説明

Fターム[4K017CA01]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉形状 (2,443) |  (214)

Fターム[4K017CA01]に分類される特許

201 - 214 / 214


【課題】 ビヒクルまたは樹脂との相溶性が良好で予備混練時間を短縮することができ、ひいてはペーストの生産性を向上させることができる、球状銀粉およびその製造方法を提供する。
【解決手段】 銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させることにより、かさ密度が2.0g/cm以上、0.3gを直径5mmの円筒形の金型に入れて50kgfの荷重を1分間加えて成型したときの成型体密度が5.0g/cm以上、平均粒径が5μm以下、BET比表面積が5m/g以下の球状銀粉を製造する。 (もっと読む)


【課題】 黒色度が高く、かつ光遮蔽性に優れ、しかも、環境負荷が小さく、安価な黒色材料を提供する。
【解決手段】 粒子径が1nm以上かつ200nm以下の金属および/または金属酸化物からなる1次粒子2が集合して、粒子径が5nm以上かつ300nm以下の2次粒子3とされ、この2次粒子3の最外層はAu、Pt、Pd、Ag、Ru、Cu、Si、Ti、Sn、Niから選択された1種または2種以上の元素またはこれらの酸化物を50重量%以上含有した1次粒子である微粒子4により構成されていることを特徴とする。 (もっと読む)


【課題】 1)無粉砕で球状及び鱗片状の超微粒子を得ることができ、2)篩別工程無しに、シャープな球形粒度分布を有する球状超微粒子を得ることができ、3)極めて真円に近似し、粒子径が目的用途により100nm〜50000nmの大きさの球状超微粒子を得ることができ、4)しかも低コストでの工業的生産を可能にする方法を提供する。
【解決手段】 無粉砕で、真円度が0.9〜1.0で粒径が0.01μm〜10μmの形態を有することを特徴とする球状超微粒子を提供する。該球状超微粒子は、特殊な貫通孔と貫通孔密度を有する基盤をノズルに用いることにより製造できる。この基盤ノズルには、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比(穴径と貫通孔の長さの比)が、5〜200で有し、貫通孔の密度が100〜7000個/cm2の貫通孔密度を有する基盤をノズルに用いる。 (もっと読む)


【課題】 1)加圧振動噴射造粒装置で、無粉砕で球状及び鱗片状の超微粒子を得ることができ、2)篩別工程無しに、シャープな球形粒度分布を有する球状超微粒子を得ることができ、3)極めて真円に近似し、粒子径が目的用途により100nm〜50000nmの大きさの球状超微粒子を得ることができ、4)しかも低コストでの工業的生産を可能にする方法を提供する。
【解決手段】 加圧振動噴射造粒装置で、無粉砕で、真円度が0.9〜1.0で粒径が0.01μm〜10μmの形態を有することを特徴とする球状超微粒子を提供する。該球状超微粒子は、特殊な貫通孔と貫通孔密度を有する基盤をノズルに用いることにより製造できる。この基盤ノズルには、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比(穴径と貫通孔の長さの比)が、5〜200で有し、貫通孔の密度が100〜7000個/cm2の貫通孔密度を有する基盤をノズルに用いる。 (もっと読む)


【課題】 粉末の素地を構成する金属の結晶粒および/または素地中に含まれる化合物等の粒子を微細化するための合金粉の結晶粒微細化装置を提供する。
【解決手段】 合金粉の結晶粒微細化装置は、マグネシウム基合金粉末やアルミニウム基合金粉末等の合金原料粉末を所定の方向に送り出す粉末供給部1と、合金粉末供給部1から供給される合金原料粉末に対して塑性加工を施す塑性加工部2と、合金粉末供給部1を加熱する第1加熱手段3と、塑性加工部2を加熱する第2加熱手段4と、第1加熱手段3を制御する第1温度制御手段5と、第2加熱手段4を制御する第2温度制御手段6とを備える。塑性加工部2は、回転体を用いて合金原料粉末に対して塑性加工を施し、合金原料粉末の素地を構成する金属の結晶粒または該素地に含まれる化合物等の粒子を微細化する。第1温度制御手段5は、合金粉末供給部の温度が100〜350℃の範囲となるように、第1加熱手段3を制御する。第2温度制御手段6は、塑性加工部2の温度が100〜350℃の範囲となるように、第2加熱手段4を制御する。 (もっと読む)


極小の凝集していない金属粉末を、金属カルボニルを包含する、化学蒸着および溶解技術により製造する方法であって、金属を含む処理ガスを、加熱された反応器を通して上向きに推進する、方法。従来の下向きのガス流と反対に、上向きのガス流を使用することにより、理論的なプラグ流れ速度プロファイルに近づけることができ、それによって、所望の狭い粒子径分布が得られ、その後に続く区分け技術の必要性が無くなるか、または少なくなる。
(もっと読む)


【課題】簡単な構成でコンパクトな回転ディスク法による球状微小銅粉製造装置を提供する。
【解決手段】銅を加熱溶融して溶湯とするための坩堝(容器)と、溶湯を流下させる出湯ノズル3と、溶湯を飛散させるディスクとを備えた回転ディスク法による球状微小銅粉製造装置において、出湯ノズル3の外周に誘導加熱コイル(加熱手段)3aを備え、溶湯をディスクに流下させる前には、誘導加熱コイル3aが出湯ノズル3を予熱温度で加熱し、その輻射熱によってディスクを加熱し、溶湯をディスクに流下させるときには、誘導加熱コイル3aが出湯ノズル3を加熱温度で加熱することによって溶湯を固化させずにディスクに流下させる。 (もっと読む)


【課題】液状樹脂中に均一に分散し、固定することで優れた電気導電性を確保しうる導電性金属粒子と、それを用いた樹脂・金属分散系の導電性組成物および導電性接着剤を提供する。
【解決手段】その表面がビニル樹脂又はビニルエステルからなる樹脂成分(C)によって実質的に被覆されている導電性金属粒子であって、金属原料となる金属塩化合物(A)を、上記樹脂成分(C)とともに、還元剤および溶剤として機能する多価アルコール又はその誘導体(B)と共存させながら、加熱条件下で還元させて形成させることを特徴とする導電性金属粒子などにより提供する。 (もっと読む)


【課題】 電子デバイスなどの用途に使用可能な、球状化率の高い球状金属粉末を提供する。
【解決手段】 原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行う微小金属球の製造方法である。
また、原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、熱プラズマのプラズマ動作ガスには水素ガスを添加し、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行う微小金属球の製造方法である。 (もっと読む)


【課題】機械的振動や充填圧力等に対して優れた機械的特性を再現性よく示す極低温用蓄冷材の製造方法を提供する。
【解決手段】作製した磁性蓄冷材粒体から一定量の磁性蓄冷材粒子を抽出し、これら抽出した磁性蓄冷材粒子の集団に5MPaの圧縮力を加えたときに破壊する粒子の比率を測定する。そして、5MPaの圧縮力を加えたときに破壊する粒子の比率が1重量%以下の磁性蓄冷材粒体を選別する。 (もっと読む)


【課題】 良好な分散性を有するとともに、ペーストに使用して600℃以下の低温で焼成することにより導体を形成する場合にも良好な焼結性を得ることができる、球状銀粉およびその製造方法を提供する。
【解決手段】 銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させることにより、500℃における収縮率が5〜15%、600℃における収縮率が10〜20%、平均粒径が5μm以下、タップ密度が2g/cm以上、BET比表面積が5m/g以下の球状銀粉を製造する。 (もっと読む)


微粒子を製造する方法であって、該方法は、(a)システムを用意する工程を備え、該システムは、(i)液体を収容する容器と、(ii)少なくとも第1の電極対と、(iii)前記第1の電極対間に電気アークを生じさせる機構を備え、(b)更に前記方法は、前記第1の電極対を前記液体中に配設する工程と、(c)前記電極対間で少なくとも1回のパルス放電を行い、プラズマ泡を生じせしめ、微粒子を作り出す工程を備え、該微粒子は、前記プラズマ泡に付随して生じ、前記パルス放電は、1000μ秒以下のパルス持続時間を備えるとともに少なくとも1アンペア(A)の電流振幅であることを特徴とする方法である。
(もっと読む)


アノードは、亜鉛粒子を含む。少なくとも約30重量%の亜鉛粒子が球状である。 (もっと読む)


【課題】 高温、酸化性雰囲気下といった過激な環境でも使用に耐え得る耐摩耗部品を得る。
【解決手段】 Ir、Rh又はそれらの合金により略円柱形状の金属体、合金体又は焼結体を作り、次にこの合金又は焼結体を不活性ガス中で回転させつつ溶融し、遠心力により飛散する溶融金属滴を冷却させて凝固し、球体にする。 (もっと読む)


201 - 214 / 214