説明

Fターム[4K021DB43]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 隔膜槽 (2,871) | 触媒電極−イオン交換膜組立体を備える (44)

Fターム[4K021DB43]に分類される特許

1 - 20 / 44


【課題】システム停止時に、気液分離装置から廃棄される水素量を可及的に抑制することができ、システム効率を良好に向上させることを可能にする。
【解決手段】水電解システム10を構成する制御装置82は、水位検出センサ64により気液分離装置52内の水位が排水を必要とする上限高さであると検出された時点から、高圧水素貯蔵タンク53が満タンになるまでの残余充填量を算出する残余充填量算出部84と、前記気液分離装置52内の水位が排水を停止させる下限高さから前記上限高さに至る排水周期の間に、水電解装置12により製造される水素量を算出する製造水素量算出部86と、前記残余充填量算出部84により算出された前記残余充填量が、前記製造水素量算出部86により算出された前記水素量よりも少ない場合に、前記水電解装置12による水電解処理を終了させる水電解終了判断部88とを備える。 (もっと読む)


【課題】水素化反応が抑制され、効率が高い電解装置および冷蔵庫を提供する。
【解決手段】実施形態にかかる電解装置10は、陽極12と、窒素が導入されたカーボンアロイ触媒を有する陰極14と、陽極と前記陰極間に配置された電解質13とで構成される膜電極接合体19を有する電解セルを少なくとも備え、陽極と陰極に電圧が印加される電解装置であって、電解質は酸性、中性又はアルカリ性のいずれかであり、電解質が酸性の場合は、電解装置によって陰極で水が生成し、電解質が中性又はアルカリ性の場合は、電解装置によって陽極で水酸化物イオンが生成することを特徴とする。 (もっと読む)


【課題】気液分離装置から高圧な水が急速に排出されることを抑制し、簡単且つ経済的な構成で、電磁弁の耐久性を良好に向上させることを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水を分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から高圧な水を排出する高圧水排出ライン26と、コントローラ28とを備える。高圧水排出ライン26は、電磁弁94と、前記電磁弁94の下流に設けられ、前記高圧水排出ライン26を流通する水に圧力損失を付与する流量調節弁98とを備える。 (もっと読む)


【課題】簡単な構成及び工程で、表面を緻密化させることができ、電解質膜の損傷を可及的に阻止することを可能にする。
【解決手段】高圧水素製造装置10を構成する単位セル12は、電解質膜・電極構造体14をアノード側セパレータ16及びカソード側セパレータ18により挟持する。電解質膜・電極構造体14を構成するアノード側給電体22は、焼結体により形成されるベース部と、前記ベース部の固体高分子電解質膜20側及び前記固体高分子電解質膜20側とは反対側に設けられる表層部とを有するとともに、前記アノード側給電体22は、前記ベース部にプレス加工を施すことにより、該ベース部の表層部の空隙率が前記ベース部の空隙率よりも低く設定されている。 (もっと読む)


【課題】温調用デバイスを不要することができ、システム全体の小型化及びシステム効率の向上を容易に図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12に供給される循環水の温度を検出する工程と、前記循環水の温度が上昇する運転起動時に、定格運転時の電流密度よりも低い低電流密度で運転する工程と、前記循環水の温度が一定の温度範囲内に維持される際、前記定格運転に移行したと判断する工程と、前記定格運転時に、前記循環水の温度に基づいて予め設定された電流密度で運転する工程とを有する。 (もっと読む)


【課題】製作が容易で、かつ、イオン交換膜が破損せず、長期間安定に運転可能なイオン交換膜法電解槽を提供する。
【解決手段】電極支持部材が、少なくとも一部が弾性マット10で覆われている耐食性フレーム(A)9と、全く弾性マットで覆われていない耐食性フレーム(B)13とから構成され、可撓性電極5と集電板7との間に挟持されて収容されているイオン交換膜法電解槽。好ましくは、可撓性陰極は貫通するが、電極支持部材の弾性マットを有する空間部分は貫通しないピン8によって、可撓性電極と電極支持部材とが集電板に固定されている。 (もっと読む)


【課題】固体高分子電解質膜を用いた水電解によって高圧水素を製造する場合に、従来よりも短時間で水素側の高圧ガスを排気して常圧まで減圧し、エネルギーの無駄を少なくして、迅速な再起動を可能とする。
【解決手段】水素製造セルスタック10に対して、ポンプ13によってタンク14内の純水が供給され、電源21からの電力が供給されると、水電解によって水素ガスが発生し、タンク24に送られる。電解運転の際には、酸素側は常圧としている。水素製造セルスタック10への電力の供給が停止した場合に、停止時間が計測され、停止時間が所定の値に達した時点で、制御装置Cによって電磁弁50が開放され、水素ガス側系内のガスが枝管51を通じて系外に排気される。 (もっと読む)


【課題】電極と電極集電体間との距離をほぼ一定値に維持することを可能にする電極構造において、電解槽の運転停止時において、逆電流が流れた際にも活性陰極の劣化を抑制することができる電解用陰極構造体およびそれを用いた電解槽を提供する。
【解決手段】金属製弾性クッション材1が活性陰極2と陰極集電体3との間で圧縮収容されてなる電解用陰極構造体である。陰極集電体3の少なくとも表面層が、活性陰極よりも単位面積あたり大きな酸化電流を消費する。イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室とに区画された電解槽である。陰極に、上記電解用陰極構造体が使用されてなる。 (もっと読む)


【課題】運転停止後の脱圧時に、シール部材の破損を可及的に回避するとともに、水素の廃棄を阻止することを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素及び水素を発生させる水電解装置12と、前記水電解装置12から前記水素を排出する高圧水素配管88に接続され、該水素を貯蔵する水素貯蔵部96と、前記高圧水素配管88から分岐し且つ前記水素貯蔵部96に接続され、減圧処理時に排出される前記水素を流通させて減圧制御を行う脱圧配管88aと、前記脱圧配管88aに配設されるポンプ装置100と、前記ポンプ装置100の1次側圧力と2次側圧力とを検出する圧力検出装置150と、前記2次側圧力が前記1次側圧力と同一の圧力以上であることが検出された際、前記ポンプ装置100を制御して前記水素を1次側から2次側に強制的に供給するためのコントローラ18とを備える。 (もっと読む)


【課題】運転停止時に、電解質膜やシール部材の内部における水素の膨張を低減することができ、前記電解質膜や前記シール部材の破損を可及的に回避することを可能にする。
【解決手段】水電解装置10の運転停止方法は、前記水電解装置10による水電解処理を停止する工程と、第2流路58に発生する高圧水素の圧力を減圧する工程と、前記高圧水素の圧力が、大気圧を超える圧力で且つアノード側に漏洩する水素の酸素に対する濃度に基づいて設定される設定圧力以下になった際、前記水電解装置10の運転を停止する工程とを有している。 (もっと読む)


【課題】陽極で得られた電解反応生成物又は分解物を高効率で製造することができるとともに、流路圧力損失を抑え、且つ、製造能力を落とすことなく装置を小型化することができ、簡単な工程により安定した性能を有する製品を安価に製造することのできる、膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法、廃水・廃液処理方法を提供すること。
【解決手段】貫通する直径0.1mm以上の複数の貫通孔を有する陽極と、陽極と同一部位に貫通する直径0.1mm以上の複数の貫通孔を有する陰極と、陽極又は陰極の少なくともいずれか一方の片面又は全面に貫通孔を維持したままコーティングした固体高分子電解質隔膜とよりなり、陽極、固体高分子電解質隔膜及び陰極を密着させて、膜−電極接合体を構成した膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法、廃水・廃液処理方法。 (もっと読む)


【課題】運転停止後に、シール部材の内部における水素の急膨張が発生することを阻止し、前記シール部材の破損を可及的に回避することを可能にする。
【解決手段】減圧速度設定方法は、高圧な水素をシールするための第1シール部材62dを、水電解装置10の運転時の設定水素圧力下に配置し、前記第1シール部材62dの内部に前記水素を取り込む工程と、前記水素を取り込んだ前記第1シール部材62dを、大気圧下に配置した状態で、前記第1シール部材62dの内部に取り込まれた前記水素が、該第1シール部材62dの外部に透過する透過時間を得る工程と、前記透過時間以上の減圧時間を設定し、前記減圧時間に基づいて、前記設定水素圧力から前記大気圧までの減圧速度を算出する工程とを有する。 (もっと読む)


【課題】給電性能とシール性能との両立を図るとともに、製造コストの低減を図ることができる水電解用給電体、水電解装置および水電解装置の製造方法を提供する。
【解決手段】、膜電極接合体の少なくとも一方の面に隣接して配置される水電解用給電体3,4であって、膜電極接合体の面と直交する方向に延びて設けられた壁部31によってハニカム構造が形成され、壁部31は、座屈点を超えて圧縮変位に関わらず面圧が一定となる圧縮変位が与えられ、座屈していることを特徴とする。 (もっと読む)


【課題】電流を充分に拡散させ、電流密度が高くなることによる発熱を防止することで、これに起因する電解質膜破損を防止することを目的とする。
【解決手段】電解セル用給電体1が、網状に形成され相互に積層された複数の金属製板材2a〜2gを備え、隣接する金属製板材2a〜2gが個別にスポット溶接され、スポット溶接によるナゲット間の最小離間距離が下記の数1式により定義される。
【数1】


ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。 (もっと読む)


【課題】簡単な構成及び製造工程で、電解質膜の損傷を可及的に阻止することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。アノード側セパレータ34と固体高分子電解質膜38との間には、アノード側給電体40が介装される。アノード側給電体40の最大開口径Dは、固体高分子電解質膜38の引張強さσ、固体高分子電解質膜38の膜厚t及び高圧水素のガス圧(水素圧力)Pに対して、D≦4×t×σ/Pの関係を有する値に設定されている。 (もっと読む)


【課題】固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、格別な制御、定格以上の電解電流、電流供給設備、ポンプの持続運転等を必要とせず、長期的な運転に伴う性能低下を最小限に抑える。
【解決手段】固体高分子形の水電解装置と燃料電池とを一体化して、水電解運転と燃料電池運転との運転モードの切り替え可能な可逆セル1を運転するにあたり、水電解運転と燃料電池運転とを交互に実施する。可逆セル1の運転自体を1時間以上停止して保管する際、停止直前の運転モードが水電解運転である場合には、終了準備燃料電池運転を所定時間実施してから可逆セル1の運転を停止する。 (もっと読む)


【課題】CO2を電気化学還元することにより得られる電解生成物を相対的に高濃度で採取することが可能なCO2電解装置及びCO2電解生成物の製造方法を提供すること。
【解決手段】以下の構成を備えたCO2電解装置10及びこれを用いたCO2電解生成物の製造方法。(1)CO2電解装置10は、陽極側電解液を保持するための陽極室12と、陰極側電解液を保持するための陰極室14と、陰極室14に供給されたCO2の電気分解により生じた電解生成物を取り出すための透過室16と、陽極側電解液に浸漬される対極18と、陽極室12と陰極室14とを隔離するイオン交換膜20と、陰極室14と透過室16とを隔離し、かつ、電解生成物を透過室16に透過させるための作用電極22とを備えている。(2)作用電極22は、CNT膜からなる。(3)作用電極22の陰極室側表面には、CO2分解元素を含む微粒子24が担持されている。 (もっと読む)


【課題】簡単な構成で、カソード側セパレータの腐食を可及的に阻止することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。アノード側セパレータ34には、水が流通する第1流路54が形成されるとともに、カソード側セパレータ36には、前記水よりも高圧の水素が流通する第2流路58が形成される。カソード側セパレータ36と固体高分子電解質膜38の周縁部との間には、前記カソード側セパレータ36と前記固体高分子電解質膜38の周縁部との接触面にのみ耐食層70が設けられている。 (もっと読む)


【課題】従来量産が困難であった無機過酸化物の効率的な製造法を提供する。
【解決手段】カソード及びアノードによりアノード室、中間室、カソード室に区画され、該中間室はカチオン交換膜の隔膜により、該アノードと該隔膜の間に位置するアノード側中間室、及び該カソードと該隔膜の間に位置するカソード側中間室に区画された反応装置を用いて、アノード側中間室及びカソード側中間室にアルカリ電解液を導入し、アノードで電子を発生させて、カソードで酸素を還元することにより過酸化水素含有アルカリ水溶液を製造する工程と、過酸化水素含有アルカリ水溶液を濃縮及び/又は冷却して無機過酸化物結晶を析出させる工程を含むことを特徴とする無機過酸化物の製造方法。 (もっと読む)


本発明は、C原子を1〜4個有する脂肪族炭化水素を触媒の存在下、非酸化性条件で反応させて、芳香族炭化水素に変換する方法に関し、本方法では、変換の際に生じる水素の少なくとも一部を、気密な膜電極アセンブリによって電気化学的に分離する。 (もっと読む)


1 - 20 / 44