説明

Fターム[4K014AD27]の内容

銑鉄の精製;鋳鉄の製造;転炉法以外の製鋼 (4,082) | 処理、添加装置 (629) | ノズル、ランス (143)

Fターム[4K014AD27]に分類される特許

21 - 40 / 143


【課題】溶鋼処理に引当てる溶鋼鍋と必要な溶鋼鍋数を把握可能にすること。
【解決手段】演算部13が、出鋼チャージ毎の出鋼終了時刻の情報と、鋳造終了時刻の情報と、当該出鋼チャージについて二次精錬設備においてガス攪拌処理が必要であるか否かの情報と、各溶鋼鍋のガス攪拌処理回数の情報とを含む出鋼計画データに基づいて、前記各出鋼チャージに引当て可能な最終鋳造終了時刻が最も近い溶鋼鍋を引当て、各溶鋼鍋の占有時間の推移を表示出力する。 (もっと読む)


【課題】 バーナ機能により脱燐精錬剤を加熱しつつ溶銑に吹付けて溶銑を脱燐処理するにあたり、添加した冷鉄源を所定の脱燐処理時間の期間で溶解する。
【解決手段】 底吹き羽口7から攪拌用ガス28を吹込んで溶銑26を攪拌しながら、上吹きランス3の中心孔から不活性ガスと共に石灰系脱燐精錬剤29を溶銑に吹付けると同時に、中心孔の周囲に配置した燃料噴射孔から燃料を供給し且つ燃料噴射孔の周囲に配置した燃料燃焼用酸素ガス噴射孔から酸素ガスを供給して火炎を形成し、該火炎によって脱燐精錬剤を加熱すると共に、燃料燃焼用酸素ガス噴射孔の外側に配置した3孔以上の周囲孔から酸素ガスを溶銑に供給して、5〜30質量%の配合比率の冷鉄源が装入された溶銑を脱燐する脱燐処理方法であって、攪拌用ガスの流量Qを冷鉄源の配合比率Xに応じて(1)式を用いて求め、求めたガス流量以上の攪拌用ガスを吹込んで脱燐する。
Q=0.02×(X−5)+0.10…(1) (もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルにあたり、該スラグから予め燐を安価に回収するとともに、回収した燐を資源として有効活用する。
【解決手段】 金属鉄が分離された、燐を含有する製鋼スラグを還元処理し、燐を0.5質量%以上含有する高燐高Mn銑鉄を回収する第1の工程と、前記還元処理によって得られたスラグを製銑工程または製鋼工程へリサイクルする第2の工程と、前記高燐高Mn銑鉄を脱マンガン処理する第3の工程と、脱マンガン処理によって生成したスラグを排出する第4の工程と、スラグが排出された後の処理容器内の溶銑に対して脱燐処理する第5の工程と、第5の工程によって溶銑中燐濃度が0.10質量%以下となるまで脱燐処理された溶銑を製鋼工程にリサイクルする第6の工程と、前記第5の工程の脱燐処理で生成したスラグを回収して燐酸資源原料とする第7の工程と、を有する。 (もっと読む)


【課題】固体酸素源の酸素比率、固体酸素源の供給のタイミングを適正化することにより汎用鋼を確実に溶製することができるようにする。
【解決手段】溶銑の脱りん処理を行うに際し、全酸素に対する固体酸素源の固体酸素源比率を10%以上60%以下とする。固体酸素源の総使用量が1以上3Nm3/t未満の場合、脱珪期では気体酸素比率を75%以上95%未満とし、造滓期では気体酸素比率を55%以上85%未満とする。固体酸素源の総使用量が3以上6Nm3/t未満の場合、脱珪期では気体酸素比率を50%以上75%未満とし、造滓期では気体酸素比率を35%以上85%未満とする。固体酸素源の総使用量が6Nm3/t未満の場合、脱珪期では気体酸素比率を25%以上45%未満とし、造滓期では気体酸素比率を35%以上60%未満とする。 (もっと読む)


【課題】固体酸素源の酸素比率、固体酸素源の供給のタイミングを適正化することにより汎用鋼を確実に溶製することができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、全酸素に対する前記固体酸素源の固体酸素比率を10%以上60%以下とし、脱りん処理に際して使用する全気体酸素のうち0%以上10%未満の気体酸素を供給する間に、全固体酸素源の30%以上80%以下を投入し、残りの固体酸素源は全気体酸素のうち10%以上60%未満の気体酸素を供給する間に投入し、残りの固体酸素源を投入するときの供給速度は0.3〜1.5Nm3/min/tとし、全気体酸素のうち60%以上の気体酸素を供給するときは固体酸素源を供給しない。 (もっと読む)


【課題】 二重管構造のランス本体と、該ランス本体を保持するランスホルダーとで構成される浸漬ランスにおいて、ランス本体とランスホルダーとを正確な芯合わせを必要とせずに強固な連結ができる浸漬ランスを提供する。
【解決手段】 二重管構造のランス本体2と、ランス本体を保持するランスホルダー3と、で構成される浸漬ランス1において、ランスホルダーの下端部にはアダプター16が接合され、アダプターの下端部及びランス本体の上端部にはそれぞれフランジ17,21が設けられ、ボルト22及びナット23によってランス本体がランスホルダーに固定されるとともに、各々のボルトはランスホルダー側に設置された散水スプレー25によって冷却されるように構成されており、且つ、ランス本体には炭化水素ガス導入管26が設置されていて、内管19と外管20との間隙は上端部で密閉され、ランスホルダーを通って供給される酸素含有ガスが内管内に流入する。 (もっと読む)


【課題】 混銑車に収容された溶銑にインジェクションランスを浸漬させ、このインジェクションランスから精錬用の酸素ガスや攪拌用またはフラックス搬送用の窒素ガスなどを溶銑に吹き込んで溶銑に対して脱珪処理または予備脱燐処理の酸化精錬を行うにあたり、従来と比較して反応効率を高めることが可能な精錬方法を提供する。
【解決手段】 長手方向の中央部が円筒状で、長手方向の両端部が円錐状に狭くなった紡錘形の混銑車炉体2に収容された溶銑に、インジェクションランス7を傾斜して浸漬させ、インジェクションランスから精錬用の酸素ガス或いは搬送用ガスともに固体酸素源または石灰源を吹き込んで溶銑中の珪素または燐を酸化除去する、溶銑の精錬方法であって、前記インジェクションランスを、水平面への投影図でみたとき、前記混銑車炉体の長手方向の中心軸Pとは離れた位置に、且つ、前記中心軸の方向と平行な方向に配置する。 (もっと読む)


【課題】混銑車にて脱りん処理を行うに際して、脱りん処理の時間短縮を図りながらスラグのフォーミングの発生を抑制することができるようにする。
【解決手段】脱りん処理を3段階に分け、第1段階では、固体酸素の吹き込み速度を0.11〜0.18Nm3/min/tonとすると共に、CaOの吹き込み速度を0.50
〜0.85kg/min/tonする。第2段階では、固体酸素の吹き込み速度を0.07〜0.10Nm3/min/tonとすると共に、CaOの吹き込み速度を0.26〜
0.46kg/min/tonとする。第2段階後の第3段階では、固体酸素の吹き込み速度を第2段階に示した範囲と同じとした上で、固体酸素の吹き込み速度を0.20〜0.31Nm3/min/tonとする。第1段階、第2段階及び第3段階では、固体酸素
と気体酸素の吹き込み速度の合計を0.34Nm3/min/ton以下にする。 (もっと読む)


【課題】転炉を用いて生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける溶銑予備脱燐において、炉内耐火物の溶損を抑制すると共に、転炉内付着地金を効率的に除去する方法を提供する。
【解決手段】溶銑を転炉型精錬炉に装入後、側壁に地金溶解用ノズルを設置した上吹きランスを該精錬炉に挿入して、該上吹きランスの先端に設置した吹錬用ノズルより粉体精錬剤を吹錬用酸素と共に溶銑に吹き付けて脱燐する溶銑予備脱燐吹錬において、前記粉体精錬剤の吹付け期間中には前記側壁に設置した地金溶解用ノズルから地金溶解用酸素を水平方向に噴射させ、前記粉体精錬剤の吹付け終了から前記吹錬用酸素の吹付け終了までは、前記側壁に設置した地金溶解用ノズルが閉塞しないように該地金溶解用ノズルからパージガスを流し続けることを特徴とする転炉内付着地金の除去方法。 (もっと読む)


【課題】処理中における炉壁及び炉口へのスピッティング粒鉄の付着を抑制し、かつ処理後の溶銑中[P]濃度を0.007質量%以下とする。
【解決手段】上底吹き転炉型精練容器内への溶銑装入と前後して塊状のCaO含有物質を添加し,上吹きランスから粉状のCaO含有物質を伴わずに酸素含有ガスを該溶銑へ吹き付けて該溶銑上にカバースラグを生成した後に該上吹きランスから粉状のCaO含有物質を伴って酸素含有ガスを該溶銑へ吹き付けて該溶銑の脱燐処理を行う。全酸素供給時間の40%以上が経過した後、該全酸素供給時間の70%が経過するまでの期間中に,CaOを30〜50質量%,FetOを40〜65質量%,SiO2を1.0〜10質量%以下及びAl2O3を1.0〜20質量%含有し,かつそれらの4成分の合計が90質量%以上であるプリメルトフラックス2〜12kg/tを添加し,かつ処理後のスラグ塩基度を2.2〜3.1とする。 (もっと読む)


【課題】スラグとの接触で損傷した不定形耐火物部分の解砕時の亀裂が健全な部分の不定形耐火物に伝播するのを防止して、スラグとの接触で損傷した部分への不定形耐火物の部分補修の効果(インジェクションランスの部分補修利用率)を向上させることにある。
【解決手段】パイプ状芯金1と、この芯金1の外周面を覆う耐火物層2とを備え、その芯金1内の供給通路を通じてガスまたは、ガスおよび溶湯処理剤を金属溶湯中に吹き込むインジェクションランスにおいて、前記耐火物層2のうち、金属溶湯上のスラグSと接触する部分以外の部分であって、少なくともそのスラグSと接触する部分の上に位置する部分L1−2,L2に、前記芯金1を囲繞するように耐火レンガ4を設けたものである。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくともCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 上吹きランス1の軸心部に配置した中心孔4から不活性ガスを搬送用ガスとして脱燐用媒溶剤を溶銑に向けて噴出すると同時に、前記中心孔の周囲に設けた燃料供給ノズル6及び酸素含有ガス供給ノズル7により、前記中心孔からの噴出流の周囲に酸素含有ガスと燃料との反応による火炎の包囲帯を形成させ、且つ、前記中心孔の周囲に設置された3孔以上の周囲孔5から酸素含有ガスを溶銑の浴面に向けて吹き付ける。 (もっと読む)


【課題】 攪拌羽根を備えた機械攪拌式脱硫装置を用い、攪拌羽根によって攪拌されている溶銑浴面に上吹きランスを介して脱硫剤を吹き付け添加して溶銑を脱硫するにあたり、高い添加歩留まりで脱硫剤を添加することができると同時に、添加した脱硫剤の凝集を防止することができ、これにより、安定して高効率で脱硫する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の脱硫方法は、機械攪拌式脱硫装置を用いた溶銑3の脱硫方法において、攪拌羽根4によって攪拌されている溶銑の浴面上に、粒径が30〜400μmの石灰系脱硫剤7を、上吹きランス5を介して搬送用ガスとともに上吹き添加して脱硫処理を行う。 (もっと読む)


【課題】蛍石を使用することなく中間排滓時のスラグの流動性を改善して溶鋼歩留まりの悪化やスラグの流出を防止するとともに、中間排滓によるCaO源の削減を図ることができる溶銑の脱Si脱P処理方法を提供する。
【解決手段】転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行い、同一の炉内でさらに脱P処理を行う溶銑の脱Si脱P処理方法であり、脱P処理より後工程において発生する転炉スラグあるいは造塊スラグを脱Si処理を行う炉内に投入し、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行う。なお、溶銑中のSi濃度が0.2%以上の状態で中間排滓を行うことが好ましい。 (もっと読む)


【課題】実操業に適用可能な手段によって、溶銑予備処理工程における脱P効率を改善することができる溶銑の脱Si脱P処理方法を提供する。
【解決手段】溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御してスラグ液相率を高める。これにより副原料の溶解速度およびスラグ中の物質移動速度を高め、脱P効率を改善する。脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御するには、脱Si期において供給した酸素が脱Siに寄与する割合ηを21%≦η≦62%の範囲となるように酸素供給速度を制御すればよい。 (もっと読む)


【課題】 機械攪拌式脱硫装置で攪拌されている溶銑に上吹きランスから脱硫剤を上吹き添加して溶銑を脱硫処理する際に、脱硫剤の飛散を抑制して、反応性に優れる細粒の脱硫剤を効率良く溶銑中へ添加すると同時に、溶銑の酸素ポテンシャルを効率良く低下させて、溶銑を安定して効率的に脱硫する。
【解決手段】 機械攪拌式脱硫装置を用いた溶銑3の脱硫方法において、インペラー4によって攪拌されている溶銑の浴面上に、多重管構造である上吹きランス5の先端部から搬送用ガスとともに脱硫剤6を上吹き添加するとともに、脱硫剤を上吹きする部位の外周に設けた前記上吹きランス先端部の部位から、還元性ガス、不活性ガス、非酸化性ガスの内の何れか1種または2種以上のガスを溶銑浴面に向けて同時に吹き付けて脱硫処理を行うことを特徴とする。 (もっと読む)


【課題】トピードカーを用いた溶銑予備処理方法において、炉体端部まで溶銑を均一に攪拌するために、炉体を振動させて溶銑の共振(スロッシング)を励起するに際して、的確に炉体を振動させることができる溶銑予備処理方法を提供する。
【解決手段】加振装置23によって炉体11を任意の周波数fkで加振した際に、その周波数fkで溶銑1の共振が起きているか否かを判定するためのセンシングを行い、そのセンシング結果(判定結果)に基づいて、溶銑1の共振が起こる周波数fkmを加振周波数fkにする。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】CaO系脱硫材を高速で吹き込む脱硫処理において、低硫域においても脱硫CaO効率が低下しない脱硫方法を提供する。
【解決手段】溶銑へ金属Alを添加した後に、CaO濃度が90質量%以上であり、粒径5μm以上50μm未満の粉体構成率が50%以上である脱硫材を、インジェクション方式で溶銑中に吹き込む脱硫方法である。溶銑への脱硫材の吹き込み速度が100〜300kg/minであると好ましい。インジェクション方式の脱硫において、脱硫CaO効率を低下させることなく短時間で脱硫することができるので、脱硫処理時間の短縮、精錬コストの削減、スラグ排出量削減といった効果を享受することができる。 (もっと読む)


【課題】脱りん処理における気体酸素と固体酸素源との供給量や供給タイミング及び炭材の供給量を規定することによって、スラグのフォーミングを抑制しつつ確実に所望の[P]を得られることができるようにする。
【解決手段】第1吹き込み期間では、気体酸素の供給速度を0.9〜1.2Nm3/t/minの範囲とし、第2吹き込み期間では、気体酸素の供給速度を0.5〜0.8Nm3/t/minの範囲とし、第3吹き込み期間では、気体酸素の供給速度を0.9〜1.2Nm3/t/minの範囲とする。粒径が1〜10mmの酸化鉄に粒径が1〜5mmの炭材を炭素成分における質量配合率で1〜5%配合したものを前記固体酸素源とする。第1期間では、固体酸素源の平均供給速度を1.1〜4.5kg−O/t/minの範囲とし、第2期間では、固体酸素源の供給を停止する。 (もっと読む)


21 - 40 / 143