説明

Fターム[4K033FA01]の内容

電磁鋼板の製造 (7,545) | 熱延 (1,053) | スラブ加熱温度 (249)

Fターム[4K033FA01]に分類される特許

21 - 40 / 249


【課題】本発明は、特定の結晶配向性を有する鋼板を所望の厚みで安定して製造することができ、結晶配向性を有する鋼板をより効率的に提供する。
【解決手段】特定の結晶配向性を有し、厚さが0.01mm以上10mm以下の鋼板を製造する方法であって、
(a)α−γ変態系マスターピース鋼板と該マスターピース鋼板より低いA3変態点を有するα−γ変態系マテリアル鋼板2を積層する工程、
(b)積層したマスターピース鋼板とマテリアル鋼板を接着することによって一体化する工程、
(c)マテリアル鋼板のA3変態点以上、マスターピース鋼板のA3変態点未満に加熱した後に、マテリアル鋼板
のA3変態点未満に冷却する工程、
から構成されることを特徴とする結晶配向性を有する鋼板の製造方法である。 (もっと読む)


【課題】磁気特性に優れる方向性電磁鋼板を生産性よく製造する有利な方法を提案する。
【解決手段】mass%で、C:0.020〜0.15%、Si:2.5〜7.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちの1種または2種:合計で0.05%以下、Sn:0.01〜0.20%、Sb:(0.2×Sn)%以上0.10%以下、Ni:{0.7×(Sn+Sb)}%以上1.0%以下を含有する鋼スラブを、熱間圧延し、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記鋼スラブのSn,SbおよびNiの含有量に応じて、熱間圧延における1150℃以下での圧下率Rおよび中間焼鈍における最高到達温度T(℃)を適正範囲に制御することを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】温間圧延と同様の集合組織改質効果が得られる方向性電磁鋼板の新規な製造方法を提案する。
【解決手段】C:0.01〜0.10mass%、Si:2.0〜4.5mass%およびMn:0.01〜0.5mass%を含有する鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延で圧下率85%以上の圧延をし、あるいは、中間焼鈍を挟む2回以上の冷間圧延で最終冷延圧下率80%以上の圧延をして最終板厚の冷延板とし、その後、一次再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、上記冷間圧延における総圧下率が50%以下の段階において、歪速度150s−1以下の低歪速度冷間圧延を最低1パス以上施すことを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】積み変圧器を作製した場合にあって、特に、磁束密度Bが1.93T以上の方向性電磁鋼板を用いて変圧器を作製したときに、そのコーナー部分など、磁束が圧延方向からずれて曲がる部位があっても、より効果的に鉄損劣化を抑えることができる方向性電磁鋼板を得る。
【解決手段】一次再結晶焼鈍に先立ち、鋼板の表面に電子線を照射することにより、鋼板の表面を算術平均粗さRaで0.15μm以下の平滑面とする。 (もっと読む)


【課題】歪取り焼鈍を施した場合であっても、より効果的に、鋼板の鉄損を低減させる溝を形成をした方向性電磁鋼板を提供する。
【解決手段】方向性電磁鋼板の圧延方向に対して交差する方向に、レーザまたは電子ビームを、パルス状に照射して線状溝を形成するに際して、鋼板のエッジ部の一端から他端にわたる1条の照射で形成する溝幅を、最終の溝幅よりも小さな溝幅とし、かつ2条以上の照射で、最終溝幅の線状溝とする。 (もっと読む)


【課題】実機トランスに組上げた場合に、優れた鉄損特性、騒音特性を有する方向性電磁鋼板を提供する。
【解決手段】最終仕上げ焼鈍後または張力コーティング処理後に、電子ビーム照射による磁区細分化処理を行う場合に、電子ビームの出力に応じて、一点当たりの滞留時間tと点間隔Xとの関係を次の範囲に制御する。(1)ビーム出力が600W未満の場合には、0.05≦2(Da・t)1/2/X≦1.5(2)ビーム出力が600〜1200Wの場合には、0.03≦2(Da・t)1/2/X≦0.8(3)ビーム出力が1200W超の場合には、0.01≦2(Da・t)1/2/X≦0.2但し、Da:熱拡散率(22.7×10-6m2/s at 300K in Fe)、t:一点当たりの滞留時間(s)、X:点間隔(mm) (もっと読む)


【課題】高速回転モータのロータ材料として好適な、安定して高強度を有し、かつ磁気特性にも優れた高強度電磁鋼板を提供する。
【解決手段】質量%で、C:0.005%以下、Si:3.5%超4.5%以下、Mn:0.01%以上0.10%以下、Al:0.005%以下、Ca:0.0010%以上0.0050%以下、S:0.0030%以下、N:0.0030%以下を含有し、かつCa/S:0.80以上を満足し、残部はFeおよび不可避的不純物の成分組成からなり、板厚:0.40mm以下、未再結晶の加工組織:10%以上70%以下、引張強さ(TS):600MPa以上、鉄損W10/400:30W/kg以下とする。 (もっと読む)


【課題】Siを3.2質量%以上含む方向性電磁鋼板の製造における冷間圧延において、鋼板の破断を防ぐ冷間圧延方法を提供する。
【解決手段】質量%で、Siが3.2%以上、4.0%以下を含有し、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延し、その後、熱処理を施し、続いて、デスケリーリングを施し、その後、一回以上の冷間圧延を施し、次いで、脱炭・一次再結晶焼鈍、焼鈍分離剤塗布、二次再結晶焼鈍、平坦化焼鈍を施す一連の工程を有する方向性電磁鋼板の製造における冷間圧延方法において、冷間圧延を可逆冷間圧延機で行い、かつ、一パス目の冷間圧延を、局部伸びが2.5%以上となる冷間圧延率で行うことを特徴とする方向性電磁鋼板の冷間圧延方法。 (もっと読む)


【課題】本発明の目的は、良好な磁気特性を有する方向性電磁鋼板を得るための手段を提供することである。
【解決手段】質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材において、熱延工程を経た後の鋼中のBをスパーク放電発光分光分析法によるPSA分析において、SInsolB≧5%・・・・(式1)
であることを特徴とする熱延鋼板。ただし、SInsol Bは、発光分光分析法を用いて、放電により得られる特定成分の発光強度を順に並べ替えたパルス強度順位図を作成して、金属中特定成分の全量、不溶成分量、固溶成分量を求められる値である。 (もっと読む)


【課題】良好な磁気特性を有する方向性電磁鋼板を得るための電磁鋼板素材となる熱延鋼板と、それから電磁鋼板を得る手段を提供する。
【解決手段】質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材において、熱延工程を経た後の鋼中の析出物のXRD回折プロファイルが、
IB/IA≧0.08・・・・(1)
であることを特徴とする熱延鋼板。
ただし、IB、IAはそれぞれBN、AlNの最強線強度である。 (もっと読む)


【課題】高速回転モータのロータ材料として好適な、高強度かつ磁気特性に優れた無方向性電磁鋼板を提供する。
【解決手段】成分中、質量%で、C:0.010%以下、Si:3.5%超5.0%以下、Mn:0.2%以下、Al:0.2%以下、P:0.03%以下、S:0.005%以下、Ca:0.001%以上およびN:0.005%以下を有し、かつSi+Al+0.5Mn:3.5%超5.0%以下およびCa/S:0.8以上を満足し、残部はFeおよび不可避的不純物の成分組成として、板厚:0.37mm以下、W10/400:40W/kg以下およびTS:600MPa以上とする。 (もっと読む)


【課題】二次再結晶後の磁気特性に優れる方向性電磁鋼板の製造方法を提案すると共に、その製造に用いる素材鋼板を提供する。
【解決手段】mass%で、C:0.02〜0.15%、Si:2.5〜4.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%およびS,Seの1種または2種を合計で0.05%以下含有する鋼素材を熱間圧延した後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、一次冷間圧延前の素材鋼板の降伏応力YS(MPa)を、鋼素材のSi含有量(mass%)との関係において下記式;
124.32×Si−12.45≦YS≦124.32×Si+127.55
を満たすよう調整した後、一次冷間圧延する方向性電磁鋼板の製造方法。 (もっと読む)


【課題】高速回転モータのロータ材料として好適な、安定して高強度および高疲労特性を有し、かつ磁気特性にも優れた高強度電磁鋼板を提供する。
【解決手段】成分中、質量%で特に、Si:3.5%超5.0%以下、S:0.0005%以上0.0030%以下、Ca:0.0015%以上およびSnおよびSbのうちから選んだ1種または2種合計:0.01%以上0.1%以下を含有し、残部はFeおよび不可避的不純物の成分組成からなるスラブを、熱間圧延−1回の冷間圧延−仕上焼鈍の一連の工程によって高強度電磁鋼板を製造する。 (もっと読む)


【課題】高速回転モータのロータ材料として好適な、安定して高強度および高疲労特性を有し、かつ磁気特性にも優れた高強度電磁鋼板を提供する。
【解決手段】成分中、質量%で特に、Si:3.5%超5.0%以下、S:0.0005%以上0.0030%以下、Ca:0.0015%以上、Sn及び/又はSb:0.01%以上0.1%以下を含有する組成になるスラブを、湾曲型連続鋳造機で鋳造後、熱間圧延−熱延板焼鈍−1回の冷間圧延−仕上焼鈍の一連の工程によって高強度電磁鋼板を製造する。 (もっと読む)


【課題】鋼板の圧延方向に高い磁束密度を有する無方向性電磁鋼板の安価な製造方法を提案する。
【解決手段】C:0.03mass%以下、Si:4mass%以下、Mn:0.03〜3mass%、Al:3mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、冷間圧延前の結晶粒径を100μm以下とし、再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱する仕上焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。 (もっと読む)


【課題】化学的な手段により溝形成による磁区細分化処理を行うことで、低い鉄損特性を有する方向性電磁鋼板を提供する。
【解決手段】圧延直角方向となす角度が45°以内の線状の溝を有する方向性電磁鋼板であって、該溝の底部における、圧延方向における長さで1mm以下の微細粒の存在頻度を10%以下(微細粒が存在しない場合も含む)とし、かつ該溝に、鋼板の片面あたりのMg目付量にして0.6g/m2以上のフォルステライト被膜を具え、さらに鋼板の圧延方向を向く二次再結晶粒の〈100〉軸の圧延面となす角(β角)を平均値で3°以下とする。 (もっと読む)


【課題】表面に絶縁被膜をそなえる方向性電磁鋼板に対し、高い磁区細分化効果を得ようとして投入エネルギーを増加させた場合に、鋼板の表面近傍の熱歪みを適正化し、所期した鉄損低減効果が得られる方向性電磁鋼板の製造方法を提供する。
【解決手段】加速電圧が10kV以上の差を持つ少なくとも2本の電子ビームを照射して電子ビーム照射帯を形成し、該電子ビーム照射帯中の電子ビームの中心間距離をそれぞれ1mm以内とする。 (もっと読む)


【課題】従来の二方向性電磁鋼板とは異なる結晶方位を有しながらも、二方向性電磁鋼板としての特徴を有する新規な電磁鋼板とその製造方法を提案する。
【解決手段】mass%で、C:0.002〜0.10%、Si:1.0〜8.0%およびMn:0.005〜1.0%を含有し、さらに、Al:0.0100%以下、N:0.0050%以下、S:0.0050%以下およびSe:0.0050%以下を含有する鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭を兼ねた一次再結晶焼鈍し、その後、仕上焼鈍する一連の方向性電磁鋼板の製造方法において、上記冷間圧延における最終冷延圧下率を94%以上とすることで、結晶粒の方位が{110}<112>から20°以内である比率が結晶粒の面積率で50%以上である電磁鋼板を得る。 (もっと読む)


【課題】一段の鉄損低減を図った方向性電磁鋼板の製造方法を提供する。
【解決手段】脱炭焼鈍において、連続焼鈍で、かつ、雰囲気酸化性P(H2O)/P(H2)≦0.05を条件として、少なくとも500〜700℃の昇温速度を50℃/s以上で700〜750℃の温度域まで加熱し、ついで、雰囲気酸化性P(H2O)/P(H2)≦0.05を条件として、700℃未満の温度域まで冷却し、さらに、雰囲気酸化性P(H2O)/P(H2)≧0.3を条件として、800〜900℃の温度域まで再加熱し、保持する。 (もっと読む)


【課題】ある特定の成分系の珪素含有鋼スラブを素材とした熱延板において発生する表面疵を低減する有利な熱間圧延方法を提案する。
【解決手段】C:0.03mass%以下、Si:2.0〜5.0mass%、Mn:0.005〜1.0mass%、sol.Al:0.040mass%以下、N:0.0005〜0.0150mass%、S+Se:0.030mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを再加熱し、熱間圧延するに当たり、上記再加熱における鋼スラブの昇温速度を、再加熱開始から750℃までをR(℃/分)、750℃〜1050℃までをR(℃/分)とするとき、RおよびRが下記式;
20℃/分≧R≧R≧2℃/分
の関係を満たすように再加熱した後、熱間圧延する。 (もっと読む)


21 - 40 / 249