。 (もっと読む)


【課題】硫黄をベースとするフラックスコアードワイヤ用の粉末、フラックスコアードワイヤおよびその製造方法を提供する。
【解決手段】溶融金属浴と合金化されることを目的としたフラックスコアードワイヤ用であって、且つ少なくとも95%の硫黄で構成される粒子によって形成されている粉末であって、粒度分析集団が
1μm≦d10≦340μm、
200μm≦d50≦2000μm、
500μm≦d90≦2900μm
であることを特徴とする、前記粉末、前記粉末を含有し且つワイヤ内の粉末の圧縮率が85%以上であることを特徴とする硫黄をベースとするフラックスコアードワイヤ、溶融金属浴との合金化用の硫黄をベースとするフラックスコアードワイヤの製造方法。 (もっと読む)


【課題】ステンレス溶鋼のボイリングや突沸を抑制してステンレス溶鋼中に窒素を迅速且つ効率的に取り込むことが可能な生産性の高い高窒素含有ステンレス鋼の製造方法を提供する。
【解決手段】ステンレス溶鋼の精錬過程において、精錬時の溶鋼温度で溶融するスラグをステンレス溶鋼1トンあたり5kg以上の割合でステンレス溶鋼中に存在させ、窒化フェロ珪素及び窒化珪素から選択される少なくとも1つの窒化合金をステンレス溶鋼に添加することを特徴とする高窒素含有ステンレス鋼の製造方法とする。 (もっと読む)


【課題】溶鋼中に金属元素の適正量を高い歩留りのもとに添加し、鋳片内に均一に、かつ安定して分散させることが可能な連続鋳造方法を提供する。
【解決手段】取鍋内、タンディッシュ内または鋳型内の溶鋼中に、Bi合金、Sn合金およびTe合金のうちの1種以上を添加する連続鋳造方法であって、金属Bi、金属Snおよび金属Teのうちの1つの金属を、それぞれ、Al、Ca、Si、Mg、Ti、Mn、Niおよび希土類元素のうちの1つの金属と混合するとともに、金属混合物中のBi、SnまたはTeの含有率を70質量%以上とし、該金属混合物を鉄製の被覆材により被覆して鉄被覆ワイヤーとなし、溶鋼中に添加する鋼の連続鋳造方法である。上記の方法において、鉄被覆ワイヤーは断熱ガイドパイプ内を通して溶鋼中に供給し、また、鉄製被覆材の厚さは0.1〜3.0mmとすることが好ましい。 (もっと読む)


【課題】 JIS規定のSUS303系やSUS416系などの高S(S≧0.10質量%)系ステンレス鋼の溶製において、RH脱ガス処理における脱窒速度を抑制して加窒時間の負荷を軽減する方法を提供する。
【解決手段】 IS規定のSUS303系やSUS416系などの高S(S≧0.10質量%)系ステンレス鋼の溶製の際のRH脱ガス処理において、従来は脱炭促進のため、RH脱ガス処理の後半に添加していたS成分を、RH脱ガス処理の処理開始から5分〜15分後の初期の間に溶鋼中にS成分を投入することにより、RH脱ガス処理時間における投入後の[S]濃度の高い時間の割合を多くすることからなる高S系ステンレス鋼のRH脱ガス処理における脱窒の抑制方法。 (もっと読む)


【課題】微量な合金鉄を正確かつ安全にさらには低コストで溶鋼に添加する方法を提供する。
【解決手段】円筒状の紙製の本体部2と、本体部2の一方の端部開口を閉じるとともに溶鋼8に浸漬された場合に本体部2よりも先に焼損する紙製の先端部3とを備え、内部に合金鉄6を収容する中空体からなる合金鉄収容部材1を、先端部3が本体部2よりも下部に位置するようにして溶鋼8に浸漬し、先端部3を焼損させることによって、合金鉄6を溶鋼8中へ投入することにより、合金鉄6を添加する。 (もっと読む)


【課題】溶銑予備処理や脱炭処理等により発生する製鋼スラグの処理方法において、金属酸化物から鉄や有価金属等の回収を行うとともに、f−CaOを低減させる反応を促進させ、さらに、還元剤の燃焼によるCO発生を低減させる。
【解決手段】本発明は、反応容器に装入された溶融状態の製鋼スラグにSiO含有物質および還元用物質を添加し、製鋼スラグの改質処理および還元処理を行う製鋼スラグの処理方法であって、還元用物質の一部または全部として、K値(= (H−O/2)/C)が1以上である廃プラスチックを使用する。 (もっと読む)


本発明は、添加剤ないしは合金を加えた溶鋼におけるリカバリーを増加させる。これは、添加合金と脱酸素剤粉末を混合することによって達成される。脱酸素剤粉末は酸素と反応し、反応した領域において酸素を減少させる。合金ないしは添加剤の領域は、溶鋼におけるリカバリーが向上する。 (もっと読む)


【課題】耐候性鋼において、従来の微量添加元素による性能向上に代わり、コストアップにならない元素や化合物を利用することにより、耐候性鋼の性能、特に、長期のさび安定化能を改善すること。
【解決手段】C:0.03%〜0.18%、Si:0.1%〜0.65%、Mn:0.2%〜1.4%、P:0.03%以下、S:0.02%以下、Cu:0.3%〜2%、Ni:0.2%〜6%、N:0.002%〜0.01%、Al:0.01%〜0.5%、O:0.005%以下を含有し、残部Feおよび不可避的不純物からなるとともに、粒子長軸長さ0.001〜1μmの窒化アルミニウムを5〜50質量ppm含有することを特徴とするさび安定化能を高めた耐候性鋼、および、溶鋼中に窒化アルミニウムを添加して製造することを特徴とする耐候性鋼の製造方法。 (もっと読む)


【課題】 溶銑や溶鋼などの溶鉄を脱硫処理するに際し、溶鉄の攪拌のためのインジェクション法などを併用せずとも、且つCaF2 を配合しなくとも、金属帯被覆脱硫用ワイヤーによるワイヤーフィーダー法のみで効率良く脱硫処理することのできる金属帯被覆脱硫用ワイヤーを提供するとともに溶鉄の脱硫処理方法を提供する。
【解決手段】 上記課題を解決するための金属帯被覆脱硫用ワイヤーは、CaO系フラックスと、金属Mg及び/またはMgOと、金属Alと、廃トナー粉と、を混合した粒状及び/または粉状の脱硫剤が金属質の帯材で被覆されていることを特徴とし、上記課題を解決するための溶鉄の脱硫処理方法は、前記金属帯被覆脱硫用ワイヤーを溶銑中または溶鋼中に供給して脱硫処理することを特徴とする。 (もっと読む)


【課題】溶存Al量が0.1%以上である高アルミニウム鋼を連続鋳造する場合でも、鋳片の凹みや割れの発生を防止して、表面品質に優れた鋳片を製造することができるモールドパウダーを提供すること。
【解決手段】T−CaO:35〜60%、SiO2:5〜20%、Al23:15〜30%、MgO:0.2〜1.0%、Li2O:7〜13%、F:7.0〜13%、C:10.5〜14%、および不可避不純物からなり、式:2.5≦[T−CaO]/[SiO2]≦12.0〔式中、[T−CaO]および[SiO2]は、それぞれ、T−CaOおよびSiO2のモールドパウダー中の含有量(質量%)を表す。〕を満たす、溶存Al量が0.1%以上である鋼を連続鋳造するためのモールドパウダー。 (もっと読む)


この発明は、脱酸素剤物質を中心部に配置させて含有する高寸法有芯ワイヤに関するものであって、該脱酸素剤物質は、保護用コーティング物質でコートされた微細な顆粒又は粉末の形態であり、該有芯ワイヤの直径は、13〜40mmの範囲である。この発明は又、このワイヤを製造する方法にも関係する。 (もっと読む)


【課題】石灰石を焼成して得た生石灰を使用しつつも、ポーラス化をさらに高めて反応性を飛躍的に上げること、それによって蛍石の使用を排除できることを実現した石灰系精錬用フラックスを提供する。
【解決手段】石灰石を粉砕し、これを造粒し、NaClを接触させて焼成した後、造滓作用可能サイズに破砕または粉砕された塩焼き生石灰とする。または、石灰石を粉砕し、これを塩水で練って造粒し、造粒物を焼成した後、造滓作用可能サイズに破砕または粉砕された塩焼き生石灰とする。これらは、金属精錬炉内の溶湯に含まれる硫黄分もしくは燐酸分等と反応して、スラグの生成を促進する石灰系フラックスとなる。なお、造粒するときAl2 3 やCやマグネシアを混ぜておいてもよい。生石灰を破砕または粉砕した後に、カルシウム・フェライトをブレンドすることもできる。 (もっと読む)


【課題】本発明は、真空脱ガス処理の撹拌ガス又は環流ガスにアルゴン・ガスを用いても、従来より窒素歩留りを高くして窒素含有量が90質量%以上の溶鋼を安定して製造可能な高窒素含有鋼の溶製方法を提供することを目的としている。
【解決手段】溶銑予備処理脱硫を経て精錬容器に保持した溶銑を酸素ガスで脱炭し、その炭素含有量が一定範囲にまで低下した時期に窒素ガスを吹き込み、一旦目標値より高窒素含有量の溶鋼として前記精錬容器から出鋼し、引き続き、該溶鋼を真空脱ガス装置で攪拌ガス又は還流ガスにアルゴン・ガスを使用して脱ガス処理する高窒素含有鋼の溶製方法を改良した。具体的には、前記脱ガス処理中の溶鋼に、含硫黄物質を添加して該溶鋼の硫黄含有量及び窒素含有量を調整するものである。この場合、前記溶鋼の硫黄含有量を、0.012質量%〜許容値上限としたり、あるいは前記含硫黄物質にFeSを使用するのが良い。 (もっと読む)


【課題】被削性、熱間加工性、浸炭特性などに優れた、Pb非添加でMnおよびO含有率の高い快削鋼を高い信頼性のもとに安価に溶製できる方法を提供する。
【解決手段】(1)C:0.05〜0.15%、Si:0.03%以下、Mn:0.9〜2.0%、P:0.01〜0.20%、S:0.40〜0.70%、O:0.008〜0.025%、N:0.003〜0.030%を含有し、残部はFeおよび不純物からなる鋼を、CaO含有率及びMgO含有率が、25%≦(%CaO)+(%MgO)≦40%及び0.4≦(%MgO)/{(%CaO)+(%MgO)}≦0.75の関係を満足するスラグを用いて取鍋精錬する低炭素硫黄快削鋼の製造方法である。(2)前記(1)の方法において、Feの一部に代えて、さらにTe:0.100%以下、Cr:1.25%以下、Ni:0.60%以下およびMo:0.40%以下のうちの1種以上を含有させてもよい。また、スラグ中MnO含有率を25〜40%とし、スラグ中S含有率を5%以下とすることが好ましい。 (もっと読む)


【課題】Pbフリーであっても良好な被削性(特に仕上げ面粗さ)を発揮すると共に、連続鋳造方法によって生産性良く製造することのできる低炭素硫黄快削鋼を提供する。
【解決手段】本発明の低炭素硫黄快削鋼は、C:0.02〜0.15%(質量%の意、以下同じ)、Si:0.004%以下(0%を含まない)、Mn:0.6〜3%、P:0.02〜0.2%、S:0.2〜1%、Al:0.005%以下(0%を含まない)、N:0.002〜0.03%を夫々含有し、且つ、鋼中におけるMnS中の平均O濃度が0.4%以上である。 (もっと読む)


【課題】 転炉での脱炭精錬によって得た溶鋼を、真空脱ガス設備の大気圧よりも低い減圧下において脱炭精錬して極低炭素鋼を溶製するに当たり、減圧下での脱炭精錬を迅速に行うことができると同時に、炭素濃度の極めて低い溶鋼を溶製することのできる極低炭素鋼の溶製方法を提供する。
【解決手段】 転炉における脱炭精錬によって得た溶鋼を、真空脱ガス設備の大気圧よりも低い減圧下において脱炭精錬して極低炭素鋼を溶製するに際し、前記真空脱ガス設備における脱炭精錬開始前の溶鋼の炭素濃度が0.02〜0.06質量%の範囲で、溶鋼の溶存酸素濃度が0.04質量%以上であり、且つ、該溶存酸素濃度と前記炭素濃度との比(溶存酸素濃度/炭素濃度)が1.34以上になるように予め溶鋼の成分を調整するとともに、真空脱ガス設備では減圧下の溶鋼に酸素ガスを供給せずに脱炭精錬する。 (もっと読む)


【課題】被削性向上のために、高S化成分にさらにCaおよびMgを併添した鋼であって、さらに強度特性を維持するために、MnSが微細に分散して球状化され、さらに結晶粒の微細化のためにAlを含有している鋼を、ノズルを少しも閉塞することなく製造すること。
【解決手段】 所定の基本成分を含有する鋼であって、とくにSを0.02%以下に調製した溶鋼に、CaおよびMgを添加してCaO−Al−MgOの酸化物に転化制御し、あるいはさらに、Li、Na、K、Sr、Ba、La、Ce、Nd、Pr、Ti、ZrまたはHfの1種もしくは2種以上を添加してこれらの複合酸化物に転化制御したのち、所定量のSを追添し、Al:0.1%以下(0を含む。)、S:0.02〜0.2%、Ca:0.01%以下、Mg:0.01%以下を含有する鋼を溶製することを特徴とする被削性と強度特性にすぐれた機械構造用鋼の製造法。 (もっと読む)


1 - 20 / 20